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Abstract normalized face image is projected onto a space of basis
images.Principal components analysis has been studied by the

computer vision community as a source of  features for
recognition of faces, objects and scenes [9], [13]. The use
of the dominant principal components as "holistic"
features for recognition has provided new insights into
view invariant and illumination invariant recognition.
Unfortunately, applications in object recognition
generally require precise segmentation, and thus prove
impractical. Nonetheless, under certain circumstances,
principal components are optimal for reconstruction, and
thus well suited for coding and compression of images. In
such applications, precise tracking rather than
segmentation, is required. Precise, stable tracking of faces
renders Principal Components Analysis well suited for
video coding for video communications.

We employ a multi-modal face tracker which integrates
eye blink detection, cross-correlation, and robust tracking
of skin colored regions. An earlier version of this multi-
modal tracker was reported in [3]. While that system
provided robust tracking of a moving face under changing
illumination, the color skin detection technique relied on
detecting connected components of thresholded color
regions.  Grouping thresholded pixels led to an
unacceptable amount of jitter in the tracked images.  We
have recently developed a new technique which replaces
thresholding and connected components with the moments
of color pixels weighted by a Gaussian density function.

Our compression technique relies on estimating a basis
of orthogonal images onto which the talking-head images
are projected.  We present the overall approach and then
present preliminary experimental results with the off-line
version of this algorithm. In this algorithm, a static fixed
basis space is computed using principal components
analysis based on a "representative" sample of images.
Such an algorithm is well suited to off-line coding for
applications such as video electronic mail and talking
heads on web pages. We describe an algorithm for
selecting the representative images from an image
sequence. We then compare the image quality of the
reconstructed images for different numbers of basis
images.

In this paper we describe experiments with the use of
principal components as a technique for coding and
compression for video streams of talking heads.  We
describe a new robust tracking technique for normalizing
the position and size of faces. We provide results of
preliminary experiments with compression rates and
image reconstruction quality using orthogonal basis
coding for video communications.  We show that a
typical video sequence of a talking head can often be coded
in less than 16 dimensions.

 1. Introduction
In communication by video telephone or video

electronic mail, the desired images are generally restricted
to a view of the head and shoulders of a speaker. Relevant
variations are movements of the mouth, eyes and head.
Precise coding of the background is unimportant or may
even be undesirable.  Such image sequences  have
properties which make possible high compression ratios.
Movements of the face and eyes tend to be repetitive
making it possible for a compression algorithm to exploit
the limited range of movements and their repetitive
nature.

2. Multimodal tracking of faces
 Tracking greatly reduces the required bandwidth while

providing the speaker with the freedom to move about
while communicating. Our system uses a multi-modal
face tracker to drive a motorized camera to normalize the
face in position and size. The face tracker  automatically
detects a face, keeps track of its position, and steers a
camera to keep the face in the center of the image. The
modules of the face tracker are described in [3]. For
completeness, we review the function of each module.

In this paper we report on experiments with techniques
which exploit the simplified nature of a talking-head scene
to provide a very high compression rate. Our technique
has two components: 1) A face tracking system which
keeps a face centered in the image at a particular size, and
2) an orthogonal basis coding techniques in which the

A face is represented as an image position, vertical and
horizontal extent and a confidence factor.  All
measurements are accompanied by a covariance matrix,
enabling them to be combined by a recursive estimator
based on a zeroth order Kalman filter.  A face is initially
detecting as a pair of blinking eyes from  the responses of



tuned spatio-temporal filters [4].  A correlation mask for
the eyes, and a color histogram of skin are initialised
based on the position detected by blinking.  The position
of the eyes and mouth are also useful in biasing the
orthogonal basis coding algorithm described below to
provide more coding bits for the mouth and eyes.

was initialised by blink detection and then used to
determine the possibility that a pixel represents skin. In
that work we thresholded skin possibilities and then
performed a connected components algorithm on the
resulting binary images. Since that time, we have
reformulated the skin detection and tracking process using
an approach inspired by robust statistics.The eye-blink detection process is used for a quick

initialization or re-initialization of the face tracker. This
allows the system to continually adapt to changes in
ambient illumination. Cross-correlation provides a fast
but fragile means to follow facial features. We chose a
rectangular area between the eyes of about 20 x 20 square
pixels containing parts of the eyebrows as correlation
mask. We limit the area to be searched to a “region of
interest,” which is roughly identical to a rectangle framing
the face.

