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Abstract

This article compares the performance of target detectors
based on adaptive background differencing algorithms on
public benchmark data. Several state of the art methods are
described together with their parameterization. The perfor-
mance is evaluated using computation time, recall and pre-
cision with respect to annotated ground truth. A surprising
result is that the method with the most complex background
model is outperformed by an efficient alternative implemen-
tation and a very simple background model combined with
a Kalman filter.

1. Introduction
The video surveillance domain has a great demand for real
time image processing systems that operate reliably 24h a
day, 7 days a week. Efficient and reliable algorithms are
required for this kind of system. Adaptive background dif-
ferencing techniques become a widely used solution, since
they can incorporate illumination changes as they occur in
outdoor scenes during the day. In this article, we com-
pare six state of the art adaptive background differencing
techniques. The detectors are evaluated on the same public
benchmark dataset which allows a fair and extensive com-
parison. This article gives insight into performance, com-
putation time and usability of these methods.

The first method is a basic background subtraction algo-
rithm (BBS). This is the simplest algorithm and it provides
a lower benchmark for the other algorithms which are more
complex but based on the same principle.

The second algorithm is denoted asW4and operates on
gray scale images. Three parameters are learned for each
pixel to model the background: minimum intensity, max-
imum intensity and maximum absolute difference in con-
secutive frames. This algorithm incorporates the noise vari-
ations into the background model.

The third method is used inPfinder[12] denoted here as
SGM(Single Gaussian Model). This method assumes that
each pixel is a realization of a random variable with a Gaus-
sian distribution. The first and second order statistics of this
distribution are independently estimated for each pixel.

The fourth method(MGM) is an adaptive mixture of
multiple Gaussians as proposed by Stauffer and Grimson

in [11]. Every pixel of the background is modeled using a
mixture of Gaussians. The weights of the mixture and the
parameters of the Gaussians are adapted with respect to the
current frames. This method has the advantage that multi-
modal backgrounds (such as moving trees) can be modeled.
Among the tested techniques, this is the one with the most
complex background model.

The fifth approach(LOTS)proposed by Boult in [5] is an
efficient method designed for military applications that pre-
sumes a two background model. In addition, the approach
uses high and low per-pixel thresholds. The method adapts
the background by incorporating the current image with a
small weight. At the end of each cycle, pixels are classi-
fied as false detection, missed detection and correct detec-
tion. The original point of this algorithm is that the per-pixel
thresholds are updated as a function of the classification.

The last approach(Track) combines the BBS method
with a Kalman filter to predict search regions for each target
from frame to frame and provide robust tracking. In order
to meet real time constraints, the detection of new targets is
restricted to entry regions.

This article compares the performance of target detection
approaches. The experiments show that the method with the
most complex background model is outperformed by sim-
pler methods both in terms of detection rate and computa-
tion speed.

The article is organized as follows. Sections 2 to 7 de-
scribe the technical details of the approaches. Section 8 de-
scribes the database, the evaluation metrics and the experi-
mental results. We finish with conclusion and an outlook.

2. Basic Background Subtraction
This method detects targets by computing the difference be-
tween the current frame and a background image for each
color channel RGB. A thresholding operation is performed
to classify each pixel as foreground region if

|It(φ)− µt(φ)| > T, (1)

whereIt(φ) is a 3-dimensional vector representing the in-
tensity values of the three color channels at image position
φ. µt(φ) is the mean color (background) of the pixel,T
is a constant. The operation in (1) performed for all image
pixelsφ.
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Segmentation of objects from the background can be
achieved by connected component analysis (e.g., using 8
- connectivity criterion). This step is performed after mor-
phological filtering with a 3x3 mask (dilation and erosion)
that eliminates isolated pixels. The same connected com-
ponent analysis is performed in the methodsW4andSGM
(Section 3 and 4).

To take into account slow illumination changes which
is necessary to ensure longterm tracking, the background
image is subsequently updated by

Bt+1
i (φ) = αIt(φ) + (1− α)Bt

i (φ) (2)

with the learning rateα. In the experiments we useα =
0.15 and thresholdT = 0.2 since this was found to be the a
good value in a previous experiment [4]. These parameters
stay constant over all sequences of the experiments.

