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Abstract. This paper presents a technique to determine the identity of
objects in a scene using histograms of the responses of a vector of local
linear neighborhood operators (receptive �elds). This technique can be
used to determine the most probable objects in a scene, independent of
the object's position, image-plane orientation and scale. In this paper we
describe the mathematical foundations of the technique and present the
results of experiments which compare robustness and recognition rates
for di�erent local neighborhood operators and histogram similarity meas-
urements.

1 Introduction and Motivation

Swain and Ballard [10] have developed a technique which identi�es objects in an
image by matching a color histogram from a region of the image with a color

histogram from a sample of the object. Their technique has been shown to be
remarkably robust to changes in the object's orientation, changes of the scale
of the object, partial occlusion or changes of the viewing position. However, the

major drawback of their method is its sensitivity to the color and intensity of the
light source and color of the object to be detected. Several authors have improved
the performance of the color histogram approach by introducing measures which

are less sensitive to illumination changes (see i.e. [5, 6, 2]).

The color histogram approach is an attractive method for object recognition,
because of its simplicity, speed and robustness. However, its reliance on object

color and (to a lesser degree) light source intensity make it inappropriate for
many recognition problems. The focus of our work has been to develop a similar
technique using local descriptions of an object's shape provided by a vector of

linear receptive �elds. For the Swain and Ballard algorithm, it can be seen that
robustness to scale and rotation are provided by the use of color. Robustness to
changes in viewing angle and to partial occlusion are due to the use of histo-

gram matching. Thus it is natural to exploit the power of histogram matching
to perform recognition based on histograms of local shape properties. The most
general method to measure such properties is the use of a vector of linear local

neighborhood operations, or receptive �elds. We have compared sensitivity and
recognition reliability for a variety of local neighborhood operations, and present
the results of the most successful functions below.

The �rst part of the paper presents our generalization of the color histogram
method (section 2{4). Section 5 shows the robustness of di�erent local neigh-
borhood operations to additive Gaussian noise. In the second part we show the

use of the histogram matching of receptive �eld vectors for object recognition
(section 6) and experimental results (section 7).



2 Multidimensional Receptive Field Histograms

One can identify the following parameters for the multidimensional receptive �eld

histogram approach:

{ The choice of local property measurements (section 3),

{ Measurement for the comparison of the histograms (section 4),

{ Design parameters of the histograms: number of dimensions of the histogram

and resolution of each axis.

The local properties should be chosen so that they are either invariant or
equivariant to scale and 2D{rotation 1. Invariant means that the local character-

istics does not change with scale or 2D{rotation, while equivariant means that
they vary in a uniform manner which is represented by a translation in a para-
meter space. Unfortunately most of the available characteristics are only scale
invariant or 2D{rotation invariant. Therefore we use equivariant local character-

istics which allow us to select an arbitrary scale and rotation (see e.g. [4, 3]).
Section 3 describes the �lters and normalizations which can be used.

The comparison measurement determines the separability between histo-

grams, as we will see in the experiments described below. Di�erent measures
for the histogram comparison are introduced in section 4.

The design parameters of the histograms determine the separability between
the histograms of di�erent objects. In [8] we concluded that reducing of the

resolution (number of bins per histogram axis) results in an improvement of the
stability of the histograms with respect to view point changes, but also diminishes
the discrimination between objects. From the experiments of [8] we concluded

also that discrimination can be recovered by improving the number of histograms
dimensions provided by independent local properties.

3 The local characteristics

In this section we brie
y describe receptive �eld functions which can be used for
object recognition. The calculation of local properties can be divided into the
local linear point-spread function (formula (1)), and the normalization function

used during measurements of local properties.

ImgMask(x; y) =

m;nX
i;j=�m;�n

Img(x + i; y + j)Mask(i; j) (1)

3.1 Filter

The �rst results we present are with non{equivariant �lters. We have used these
simple �lters in our �rst experiments to test the power of our approach. This
is followed by the description of two equivariant �lter classes, Gabor �lters and

Gaussian derivatives.
1 Recent results have shown that the technique is quite robust to 3D rotation. These
results have been submitted to the International Workshop on Object Representation

for Computer Vision at this conference [8]



Gradient and Laplacian Operators Our �rst experiments were performed
with �rst derivative and Laplacian operators given by:
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Gabor �lter Gabor �lters are local compact �lters tuned to a spatial frequency

band. Gabor �lters are de�ned by modulating a Gaussian window with a cosine
and an imaginary sine giving an even and odd �lter pair. The main advantage of
the Gabor �lters is that one can freely choose the frequency (and therefore the

scale) as well as the bandwidth of the �lter.