3.1 The probability of skin
The reflectance function of human skin may be

modeled as a sum of a Lambertian and a specular
reflectance function. In most cases the Lambertian
component dominates. For a Lambertian surface, the
intensity of reflected light varies as a function of the
cosine of the angle between the surface normal and
illumination. Because the face is a highly curved surface,
the observed  intensity of a face exhibits strong
variations. These variations may be removed by dividing
the three components  of a color pixel, (R, G, B) by the
intensity. This gives an intensity-normalized color vector,
with two components, (r, g).

We initially built a color skin detection process which
uses a connected components algorithm to group skin
colored pixels. The connected components algorithm has
been found to be overly sensitive to pixel noise, causing
an unacceptable amount of jitter. In the following section
we describe a new robust grouping algorithm which
greatly enhances stability.

r = 
R

 R+G+B
g = 

G
 R+G+B

The intensity-normalized pixels from a region of an
image known to contain skin can be used to define a  two
dimensional histogram, hskin(r, g), of  skin color. The
effects of digitizing noise can be minimized by smoothing
this histogram with a small filter. A second histogram,
htot(r, g) can be made from all of the pixels of the same
image.  This second histogram should also be smoothed
by the same filter. These two histograms make it possible
to apply Bayes rule to each pixel of an image to obtain
the probability that a given pixel is skin.

Every observation is accompanied by a numerical
confidence factor, computed statistically by comparing the
observed parameters to an average parameter vector and
normalizing by an observed covariance. This gives a form
of Mahalanobis distance which is used as the power for an
exponential function, giving a value of 1 for a typical
parameter vector and tending towards zero for unlikely
vectors. Confidence factors allow the system to detect
which processes are functioning reliably and to reinitialize
the individual processes dynamically.  The estimated
position and size of the face is fed into a camera control
unit. This unit calculates the distance between the actual
position of a face and the center of the image. A PD-
controller then directs the camera to pan, tilt, and zoom so
as to maintain the face at a standard size and position in
the image.

 Application of Bayes rule requires the following
terms:

hskin(r, g): Histogram of intensity normalized colors
from a region of an image known to represent skin.

Nskin : Sum over r and g of  hskin(r, g) .
htotal(r, g): Histogram of intensity normalized colors

from the entire image.

3 Robust tracking of faces using color
Ntotal : Sum over r and g of htot(r, g).

The probability of a color vector, (r, g) given skin is
approximated by Detecting pixels with the color of skin provides a

reliable  method for detecting and tracking faces. The
statistics of the color of skin can be recovered from a
sample of a known face region and then used in successive
images to detect skin colored regions.  Swain and Ballard
have shown how a  histogram of color vectors can be
back-projected to detect the pixels which belong to an
object [12].  Schiele and Waibul showed that for face
detection, color RGB triples can be divided by the
luminance to remove the effects of relative illumination
direction [10].  In earlier work [3] we described an
algorithm in which a histogram of normalized skin color

p(r, g | skin)  
1

 N skin
 hskin(r, g)

The probability of obtaining a skin pixel in the image is
approximated by the fraction of observed pixels known to
be skin.

p(skin)   
Nskin

 N total
The probability of observing a color vector is given by :

p(r, g)  
1

 N total
 htotal(r, g)

Bayes rule states that the probability of skin given a



color vector (r, g) is estimates for the mean and covariance.

 p(skin | r, g) = 
p(r, g | skin) .  p(skin)

 p(r, g)  µ→ =   ( ) µi
 µj

      C = 2 



 σi2  σij 

 σij   σj2
(3)