3. W4 method
This algorithm was proposed by Haritaoglu in [8]. The
background scene is modelled by representing each pixel
by three values; minimum intensity (Min), maximum inten-
sity (Max), and the maximum intensity difference between
consecutive frames (D) during the training period. These
values are estimated over several frames and are periodi-
cally updated for those areas which do not contain target
regions. In the experiments, 100 target free images are se-
lected for parameter learning. No parameters need to set by
hand.

Foreground objects are computed in four steps:i) thresh-
olding, ii) region based noise cleaning,iii) morphological
filtering andiv) object detection. Each pixel is classified as
background or foreground using following equation. Giv-
ing the values of Min, Max and D, a pixelφ in an imageI
is considered as foreground pixel if

|Min(φ)− I(φ)| > D(φ) or |Max(φ)− I(φ)| > D(φ)
(3)

The resulting thresholded image usually contains a signifi-
cant amount of noise. Then a region based noise cleaning
algorithm is applied that first applies an erosion operation
and then a connected component analysis that allows to re-
move regions with less than 50 pixels. The result is a set of
bounding boxes that contain the targets. The morphological
operations dilation and erosion are now applied to the fore-
ground pixels that are inside the bounding boxes. The final
bounding boxes are computed and returned as targets.

4. Single Gaussian Model
In this section we describe the Single Gaussian Model al-
gorithm (SGM)proposed by Wren in [12]. In this method,

the intensity and color of each pixel is represented by a vec-
tor [Y,U, V ]T . We assume only slow scene changes. The
meanµ(φ) and covarianceU(φ) of each pixelφ can be re-
cursively updated as follows

µt(φ) = (1− α)µt−1(φ) + αIt(φ), (4)

U t(φ) = (1− α)U t−1(φ) + αν(φ)ν(φ)T (5)

whereI(φ) is the pixel of the current frame inY UV color
space,α is the learning rate andν(φ) = (It(φ)− µt(φ)).

After background adaptation, we compute for all image
positionsφ the log likelihoodl(φ) of the differenceν(φ)
between current image and background. This value gives
rise to a classification of individual pixels as background or
foreground

l(φ) = −1
2

T

ν(φ)T (U−1)tν(φ)−1
2

ln |U t|−3
2

ln(2π) (6)

A pixel φ is classified as foreground ifl(φ) < T else it is
background. ThenSGM detects targets by clustering fore-
ground pixels into blobs by a connected component analy-
sis. In the experiments we useα = 0.005 andT = −300.

5. Multiple Gaussian Model
In recent years time-adaptive per pixel mixture of Gaus-
sian background models have been a popular choice for
modelling complex and time varying backgrounds [9]. In
this work we have implemented the original version of the
Adaptive Mixture of multiple Gaussians background model
(MGM) for motion tracking described in [11].

5.1. Algorithm
In this algorithm the pixel process is considered a time se-
ries of vectors for colour images. The history of a particular
pixel φ is given by:

{X1, ...Xt} = {I(φ, i) : 1 ≤ i ≤ t} (7)

whereI is the image sequence. The algorithm models the
recent history of each pixel as a mixture ofK Gaussian
distributions. Thus the probability of observing the current
pixel values is:

P (Xt) = ΣK
i=1ωi,t ∗ η(Xt, µi,t, Ui,t) (8)

whereK is the number of distributions,wi,t is the weight
estimate of theith Gaussian in the mixture at timet, µi,t

andUi,t are the mean value and covariance matrix of theith
Gaussian at timet, andη is the Gaussian probability density
function.

η(Xt, µ, U) =
1

(2π)
n
2 |U | 12 e−

1
2 (Xt−µ)T U−1(Xt−µ) (9)
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For computational simplicity the covariance matrix is as-
sumed to be of the formUk,t = σ2

kI avoiding a costly matrix
inversion at the expense of some accuracy. The algorithm
assumes that red, green and blue channels are independent
and that the pixel process is non-stationary. These assump-
tions result in an on-line K-means approximation algorithm
for the mixture model. In the on-line approximation every
new pixelXt is checked against the K existing Gaussian
distribution. A match is found if the pixel value is within
L = 2.5 standard deviations of a distribution. This is ef-
fectively a per pixel per distribution threshold and can be
used to model shadowed and lighted regions on the scene.
If the current pixel value matches none of the distributions
the least probable distribution is updated with the current
pixel values, a high variance and low prior weight. The
prior weights of theK distributions are updated at timet
according to:

