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Abstract. This paper proposes a framework intended to help developers to cre-

ate ubiquitous applications. We argue that context is a key concept in ubiqui-

tous computing and that, by nature, a ubiquitous application is distributed and 

needs to be easily deployable. Thus we propose an easy way to build applica-

tions made of numerous modules spread in the environment and interconnected. 

This network of modules forms a permanently running system. The control (in-

stallation, update, etc.) of such a module is obtained by a simple, possibly re-

mote, command and without requiring to stop the whole system. We ourselves 

used this architecture to create a ubiquitous application, which we present here 

as an illustration. 

1. Introduction 

New technologies bring a multiplicity of new possibilities for users to work with 

computers. Not only are spaces more and more equipped with stationary computers or 

notebooks, but more and more users carry mobile devices with them (smart phones, 

PDAs, etc.). Ubiquitous computing takes advantage of this observation. Its aim is to 

create smart environments where devices are dynamically linked in order to provide 

new services to users and new human-machine interaction possibilities. The most 

profound technologies are those that disappear. They weave themselves into the fab-

ric of everyday life until they are indistinguishable from it [20]. A ubiquitous envi-

ronment is typically equipped with sensors, for example cameras, Bluetooth dongles, 

WiFi routers, RF-Id readers, etc. Users are detected using vision or using the mobile 

devices they carry, for instance Bluetooth enabled cell phones, PDAs with WiFi 

cards, RF-Id tags built in their professional badges, etc. Such an environment should 

also provide numerous human-machine interfaces, as for example screens and touch-

screens, microphones for speech recognition, speakers for speech synthesis, key-

boards and mice or more sophisticated input-output devices (for instance [2]). All 

these devices, by definition of ubiquitous, are spread in the environment. Moreover, 

they can be mobile, appearing and disappearing freely as users come and go. As a 

consequence, a ubiquitous system is necessarily distributed. We are in an environ-

ment where computers and devices are numerous and spread out and need to cooper-

ate in order to achieve a common goal. Moreover, the environment should not put 
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constraints on the kind of platforms it integrates. In fact, legacy devices are already 

present in the environment and the ubiquitous system should use them. Additionally, 

if the system integrates the users’ mobile devices, it can not impose a certain kind of 

device because users would not accept such a constraint. 

To come to the point, in order to achieve its vision, ubiquitous computing must (i) 

Integrate numerous and heterogeneous platforms that are spread out and that can 

dynamically appear and disappear. (ii) Perceive the user context in order to enable 

implicit interaction. 

This is the background when developing ubiquitous applications. What we propose is 

an implementation of this background, of the software infrastructure underlying a 

ubiquitous system. Our architecture comprises the communication and interconnec-

tion of modules, service discovery, a platform for easy deployment, dynamic re-

composition without restart. This architecture is easy to install on every device of the 

environment, it works on Linux, Windows and MacOSX. Modules are easy to de-

velop thanks to a wizard (section 3.2.3) for Java. Modules can also be written in C++ 

and can communicate with the others. Thanks to this architecture, developers can 

focus on the algorithms which make the intelligence of the system and address fun-

damental problems. The cost of adding a module and deploying it for testing on sev-

eral machines is minimal. One can install, uninstall, start, stop or update a module 

without suspending the whole system. 

Furthermore, we propose a centralized knowledge base. This database records the 

history of modules’ lifecycles, of actions and events in the environment. It also con-

tains static information about the infrastructure and the users. This database helps the 

development of ubiquitous applications because it allows to replay a scenario, to find 

out everything that happened during an experience, etc. 

2. Related Work 

Context has been recognized as being a key concept for ubiquitous applications [4], 

[9]. Dey [4] defines context to be “any information that can be used to characterize 

the situation of an entity, where an entity can be a person, place, or physical or com-

putational object”. A number of frameworks have been proposed to facilitate context-

awareness in ubiquitous environments. Some of them are centralized context servers, 

for instance Schilit’s mobile application customization system [16], the Contextual 

Information Service (CIS) [13], the Trivial Context System (TCoS) [7] and the Se-

cure Context Service (SCS) [1], [10]. These systems operate as middleware collecting 

unprocessed data from sensors, treating it and providing interpreted, high level con-

text information to applications. In this manner it is easier to ensure data integrity, 

aggregation and enrichment. On the other hand it is harder to make such a system 

evolve in size and complexity. Most of this work is rather early in ubiquitous comput-

ing. Distributed systems have been proposed, as for example the Context Toolkit [4] 

or the architecture proposed by Spreitzer and Theimer [17], where context informa-

tion is broadcasted. The Context Toolkit offers distributed context components and 

aggregators that make the distributed character of the environment transparent to the 

programmer. 
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More recent work proposes frameworks for ubiquitous applications, helping develop-

ers to use context: Rey [3] introduces the notion of a contextor, a computational ab-

straction for modeling and computing contextual information. A contextor models a 

relation between variables of the Observed System Context. An application is ob-

tained by composing contextors. This work is an extension to the Context Toolkit as 

it adds the notion of metadata and control to the system. 