This reduces to the ratio of the two histograms as shown
in equation 1.

where:

S = ∑
i  j

  Pskin(i, j))
p(skin | r, g)  hratio(r, g) =  

hskin(r, g)
 h total(r, g)

(1)

i = 
1
S

 ∑
ij

 

 Pskin(i, j) .  i  .  g(i, j; , C )
The ratio of these two histograms gives a table which
directly converts an intensity-normalized pixel (r, g) into
the probability that the pixel is skin, p(skin | r, g) by
table lookup. A default value of 0 may be placed in this
table for all pixels for which htotal(r, g) is zero. Strictly
speaking, equation 1 is only valid for the image from
which the skin sample was obtained.  In practice, we have
found that the technique will work well for subsequent
images provided that the color of the scene illumination
does not change.  This table is trivial to build and may be
renewed whenever an independent source has detected the
face in the image.

j = 
1
S

 ∑
ij

 

 Pskin(i, j) .  j  .  g(i, j; , C )
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1
S
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ij

 

 P skin(i, j) .  ( j  –  µj)2 .  g(i, j; µ→, C)

A number of authors have indicated a preference for
using Gaussian mixture model in place of the two
histograms. Our experience is that such a model provides
a very slight improvement in the probability image, at a
very great cost in computation whenever the histogram
must be renewed, making frequent update of the histogram
ratio impractical. For a real-time system, the robustness
obtained by frequently renewing the histogram ratio table
greatly exceeds the slight improvement observed with a
static mixture of Gaussian model.

σij = 
1
S

 ∑
ij

 

 P skin(i, j). (i–µi). (j–µj). g(i, j; µ→, C)

The effect of multiplying new images with the Gaussian
function is that other objects of the same color in the
image (hands, arms, or another face) do not disturb the
estimated position of the region being tracked. The factor
of 2 in equation 5 offsets the tendency of the Gaussian to
shrink.

3.2 Performance evaluationIn order to detect a skin color region we must group
skin pixels into a region.  We have recently developed a
novel robust tracking method for such grouping.   Let
Pskin(i, j) represent the probability map of skin for each
color pixel  (r(i, j),  g(i, j)) at position (i, j).

Our robust tracking algorithm carries a somewhat
higher computational cost than connected components of
a thresholded image. This is illustrated with the
computing times shown in figure 1. This figure shows
the execution time for a full sized image on an SGI-02 for
the robust tracker "COG" (center of gravity), connected
components "CCO" and connected components assisted
by a zeroth order Kalman filter. Average execution times
are around 25 milliseconds per image for the connected
components and 70 milliseconds for the robust algorithm.

pskin(i, j) = p(skin | r(i, j),  g(i, j))
The center of gravity or first moment of the

probability map gives the position and spatial extent of
the skin colored region.

µ→ =   ( ) µi
 µj

      C =  



 σi2  σij 

 σij   σj2
(2)

Jitter is the number of pixels that the estimated
position moves when the target is stationary. Jitter is the
result of interference with illumination, electrical noise,
shot noise, and digitizer noise. Algorithms which employ
a threshold are especially sensitive to such noise. Table 1
illustrates the reduction in jitter for the robust tracker
when compared to connected components.

Unfortunately, skin color pixels in any other part of the
image will contribute to these two moments. This effect
can be minimized by weighting the probability image
with a Gaussian function placed at the location where the
face is expected.  The initial estimate of the covariance of
this Gaussian should be the size of the expected face.
Once initialised, the covariance is estimated recursively
from the previous image.