ωk,t = (1− α)ωk,t−1 + α(Mk,t) (10)

whereα is the learning rate andMk,t is 1 for the model
which matched the pixel and 0 for the remaining models.
After this approximation the weights are renormalised. The
changing rate in the model is defined by1/α. The param-
etersµ and σ for the unmatched distributions remain the
same. The parameters for the matching distribution are up-
dated as follows:

µt = (1− ρ)µt−1 + ρXt (11)

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µ)T (Xt − µ) (12)

ρ = αη(Xt|µk, σk) (13)

For change detection an heuristic searches for the learnt
distributions which have more supporting evidence. The
Gaussians are ordered based on the ratio ofω/σ. This in-
creases as the Gaussian’s weight increases and its variance
decreases. The firstB distributions accounting for a pro-
portionT of the observed data are defined as background.

B = argminb

(
Σb

k=1ωk > T
)

(14)

In the current implementation the original algorithm [11]
is modified to updated the background model only for pix-
els detected as background in the previous frame. This de-
creases the absorption rate of stationary objects (dropped
bags, immobile people) into the background model. Af-
ter foreground detection the pixels are morphological fil-
tered (noise reduction) and labeled. Connected components
smaller thanTc pixels are discarded. Other background up-
date strategies such as the ones described in [9] use feed-
back of higher level modules, whereas here this small mod-
ification provides an open loop low level feedback for the
updates.

5.2. Parameterization for the experiments
The model is initially trained with 13 training sequences.
No modification in the update rules are used for training.
The algorithm parameters are set toK = 5 Gaussians,
learning rateα = 0.002 andL = 2.5 standard deviations to
look for matching Gaussians. The detection performance is
tested using the 14 test sequences.

For testing the initial 20 frames of each sequence suffer
a full adaptation, after that, only pixels classified as back-
ground have their distributions updated. For detection the
additional algorithm parameters are set toT = 0.97 corre-
sponding to the percentage of pixels observed accounted for
by the most stable distributions (background). This results
in multi-modal distribution for the background.L = 4.5
to allow for larger deviations from the original background
model. Tc = 25 pixels to remove small (noisy) connected
components. This non-optimized version can process 2.8
frames per second of size384×288 pixels on a P4 3.2 GHz.

6. LOTS
The target detector proposed in [5] operates on gray scale
images. It uses two background images and two per-pixel
thresholds. The two backgrounds allow to model periodic
changes of the background such as moving trees. The per-
pixel threshold image can treat each pixel differently, allow-
ing the detector to be robust to localized noise in low-size
image regions. The per-pixel threshold evolves based on
a pixel label provided by a Quasi Connected Components
analysis (QCC). This is a light version of the traditional con-
nected component analysis that is also used to provide the
target’s bounding boxes.

6.1. Algorithm
The steps of the algorithm can be summarized as:

1. Background and threshold initialization. Set the
background modelsB1, B2, and the threshold values
TL (low threshold),TH (low threshold). The values in
B1 andB2 are the lower and higher “non-target” pixel
values in the scene, considering some temporal win-
dow. The per-pixel thresholdTL, is then initialized to
be above the difference between the two backgrounds:

TL(φ) = |B1(φ)−B2(φ)|+ U(φ) (15)

whereU represents noise with an uniform distribution
in [1, 10], andφ an image pixel. A higher thresholdTH

is computed by:

TH(φ) = TL(φ) + V (16)

whereV is the sensitivity of the algorithm.
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2. Detection and LabelingFirst we createD, which con-
tains the minimum of the differences between the new
imageI, and the backgroundsB1 andB2:

D(φ) = min
j
|I(φ)−Bj(φ)|, j = 1, 2. (17)

D is then compared with the threshold images. Two bi-
nary imagesDL andDH are created. The active pixels
of DL andDH are the pixels ofD that are higher than
the thresholdsTL andTH respectively.

QCC computes for each thresholded imageDL and
DH imagesDsL andDsH with 16 times smaller res-
olution. Each element in these reduced images,DsL

and DsH , has the number of active pixels in a 4x4
block of DL andDH respectively. Both images are
then merged into a single image that labels pixels as
detected, not-detected and false detected. This process
labels every pixel, and also deals with targets that are
not completely connected, considering them as only
one region.

A 4-neighbor connected components is then applied to
this image and, the regions with less thanA pixels are
eliminated. The remaining regions are considered as
detected. Thedetectedpixels are the ones fromDL

that correspond to detected regions. Thefalse detec-
tion are the active pixels inDL, but do not correspond
to detected regions, and thenot detectedpixels are the
inactive pixels inDL.