Our work relates to these frameworks as it also proposes a structure for developing 

ubiquitous applications. But our architecture is more general. In fact, we propose no 

more than an easy way to create a number of interconnected modules that are distrib-

uted in the environment and whose lifecycles can be remotely controlled. By “easy 

way” we intend to say that the devise of one module and the deployment of the global 

system are simple. Our architecture stays in the realm of ubiquitous computing as it is 

oriented for interactive applications: it has a small latency and a small network cost. 

In the following sections we describe our architecture. We state the needs that appear 

when building ubiquitous applications and that we respond to. We then explain how 

we respond to those needs and what the underlying technologies that we use are. 

Finally we illustrate our work by an example of a ubiquitous application developed 

based on our architecture. 

3. An architecture for ubiquitous applications 

3.1. Needs 

As we described above (section 1), a ubiquitous environment needs to integrate het-

erogeneous platforms: computers running with different operating systems (Linux, 

Windows, MacOSX, etc.) and mobile devices such as smart phones or PDAs (which 

can also have various operating systems). Therefore, a ubiquitous computing archi-

tecture is distributed. This implies the need for a communication protocol between 

the modules that are spread in the environment. Furthermore, it implies the need for a 

dynamic service discovery mechanism. In fact when a module needs to use another 

module, for instance a speech synthesizer, it should dispose of an easy way to find it. 

The knowledge of the host it is currently running on should not be necessary. More-

over, often the need would be to find a speech synthesizer in a given location (the 

location of the user). Thus we first need a way to dynamically find a host with the 

additional constraint that it is connected to speakers located in that room; and then 

find the needed module on that host. It would be even better if we could dynamically 

install and/or start this module if it is not already available. More generally, it is con-

venient to be able to control the deployment and the lifecycles of modules. This ex-

ample shows that we also need a knowledge base on the infrastructure and the regis-

tered users. This component knows that there are speakers in the given room and it 

knows the hostname of the device connected to them. With the perspective of provid-

ing services to users, this knowledge should include user preferences such as the 

preferred modality for interaction (e.g. audio rather than video) or the actions to be 
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executed in a certain situation (e.g. turn on the lights when the luminance is lower 

than a threshold). This knowledge could be spread: each machine knows its hardware 

and capabilities. But we made the choice of a centralized database with a “map” of 

the environment in terms of hardware. In fact, we are going to query this knowledge 

base very frequently and it is more convenient to group all this information together, 

rather than search on several hosts for the answer. 

In addition, for more flexibility and a better scalability, we should admit that these 

modules can be written in different programming languages. Such a distributed archi-

tecture can easily become hard to maintain. In fact, installing software on several 

heterogeneous machines is work. Keeping this software up-to-date is even more labo-

rious. The update should be easy and quick and it should not require the stop of the 

whole system, or even the stop of the machine being updated. 

We propose such an architecture, responding to the needs mentioned above with the 

combination of two recent technologies: OMiSCID [6] for communication and ser-

vice discovery and OSGi [12] for deployment. Additionally, we designed a database 

serving as the central knowledge component. We use a context model to tell us what 

to do in each situation for each user. This constitutes a higher level layer. The follow-

ing sections detail these aspects. 

3.2. Architecture 

In this section we describe in detail which technologies our architecture is based on 

and how one uses it to create ubiquitous applications. 

3.2.1. Communication between modules: OMiSCID 

 

As shown above (section 3.1), we need a communication protocol between modules. 

For more flexibility and scalability, each module is an independent piece of software 

and can be devised by different developers. Such a communication protocol has been 

specified and implemented by [6]: OMiSCID is the resulting middleware. OMiSCID 

is composed of two layers: (i) network communication: BIP [11]. The network cost is 

minimal: only a 38 bytes heading per message. (ii) The service layer. It uses DNS-SD 

[5], also called Bonjour (c.f. Apple) as a distributed directory. Each module is imple-

mented as an OMiSCID “service”. At startup, it declares itself to the domain and can 

be contacted by any other module in the same domain, whether they are physically 

running on the same machine or not. This contact is made through “connectors” de-

fined by each module. Three types of connectors exist: input, output and inoutput. 