A Gabor �lter pair is compact in both space and frequency. In our experiments
we have used a two{dimensional formulation of the Gabor functions proposed by
Daugman [1] (in the Fourier domain):

G(u; v) = e��((u�u0)
2�2+(v�v0)

2�2)e�2�i(x0(u�u0)+y0(v�v0)) (2)

where (x0; y0) are the center coordinates of the �lter, (�; �) de�ne the width
and the length, and (u0; v0) specify the modulation in x and y direction, which

has the spatial frequency !0 =
p
u20 + v20 and direction �0 = arctan(v0=u0).

To design a Gabor �lter, we follow a method proposed by Westelius [11]
to choose the standard deviation � and the spatial frequency !0. These two

parameters determine the size and bandwidth of the �lter.

Gaussian derivatives By using the Gaussian derivatives one can explicitly se-

lect the scale. This is achieved by adapting the variance � of the derivative. Given
the Gaussian distribution f(x; y) we obtain the �rst derivative in x-direction:
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3.2 Normalization

The e�ects of variation in signal intensity can be removed by normalizing the
inner product of a �lter with a signal during convolution. Normalization should be
considered from at least two points of view. The �rst point concerns how well the

normalized convolution behaves in the presence of additive noise (see experiments
in section 5). The second point concerns how the normalized convolution responds
to variations in signal intensity due to di�erences in ambient light intensity,

aperture setting or digitizer gain. We have compared the robustness of correlation
with no normalization and with two other forms of normalization.

Normalization by energy Dividing by neighborhood energy removes vari-
ations in signal strength which may be due to light source intensity variation,

and thus provide a �lter output vector histogram which is invariant to illumin-
ation intensity. Energy normalization also turns out to be the most robust in
respect to additive Gaussian noise. Therefore we have used energy normalization

in most of our experiments.

Imgene(x; y) =

P
i;j Img(x + i; y + j)Mask(i; j)qP

i;j Img(x + i; y + j)2
qP

i;jMask(i; j)2



Normalization by mean and variance By Variance normalization we refer
to subtracting the mean of each neighborhood and then dividing by the variance
of the neighborhood. Variance normalization is relatively sensitive to additive

Gaussian noise. This makes Variance{normalization unusable in our context.

Imgvar(x; y) =

P
i;j(Img(x + i; y + j) � Img(x; y))Mask(i; j)qP

i;j(Img(x + i; y + j) � Img(x; y))2
qP

i;jMask(i; j)2

with Img(x; y) = 1
(2m+1)(2n+1)

Pm;n

i;j=�m;�n Img(x + i; y + j).

4 Histogram Comparison

This section describes possible measurements for comparing histograms. The

analysis of these measurements is important, since the \intersection"{measure-
ment, used by Swain and Ballard [10], has limitations for the use for multidi-
mensional receptive �eld histograms. For object recognition using receptive �eld
histograms we compare a histogram T from a database to a newly observed

histogram H.

Sum of squared distances The sum of squared di�erences (SSD) is commonly
used in signal processing:

SSD(H;T ) = �i;j(H(i; j) � T (i; j))2 (3)

�
2
{ test The proper method proposed by mathematical statistics for the com-

parison of two histograms is the �2{test. �2 is used here to calculate the \dis-
tance" between two histograms. We have used two di�erent calculations for �2

[7]: �2T is de�ned, when the theoretical distribution (here T ) is known exactly.