Figure 2 compares the precision of tracking an object
moving in the horizontal direction. All three trackers were
applied to the same image sequence. The output of the
color tracker using the connected components algorithm is
shown with and without a Kalman filter. The Kalman
filter eliminates position jitter but reduces global

For each new image, a two dimensional Gaussian

function, g(i, j; µ→, C), using the mean and covatiance

from the previous image is multiplied with the
probability map as shown in equation 3 to give new
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connected components algorithm assisted by a Kalman filter recursive estimator (CCO w Kalman)
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Figure 2  comparing tracking precision of a moving object

Robust Algorithm
Connected Components
without Kalman Filter

Connected Components
with Kalman Filter

Jitter Energy 29 308 151



Table 1. Jitter energy measured for a stationary object by the robust estimator, and by connected components with and
without a Kalman Filter
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Figure 4 PSNR for each frame of BillS2
precision because of lag. The statistical color tracker has
less jitter than the output of the Kalman filter and much
less lag. The robust tracker also resisted noise that caused
the connected components algorithm to fail at frames 138
and 147.

MPEG-1 for full-motion video coding at up to 1.5
Mbit/s, MPEG-2 for up to 10 Mbit/s. More recent
developments such as MPEG-4 and MPEG-7 target the
integration of multimedia services and use MPEG-1 and
MPEG-2 for video/audio-coding (MP3 is just the audio
layer of MPEG-1). Rejecting a model-based approach for
further research into video compression, we are
investigating an approach based on projecting images into
an orthogonal basis space.

4 Orthogonal basis coding for video
communications

4.1 Overview
Our algorithm for Orthonormal Basis Coding has been

initially developed for off-line coding applications, such
as video electronic mail. An incremental version is being
evaluated for on-line coding. A stabilized video sequence
is cropped in order to provide a sequence of images with
the face normalized and centered in each image. Selected

There are currently four video coding standards used for
commercial systems: The ITU-T recommendations: H.261
[7] and H.263 [8], plus the ISO standards 11172 [1]
(MPEG-1) and 13818 [6] (MPEG-2). H.261 is intended
for low-motion video communication over p x 64 kbit/s
ISDN lines, H.263 for low bit rate communication,



frames from the sequence are used to create a basis space
into which new images can be mapped. Each mapped
image is represented as a vector of coefficients. The
number of coefficients is equal to the number of images
in the original “basis space.” By only storing and
transmitting the vectors, extremely high compression
rates can be achieved, especially for long sequences.

to image zero are put in set A, the others are put in a “to
do” set. The first image of the “to do” set is compared
with all the others in the “to do” set and the most similar
are put in set B. The rest stay in the “to do” set. This
continues until all similar images are grouped in sets.
One image from each of the biggest sets is taken to form
the basis. In general, the most-representative method
produced superior results at the cost of slightly more
computing time. This is likely due to the fact that while
the subject is talking, the mouth and facial features return
to common positions at different times in the sequence.

4.2 Integrating face tracking and video coding
 MPEG-1,  H.261, H.263, and MPEG-2, are the three

step compression schemes: 1) energy compaction by
Discrete Cosine Transform (DCT), 2) entropy reduction
by Differential Pulse Code Modulation (DPCM), and 3)
redundancy reduction by Variable Length Coding (VLC).
Depending on their intended use, the different standards
enhance this compression scheme by forward prediction,
backward prediction, motion compensation, and other
additional features.

The algorithm can be made sensitive to movements of
the eyes and mouth by multiplying these regions by an
extra weighting factor during the comparison of images
with the to-do set. Thus variations in eye and mouth
configurations receive a better represented in the selected
sample set.

5 Performance evaluationOrthonormal Basis Coding (OBC) operates as follows:
1) a limited set of images is chosen from the sequence to
form the basis, 2) a Karhunen-Loeve expansion is
performed to generate an orthonormal basis space from the
images, 3) each image in the sequence is mapped into this
basis space resulting in a small set of coefficients, 4) the
images used to create the basis space and the sets of
coefficients are stored in a file for later decoding. An
image mapped into the basis space will produce a number
of coefficients equal to the number of images used to
create the basis space. We have obtained good results
using only fifteen basis images for a 400-frame video
sequence. Thus, each frame was represented by only
fifteen coefficients.