There are several ways to make modules communicate. A sensor module can have an 

output connector on which it sends messages when it detects events. For instance a 

person tracker could send an event each time a person enters or leaves the area; a 

luminance sensor could fire events when the luminance goes past some threshold. A 

client module connects an input connector with the output connector of the sensor to 

receive these events (and react to them using listeners). To send a command to an 

effector module, the client connects its output connector with an input connector of 

the effector and uses it to send a request. Two modules can also communicate through 

two connected inoutput connectors. The client sends a request to the server, which 
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answers it through the same connector. 

Figure 1 shows the connectors of a per-

sonal assistant (called PersonalAgent), 

which is described section 3.3 below. “-” 

represent inoutput connectors, “+” – input 

and “#” – output connectors. An OMiS-

CID services also defines variables repre-

senting its state. Variables can have read 

or read-write permissions.  

This architecture allows us to connect 

different modules, developed possibly by 

different programmers, and to use each 

module like a black box, knowing only 

the message convention for communica-

tion (see section 3.2.1.1 below). More-

over, this facilitates the ubiquitous deployment of the system. In fact, modules can 

run on different hosts, including mobile devices: it is possible to implant OMiSCID 

and OMiSCID modules on a PDA connected to the network via WiFi. Additionally, 

OMiSCID is multi-language and multi-platform as it is implemented in C++ for Win-

dows, Linux and MacOSX, and in Java. In this matter, ubiquitous applications may 

runs on one machine, but are ubiquitous because they have very easy and transparent 

access to any other mobile or stationary device of the environment, “equipped” with a 

module providing access to it. 

3.2.1.1. Communication format 

 

For modules to understand each other, we need a convention for the format of ex-

changed messages. We made the choice of the XML format for messages. Each con-

nector is associated to an XSD schema (which can be retrieved from the database) 

and incoming or outgoing messages are valid XML strings for the corresponding 

schema. To facilitate the processing of this XML, we use Castor [21] for a mapping 

between XML and Java objects. In this manner, developers work only with objects. 

They do not need to know exactly the syntax of messages, but only the semantic 

(which should be easy to infer from the fields of the Java objects). 

3.2.2. Deployment of modules: OSGi 

 

At this point we have a distributed architecture of inter-connected modules. Such 

architecture can quickly become hard to control and to maintain. For instance, a per-

son tracker would run on several machines in order to monitor several rooms. We 

need an easy way to install and update the person tracker on all these machines when 

a new version is developed. 

Furthermore, we are in an environment with numerous stationary machines, and 

where devices can appear dynamically. We can not consider installing every module 

manually on every machine. We need an opportunistic strategy: we install a module 

on a machine only when needed. For instance we install a speech synthesizer on a 

Figure 1: The personal assistant 

and his connectors. Each connector is 

used for communication with a par-

ticular OMiSCID service. (Not all 

connections are shown.) 



 6 

machine in a room when we need to send a message to a user in that room. The dy-

namic deployment of modules is based on a central server containing all available 

modules. 

OSGi [12] provides these functionalities. We use Oscar as an implementation of 

OSGi. On each device that belongs to the ubiquitous environment, an Oscar platform 

runs. At least two bundles are required: one that incorporates jOMiSCID, a Java im-

plementation of OMiSCID1 and one that incorporates Castor, allowing modules to 

decode messages they send and receive (section 3.2.1.1). All the modules are at the 

same time OSGi bundles and OMiSCID services. A common bundle repository is 

created on a central machine and it regroups all the modules. It is accessed via http. 

Every Oscar platform installs its bundles from this repository and thus is linked to it. 

When a new module is developed, it is added to the repository and all the Oscar plat-

forms can just install the corresponding bundle. When a module is updated in the 

repository, all the Oscar platforms just have to update their bundle. This is very con-

venient because once this architecture is set up, new modules are very easy to install. 

One doesn’t need to compile them on the new machine or to worry about dependen-

cies. To update a module, one also has to just enter the “update” command in Oscar. 