Although we do not know the theoretical distribution in the general case, we have
found that �2T works well in practice:

�2T (H;T ) = �i;j

(H(i; j) � T (i; j))2

T (i; j)
(4)

The second calculation �2TH compares two real histograms. �2TH also gives
good results. For the moment it is not clear which of the two �2 measurements

is more reliable:
�2TH (H;T ) = �i;j

(H(i; j) � T (i; j))2

H(i; j) + T (i; j)
(5)

Intersection Swain and Ballard [10] used the following intersection value to
compare two color{histograms:

\(H;T ) = �i;jmin(H(i; j); T (i; j)) (6)

The advantage of this measurement is, that background pixels are explicitly
neglected when they don't occur in the Model histogram T (i; j). In their ori-
ginal work they reported the need for a sparse distribution of the colors in the
histogram in order to be able to distinguish between di�erent objects. Our exper-

iments have veri�ed this requirement. Unfortunately, multidimensional receptive
�eld histograms are not generally sparse, and a more sophisticated comparison
measure is required.



Bayes Rule The last section below considers the use of Bayes rule to determine
for each pixel or set of pixels, the probability that it is the projection of a part
of a speci�ed object. In [9] we have introduced the following formula:

p(Onj

^
k

Mk) =

Q
k p(MkjOn)p(On)P

n

Q
k p(MkjOn)p(On)

(7)

with p(On) the a priori probability of the object On, and p(MkjOn) is the
probability density function of object On, which can be directly derived from

the histogram of object On. This formula can be used to determine for each
subregion of an image the probability of the occurrence of each object On only
based on the multidimensional receptive �eld histograms of each object (see for

details and recognition results [9]).

5 Robustness to additive Gaussian noise

In this section we report the results of an experiment which was designed to

determine how sensitive the di�erent combinations of �lter and normalization are
in respect to additive Gaussian noise. For this experiment we used 8 arti�cial
images. We will summarize the results for one image, which we call Sin which

contains a sine{curve with the wavelength of 45 pixels.

Figure 1 show the results. To the Sin{image we added Gaussian noise with
variance � = 1; 2; 3; : : : ; 20 (abscissa in the diagrams). We store the histogram
of the initial image (which is equivalent to � = 0). This histogram is then com-

pared (by using �2TH as distance measurement) to the histograms with additive
Gaussian noise. This distance correspond to the ordinate of the diagrams.
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Fig. 1. Sin: Left: Robustness with no normalization. Middle: Robustness with Variance
normalization. Right Robustness with Energy normalization

In these diagrams we look mainly at the relative behavior of the di�erent

�lter normalization combinations, rather than at the absolute value of the �2TH
distance between the images (which depends strongly on the design parameter
of the histograms). In this experiment we used seven di�erent pairs of �lters

(see section 3): DxDy for Mdx and Mdy, LD for Mlap and Direction of the �rst
derivative, LM forMlap and Magnitude of the �rst derivative,MD for Magnitude
and Direction of the �rst derivative, G3 for Gabor �lter with wavelength of 2:8

pixel (7�7 window) in x and in y direction, G5 for Gabor �lter with wavelength



of 5:7 pixel (15 � 15 window) in x and in y direction, G7 for Gabor �lter with
wavelength of 11:3 pixel (30� 30 window) in x and in y direction.

The �rst statement we can make is, that the Gabor �lters are much more

robust to additive Gaussian noise than the other �lters (e.g. �gure 1). This is not
surprising, since the Gabor �lters are known to be robust to additive Gaussian
noise (one part of the Gabor function is a Gaussian smoothing function). Only

in the case of the Variance normalization do Gabor �lters fail to behave properly
(see �gure 1). The second statement that we can make is in relation to the
di�erent normalizations: no normalization behave rather nicely (�gure 1). The

Variance normalization on the other hand disturbs the nice behavior of the Gabor
�lters (�gure 1). But the best normalization for all of the �lters is the Energy

normalization (�gure 1).

In the following sections we will use only Energy normalization since it seems
to be the most robust normalization for the considered �lters in respect to ad-
ditive noise. The following section shows quite satisfactory results with this nor-
malization in the recognition experiments (see section 7).

6 Using Multidimensional Receptive Field Histograms

for Object Recognition

The �rst part of this section de�nes the object recognition task by the analysis
of the \degrees of freedom". The second part describes the use of multidimen-
sional receptive �eld histograms for this object recognition task. Section 7 gives

experimental results of this approach.

Degrees of freedom within the object recognition task Possible changes
of the object's appearance must be considered in the object recognition task.