We use the Peak-Signal-to-Noise Ratio (PSNR) as an
evaluation criteria for the reconstruction of images. The
PSNR of the k-th frame is defined as
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where M and N are the width and height of the image, m
and n the pixel indices, f() the original pixel values, and

f̂ () the decoded pixel values.

5.1 Reconstruction qualityDue to processing constraints, Principal Component
Analysis cannot be computed using every frame  from a
sequence of several minutes of video in a reasonable time.
Thus, we explored two algorithms for choosing the
images for our basis. The threshold method assumes that
similar frames are likely to be located sequentially in the
video sequence. This is not necessarily the case when each
image contains only a face talking. The most-
representative method attempts to find similar images
anywhere in the sequence.

Various sequences were compressed and reconstructed
using the threshold, most-representative, and MPEG
methods. The most-representative method produced better
reconstructions than the threshold method in every case.
In fact, it always averaged over 2 dB higher PSNR. See
Figure 3. In Figure 4, there is a noticeable improvement
in the reconstruction quality as the number of basis
frames is increased. Images included in the original basis
space have no error in their reconstruction, thus PSNR
has no meaning and is ignored in the following graphs.The threshold method has a complexity of O(n) and

works as follows. The normalized cross correlation is
computed between image zero and subsequent images
until it drops below a certain threshold. At that point in
the sequence, the current image is added to the basis and
subsequent images are cross correlated with that image
until the threshold is crossed again.

Using the standard compression options with the
Berkeley mpeg_encode program [1], we found an average
PSNR of approximately 27 dB for the BillS2 sequence.
The MPEG reconstruction errors were due to artifacts in
the images, while the reconstructed images from the OBC
codec were slightly blurred, as can be seen in Figure 5.
The closed mouth in Figure 5b is due to the fact that there
were no images with a fully opened mouth among the
fifteen basis images. This  problem is rectified by
weighting the eye and mouth during the sample selection
process as discussed above.

The most-representative sample selection method has a
best case complexity of O(n) and a worst case of O(n2)
although neither are very likely. It takes image zero and
compares it by computing an inner product with all the
other images in the sequence. All images that are similar



determined. Even a simple differencing of the images and
VLC compression would likely reduce the file size
significantly.

In some of the image reconstructions, the eye and lip
movements were slightly blurred. This could be improved
by applying a weighted mask over the eyes and lips when
calculating which basis images to use by the most-
representative method. A greater variety of eye and lip
configurations would then be placed in the basis space
allowing for better reconstruction of important facial
expressions.

Figure 5: Frame 237 of BillS2 a) Original Image: no error b)
Image from a sequence reconstructed using 15 basis

images: note slight blur, closed mouth c) Image from an
MPEG reconstruction: note artifacts. Various techniques from computer vision have been

used to create a fast and robust face tracking system,
which in turn was used to improve the compression ratio
of a standard video codec and our OBC compression
scheme. The face tracker also enhances the usability of the
entire video communication system by allowing the user
to freely move in front of the camera while
communicating. It is crucial however, that the face-
tracking system be stable and accurate in order to provide
the best results for OBC compression. An important
question when enhancing any video coding system is, if
the results in terms of image quality and compression
ratio make up for the added complexity. The system
described in this paper gives provides a positive outlook
on further development of low-bandwidth video
communication.

5.2 Compression
Video Stream  Kbytes
Original Video (Uncompressed) 12550
MPEG 72
OBC (5 basis frames) 71
OBC (5 basis frames) with GZIP 58
OBC (15 basis frames) 217
OBC (15 basis frames) with GZIP 178

Table 2.  Comparison of file sizes for OBC and MPEG

The BillS2 video clip contains 418 frames and lasts 69
seconds (6 FPS). The various file sizes are shown in
Table 2. It is important to note however, that the basis
images are stored in the OBC file in raw YCrCb format.
We used the GZIP utility [11] on the OBC to do simple
compression (redundancy elimination) on the file.
Compression of the basis images using a common
compression algorithm such as JPEG would significantly
reduce file size and increase the compression rate.
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