It is also convenient to be able to remotely control other modules (start a needed 

module, update, stop or even install one). We add this functionality to OSGi via a 

bundle called “remoteShell”. It is an OMiSCID service able send commands to the 

Oscar platform that it runs on. Thus a distant module can call upon the local “re-

moteShell” (through OMiSCID connectors) and send OSGi commands to it. This 

bundle should be installed by default on every Oscar platform as well. 

3.2.3. For easy development: a wizard 

 

To facilitate the programmer’s work, we have developed an Eclipse plug-in [14]. It 

provides a wizard for creating new projects of the type OMiSCID service and OSGi 

bundle. An empty project generated with this wizard contains the correct arbores-

cence of packages and files, the main classes with the OMiSCID code to create and 

register the service, the XML file where the developer should specify the connectors, 

the lifecycle code for OSGi, the manifest file and the build files ready to build and 

publish the new bundle on the repository. Thus to add a new empty module, one (i) 

uses the wizard, (ii) builds and publishes the new project by running the generated 

build.publish.xml file (iii) installs it in Oscar (a single install command) 

and (iv) starts it in Oscar (a single start command). At this point the new OMiS-

CID service is visible in the domain. 

A user interface has been created to visualize the services running in a domain. It is 

shown Figure 3. Figure 2 shows the graphical interface of Oscar. 

 

                                                           
1 The Java version of OMiSCID – jOMiSCID – is not a JNI layer of the C++ version, but a 

complete rewriting in pure Java. 
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Figure 2: The graphical interface of Oscar, 

showing the bundles. Notice that the active bun-

dles are visible as services on Figure 3. 

 

Figure 3: Visualization of 

the OMiSCID services run-

ning in a domain. 

3.3. Example: a personal ubiquitous assistant 

We use the architecture described above (section 3.2) for a personal ubiquitous assis-

tant. Our environment is equipped with a number of devices which we use to retrieve 

information about the user and his context. Mobile devices that users bring into the 

environment contribute to that knowledge. We use that knowledge to propose rele-

vant services to the user. The assistant is the central module of the environment, ob-

serving the user and offering him proactive services. The assistant can do task migra-

tion: doing a task instead of the user. It can also provide additional services, for in-

stance forwarding a reminder to the user if he receives it while being away from his 

computer. Thus our assistant is personal in the sense that it is user-centered. It is 

ubiquitous because it uses information provided by all available devices in the envi-

ronment to observe the user and estimate his current situation or activity. It calls upon 

these devices to provide services as well. Thereby, the services provided are context-

aware. At last, our assistant is a learning assistant because these services are user-

adapted. In fact, most of current work on pervasive computing [19], [15] pre-defines 

a number of services and fires them in the correct situation. Our assistant starts with 

this pre-defined set of actions and adapts it progressively to his particular user. The 

default behavior allows the system to be ready-to-use and the learning is a life-long 

process, integrated into the normal functioning of the assistant. Thus, the assistant 

will, at first, be only acceptable to the user, and will, as time passes, give more and 

more satisfying results. 

The assistant observes the user and gathers clues on his context and his activity. For 

that he needs perceptive modules – sensors – able to provide this kind of information. 

For providing services to the user, it needs proactive modules – effectors. Some mod-

ules can run on any host and some are linked to, or used to access, specific hardware. 

Thus they run on the machine connected to this hardware. For instance, a person 

tracker needs at least one camera. The person tracker module is then installed on the 

machine connected to the camera(s). In the same way, each machine equipped with 

speakers would have a module able to synthesize speech or play given audio input. 
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To sum up, our ubiquitous system is composed of several modules and the personal 

assistant. Sensor modules can fire events, received by the assistant, or the assistant 

can explicitly interrogate a sensor. This input allows the assistant to estimate the 

user’s situation (section 3.3.1.1). The default behavior, possibly modified by acquired 

experience, indicates to the assistant how to act in a certain situation. When the ap-

propriate action is chosen, the assistant contacts an effector to execute it (e.g. to pro-

vide the chosen service). 

3.3.1. Mechanism of the assistant 

 

We mentioned in section 3.3 above an example of a service provided by the assistant. 

In this example, the user is currently away from his office and his agenda fires a re-

minder. The system detects this event. A rule indicates it how to react in this situation 

to this event. The assistant now knows that it must inform the user of the reminder. It 

tries to find the user in the building and to send him a message with the reminder. 

When contacting the user, the assistant takes into account the context of the user 

(whether he is alone or not) and the preferences of the user (his preferred modality for 

receiving a message). In the following sections, we explain in detail how this example 

works. 