Possible changes include:

{ Changes in scale

{ Rotation of the object (or the camera): we distinguish rotation in the image
plane (2D rotation) and arbitrary rotation (3D rotation)

{ Translation of the object (or the camera)

{ Partial occlusion of the object
{ Light: intensity change and direction of the light source(s)
{ Noise (noise of the camera, quantization noise, blur, : : : )

In our approach, changes in to scale and 2D rotation are handled by the use

of steerable �lters [4, 3]. Therefore we will have only one image for one object
and will generalize from this image to all considered scales and 2D rotations (see
experiments in section 7).

The histograms themselves are invariant with respect to translation of the

image or the object, since position information is completely removed. Further-
more the histogram matching is relatively immune to minor occlusions. This was
demonstrated by Swain and Ballard in the original work on color histograms [10].

Signal intensity variations are accommodated by the use of energy normalized
convolution with robust �lters such as Gabor �lters. For simplicity, our �rst
experiments were based on simple mask operators as introduced in section 3

which are not necessarily invariant to light intensity changes.



To test robustness in relation to noise we completed a series of experiments
with arti�cial and real images, where we added Gaussian noise. The impact on
the histograms (measured with an appropriate distance measure) are shown in

section 5.

In this article we do not consider the other degrees of freedom mentioned
above: 3D rotation and light direction. In [8] we examined the robustness of the
approach to image{plane rotation and view point changes (3D-rotation).

Application for Object Recognition The system we describe here is only
an initial experiment to demonstrate the capabilities of the approach for object

recognition. Further investigation must be performed in the use the multidimen-
sional receptive �led histograms in a more thorough manner.

In this experimental version of the system, the database consists of histograms
of each object at a set of scales and 2D orientations. A new histogram of an

observed object is compared to each histogram of the database to �nd the closest
match.

7 Experimental results

This section describes three experiments with the use of multidimensional recept-

ive �eld histogram for object recognition: in the �rst experiments we consider
scale, in the second we consider scale and image{plane rotation. In the last ex-
periment we generalize from one single view of an object to 5 di�erent scales.

7.1 Scale Experiment

In this section we report results from a recognition experiment with di�erent

scales of objects. We employed two series of images of 31 objects (see �gure 2)
at 6 di�erent scales (approximate di�erence between each scale is 10%, see �gure
2). The total number of images is therefore 2�31�6 = 372. The �rst series have

been used to calculate the histogram database and the second series have been
used as test{set.

As mentioned above (section 6) we have di�erent parameters in the multidi-

mensional receptive �eld histogram approach. In this experiment we varied the

local properties and the histogram comparison measurement The design para-
meter of the histograms have been �xed (2{dimensional with resolution of 32
cells per axis, for variation of the design parameters see [8]). For local properties,

we used the same pairs of �lters as in section 5. All experiments were performed
with only two �lters, as a minimal limiting case (in [8] we showed that recognition
rates can be improved by increasing the number of local properties measured at

each pixel).

Table 1 shows the recognition rate for di�erent �lter{pairs and di�erent his-
togram comparison measurements. The �rst column of table 1 shows the �lter{
pairs. The �rst row shows the histogram comparison measurement as introduced

in section 4: the two �2 measurements �2T and �2TH , sum of squared di�erences
(SSD) and the intersection measurement. The table shows a recognition rate of
100%, when we choose the �lter pair magnitude and direction of gradient, and

the comparison measurement �2T .



Fig. 2. Top: The 31 objects of the scale experiment. Bottom: The 6 di�erent scales

Filter �
2

T �
2

TH SSD intersection

MD 100.0 98.9 89.8 91.4

DxDy 97.8 97.8 90.9 62.9

LD 97.3 97.3 88.7 86.0

LM 94.1 94.6 82.8 26.9

G3 86.6 86.0 64.0 43.5

G5 93.5 91.4 81.7 57.5

G7 97.8 97.8 92.4 34.4

Table 1. Recognition results with 31 Objects at 6 di�erent scales

Following the results of table 1 we can analyze the di�erent histogram compar-
ison measurements: �2T almost always gives the best results. �2TH works nearly
as well as �2T . The SSD also gave quite good results nearly all of the time. The

intersection (originally used by Swain and Ballard) give good results in some
particular cases. Nevertheless the average performance over all of the �lter pairs
is not satisfactory. To summarize the table we can conclude that the �2 are the

best, followed by SSD and intersection. In other experiments (e.g. section 7.3,
7.2 and [8]), we did make similar observation in relation to the histogram com-
parison measurements. Therefore we state that the �2 measurements are the best

to compare multidimensional receptive �eld histograms.