3.3.1.1. The context model 

 

A context is represented by a network of situations [8]. A situation refers to a particu-

lar state of the environment and is defined by a configuration of entities, roles and 

relations. An entity is a physical object or a person, associated with a set of proper-

ties. It can play a role if it passes a role acceptance test on its properties. A relation is 

a semantic predicate function on several entities. The roles and relations are chosen 

for their relevance to the task. Likewise, only entities that can possibly play roles and 

that may be relevant for the task are considered. A situation represents a particular 

assignment of entities to roles completed by a set of relations between entities. Situa-

tion may be seen as the “state” of the user with respect to his task. If the relations 

between entities change, or if the binding of entities to roles changes, then the situa-

tion within the context has changed. To detect situation changes, a federation of ob-

servational processes is required. 

In order to provide services, one can define rules that attach actions to situations. 

These actions are triggered when the situation the system finds itself in, changes. 

Corresponding services are then provided to the entities (users) playing the required 

roles. Figure 4 shows an example of a context model. This context model tells the 

assistant what to do in a given situation and what the current situation is given the 

observations of the user and the environment. The context model incorporates the 

intelligence of the assistant. 

This context model is implemented in Jess as a Petri network. 
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Figure 4: Extract of the context model 

3.3.1.2. The ubiquitous database 

 

All modules share a database divided into four parts (user, service, history and infra-

structure) and partly presented Figure 5. Each part is implemented as an SQL 

schema. 

 

Figure 5: Simplified scheme of the database 

The part history stores the modules lifecycles (the dynamic start and stop of bundles 

in the OSGi platform), all occurred events and actions taken by the system. This part 

is useful for explaining to the user (if required) why an action was or was not taken. 

We believe that these explanations bring a better trust of the user for the intelligent 

system. 

The part infrastructure contains known, static information about the environment: the 

rooms of the building and their equipment (in- and output devices and the hardware 

units that can control them). This knowledge can be used to determine which device 
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is the most appropriate for the needs of a service. The part user describes registered 

users (it associates users with their Bluetooth devices and allows to identify users; it 

stores user logins allowing to identify them on the local network, etc.). As a future 

evolution, this user data will be brought in by the user on his PDA as a profile. When 

the user enters the ubiquitous environment, his profile is loaded into the system. This 

discharges the PDA of any heavy treatment that could be necessary to exploit this 

personal data (learning algorithms, HMMs, etc.). The computation is taken over by 

another device: a central server, the personal computer of the user, etc. and the PDA, 

whose resources are very limited, stays available for its primary purpose. When the 

user leaves the environment, it is conceivable to migrate the new profile back on the 

PDA. In this way, the user has the updated data with him if he needs it elsewhere (in 

another ubiquitous environment, for instance at home or in his car or maybe in a 

public place). 

The part service is a free ground for plug-in services that are not necessary for the 

core system to function. For instance if we dispose of Bluetooth USB adapters, we 

can use them to detect users’ presence by detecting their Bluetooth cell phones and 

PDAs. This information may be used to determine the identity of a video tracker’s 

target. 

In order to easily communicate with the database, we use Hibernate [18]. We enclose 

it into a bundle that other modules use to query the database. We implement all the 

needed queries in this bundle and other modules just call functions to execute them. 

This makes modules more independent of the database. If the database is modified, 

only the one specific bundle has to be updated. 

The database is the knowledge and the memory of the assistant. It tells it where to 

send a command to provide a service. It can also be used to explain actions of the 

assistant to the user. If the preferred modality was not chosen, we can explain using 

the database that it was not available in the given location. As the database keeps a 

history of all events and actions, and of the lifecycle of all modules, it can explain, for 

instance, in case of a failure, that it happened because a certain module was not run-

ning at the time. 

3.3.1.3. The global mechanism 

 

Figure 6 resumes the logic of our system and shows the connections between compo-

nents. The personal assistant is the central part of the system. Its role is to connect all 

the resources and knowledge of the environment in order to reach the goal of provid-

ing services to the user. It is linked to the environment by the modules mentioned 

above (section 3.2). The latter run in the OSGi platform as bundles and can commu-

nicate with each other (and with the assistant who is such a module as well) through 

OMiSCID (as they also are OMiSCID services). 