7.2 2D Rotation experiment

This section presents results of an experiment where we considered the e�ects of
2D (image plane) rotation of objects at di�erent changes in scale.

In this particular experiment we had 10 objects at 8 di�erent orientations.

The di�erence between the orientations was roughly 45�. Furthermore we took
images of each object at 5 di�erent scales, where the di�erence between each scale
was approximately 10%. Therefore the whole image{set contains 10�8�5 = 400

images.



For the experiment we divided the image set into database and the test{set.
The database consists of three di�erent scales, respectively the �rst, the third
and the �fth scale. Therefore 3 � 8 � 10 = 240 histograms are in the database.

The remaining 2 scales are then tested against the database (test{set is therefore
2� 8� 10 = 160 histograms of images).

We can report here the e�ects of 2D rotation and scale changes on recognition
rates (see table 2) of three �lter{pairs (for the description of the abbreviations
see section 7.1).

Filter �
2

T �
2

TH SSD prod intersection

DxDy 99.4 99.4 81.3 10.0 66.9

G3 86.9 85.0 53.1 10.6 56.9

G5 88.8 87.5 54.4 18.8 19.4

Table 2. Recognition results with 10 Objects at 5 di�erent scales and 8 di�erent
orientations

As we already concluded from the scale experiment, the �2 measurements
give the best results (�2T slightly better than �2TH ). SSD gives good results for
DxDy and intersection does not give satisfactory results for any of the reported

�lters.

7.3 Experiment: generalizing scales from one single view

Up to now we always took images of the same object at di�erent scales. Since
this is not always practical we want to take only one image of an object and to

generalize to a range of scales. This is demonstrated in a second scale experiment.
This second scale experiment uses only one image of each object at one

particular scale (of the �rst series). Starting from this single image we calculate
5 histograms, each corresponding to a di�erent scale of the object. Therefore
we have to use \steerable" �lters as Gabor �lters or Gaussian derivatives. In
this particular experiment we used �rst order Gaussian derivatives (in x and

in y direction = dxdy) and the magnitude and direction of the �rst Gaussian
derivative (= magdir) with � = 0:8; 0:9; 1:0;1:1 and 1:2. This was done with all
31 objects of the �rst experiment (see section 7.1) so that the histogram database

contains 5 � 31 = 155 histograms. As a test{set we used the images of the 31
objects of the second series at 5 di�erent scales. For each of those images we
calculated the histogram with � = 1:0. These histograms are then compared to

the histogram database.

Filter �
2

T �
2

TH SSD intersection

magdir 99.4 100 19.4 99.4

dxdy 98.7 98.1 9.0 91.6

Table 3. Recognition results of the second scale experiment: 31 Objects at 5 di�erent
scales, where we generalized the scales from one single view of each object

Table 3 shows the results of the experiment. Once again the �2 give the best



results. The intersection measurement gives quite good results too. This time
SSD doesn't give good results at all.

This experiment shows that we can \steer" the scale, so that it is possible to

calculate all considered scales from one single image of an object.

8 Conclusion and Perspective

In this paper we have shown how the color histogrammatching technique of Swain

and Ballard can be generalized to use vectors of local image properties measured
by normalized convolution with local receptive �elds. We have found that this
technique present a fast and robust method to determine if a speci�ed object

is present in an image of a scene. This method can be used with very local
�lters for gradient and Laplacian, as well as with more noise resistant �lters
such as Gabor �lters and Gaussian derivatives. We have demonstrated that the

method is most reliable and robust when the inner product of the receptive �eld
at each neighborhood is normalized by the energy of the neighborhood. Our
experiments have also demonstrated that the �2 test provides the most reliable

form of histogram comparison for this method.
Relatively high recognition rates have been demonstrated with vectors com-

posed of only two receptive �eld. We showed in [8] that these rates can be made
even higher by increasing the number of �lters included in the vector. The in-

crease in memory required can be o�-set by decreasing the quantization of the
histograms.
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