Perception gives the assistant information about the user, for instance his location and 

his activity. These clues are directly interpreted by the assistant as the role (in the 

sense defined above, section 3.3.1.1) the user is playing. It sends it as an input to the 

context model. That is to say, it asserts Jess facts which possibly trigger rules that 

make the context model fire a transition and thus switch the current situation. The 

activation of a situation triggers also rules defining services that are to be provided to 
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the user. Concretely, Jess rules call methods of the assistant who knows how to pro-

vide that service and which OMiSCID services (effector modules) to contact. 

The ubiquitous database is used all along in this process. It is mainly queried by the 

assistant, but also by other modules. 

 

 

Figure 6: The global mechanism of the system 

Let us reconsider the example scenario mentioned section 3.3.1 above in order to 

explain in depth how it works. The user’s agenda (KOrganizer) triggers a reminder. A 

module (“KAlarmDaemon”) was listening to reminders thus it detects this event. It 

sends a message on his output connector. The assistant has an input connector con-

nected to the output of “KAlarmDaemon” thus it receives this event. The alarm is 

considered as an entity playing the role “AlarmNow” hence the assistant asserts the 

corresponding Jess fact. If the current situation is “UserPresent”, nothing else hap-

pens. But let us consider the user being absent and therefore the current situation 

being “UserAbsent”. In this situation, a rule indicates that the reminder should be 

forwarded to the user. Actually, there are three rules differentiating the cases where 

the user location is unknown and where the user is in a known office but alone or not 

alone2. Thus one of these rules is fired by the Jess engine and calls a method of the 

assistant. The context model (implemented as Jess rules) knows what to do and the 

assistant knows how to do it. In the case where the user is not to be found, the only 

way to forward the reminder is by email3. Thus the assistant contacts the email mod-

ule “MailService” (the user’s email address is known from the database) which sends 

an email using JavaMail. If the user location is known, the assistant tries to contact 

the user by his preferred modality (written message, synthesized voice, etc.), which is 

of course different whether the user is alone or not. Thus, for each modality in prefer-

ence order, the assistant queries the database to find out if it can be provided in the 

room the user is in. When it obtains a positive answer, it queries the database for the 

machine (hardware unit) connected to the correct output (screen, speaker, etc.). Then 

it searches on that host for the corresponding module capable of providing that ser-

                                                           
2 The user location is maintained up to date in the Jess engine by the assistant who is connected 

to a module sending out user location events. 
3 Of course, a text message on the user’s mobile phone would be even more adequate, but at 

the moment we do not have the technical means to do that. 
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vice. If the corresponding OSGi bundle is currently not started, it tries to remotely 

start it (or even install it first) and then to contact it. One can notice that in this exam-

ple, the host that is contacted to forward the reminder could very well be a mobile 

device, for instance the user’s PDA, as long as it is in a WiFi covered area and was 

equipped with OMiSCID and Oscar. 

3.3.1.4.  The interconnected modules used by the assistant 

 

 

Figure 7: A schema of our modules and their interconnections. Input connec-

tors are marked with “+”, output with “#” and inoutput with “-”. 

Figure 7 shows our modules and the way that they communicate. The assistant corre-

sponds to the module “PersonalAgent”. Modules are OMiSCID services and have 

input (“+”), output (“#”) and inoutput (“-”) connectors. An arrow from connector A 

to connector B means that A makes a connection to B (A needs B). It does not indi-

cate the direction of messages (for instance if an input connector connects to an out-

put connector, the messages go in the opposite direction: from the output to the in-

put). The dotted arrows indicate that the connection is only made if needed, dynami-

cally during the execution. The plain arrows stand for permanent connections made at 

start-up. When such a connection breaks, the module that needs it waits for the other 

module to return (or tries to restart it). This wait blocks the module if the connection 

is necessary or it can be done in background if the information provided by the con-

nection is optional. One can notice that two modules can be linked by several connec-

tions: for a better clarity of the system, one connection should correspond to one 

semantic need. 

4. Conclusion 

We presented in this paper a framework for ubiquitous applications. Our aim is to 

provide developers an easy way to build such systems. Looking at the requirements 

of ubiquitous computing, we created an adapted software architecture providing sim-

ple and convenient means to create ubiquitous software modules. The interconnection 

and communication of these modules forms the ubiquitous application. As we pro-
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vide technical solutions to easily deploy and interconnect modules, developers can 

focus on algorithms that will constitute the core intelligence of their systems. We use 

OMiSCID for service discovery and communications. OSGi provides us a framework 

for deployment of modules without stopping the whole system. The combination of 

OMiSCID and OSGi allows us to add the remote control of modules’ lifecycles. 
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