3. Backgrounds and threshold adaptation. The back-
grounds are updated as follows:

Bt+1
i (φ) =

{
(1− α′)Bt

i (φ) + α′It(φ) φ ∈ T t

(1− α)Bt
i (φ) + αIt(φ) φ ∈ N t

(18)
whereφ ∈ T t represents a pixel that is labelled asde-
tectedandφ ∈ N t a false or not detected pixel. Gen-
erally α′ is smaller thanα and only the background
corresponding to the smaller differenceD is updated.
Using the pixel labels, thresholds are updated as fol-
lows:

T t+1
L (φ) =





T t
L(φ) + 10 φ ∈ false detection

T t
L(φ)− 1 φ ∈ not detected

T t
L(φ) φ ∈ detected

(19)

This adaptation procedure decreases slowly the thresh-
old for not detectedpixels. This is done until their
label changes. If they becomedetected, that is consid-
ered real targets, the threshold is maintained constant.
If they becomefalse detections, due to noisy pixels or

if the threshold is too low, it is increased. This way the
system have a constant rate of false detected pixels that
can be chosen changing the increasing and decreasing
steps.

6.2. Parameterization for the experiments
In the first step of the algorithm presented in Section 6, done
only once, it is assumed that during a period of time there
are no targets in the image. In this ideal scenario the two
backgrounds are computed easily. The image sequences
used in this work do not have target-free images, so another
approach was used.B1 is initialised as the mean ofK con-
secutive frames.B2 = B1 + u with u additive noise of
N (µ = 10, σ = 20). The thresholds are initialized as fol-
lows: (i) initializeTL randomly,TL = N (µ = 10, σ = 20),
and (ii) run the sequence from the end to the beginning and
adapt the threshold. Then the resulting threshold was used
to start testing the sequence.

After the initialization, the detection and labeling step
is performed every frame. The adaptation step is performed
everyN frames, whereN is related to the background adap-
tation constant (see [5] for details).

In the experiments we use the parameters as proposed by
Boult α = 0.000306 andα′ = α

4 [5]. The sensitivity,V =
40, is chosen from Receiver Operating Characteristics [2]
and the minimum area,A = 100 pixels, from the working
scenario. The system runs at more than 130Hz on a 1.6GHz
processor using images of 384x288 pixels.

7. Real-time tracking system
The tracking system is composed of a central supervisor
that calls subsequently the video demon, the robust track-
ing module and the target detection module (Figure 1). The
supervisor manages the data flow between the modules. The
detection module detects new targets that are added to the
target list. The tracking module provides robust tracking of
the current targets using a Kalman filter. The system can
monitor 5 entry regions and track robustly up to 8 targets in
images of384× 288 pixels at 30Hz on a 2 GHz processor.

This architecture allows the integration and fusion of
several detection modules. In order to meet the real time
constraints, we use a single detection module based on
adaptive background differencing using manually defined
detection regions [3]. Robust tracking is achieved by a first
order Kalman filter that propagates the target positions and
extents in time and updates them by measurements from
the detection module. A target is deleted only when the
detected pixels in the region do not exceed the detection
threshold in 10 subsequent frames. This reduces the num-
ber of target losses within a track.

The robust tracking system returns events in form of vec-
tors composed of centroid and width and height of the target
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Figure 1:Architecture of the tracking and detection system con-
trolled by a supervisor.

regions~y(ti) = (xc, yc, w, h)T . The tracking system de-
pends on a number of parameters such as detection thresh-
old dc (minimum size of targets), noise thresholdnc (pixel
energy below this threshold is considered as noise) and pa-
rameters that control split and merge of targets (these pa-
rameters determine how close targets need to be for merging
or splitting).

7.1. Adaptive background differencing
We use a simple and efficient algorithm of adaptive back-
ground differencing as proposed by the authors [3]. The
background is modeled by a single RGB background im-
age.

A difference energy imageId is computed from the cur-
rent imageI = (Ired, Igreen, Iblue) and a single back-
ground imageB = (Bred, Bgreen, Bblue) for all image co-
ordinatesφ as follows:

Id(φ) =
1
3
(|Ired(φ)−Bred(φ)|

+|Igreen(φ)−Bgreen(φ)|+ |Iblue(φ)−Bblue(φ)|) (20)

A binary imageIb is created by thresholdingId with the
noise thresholdnc.

Ib(φ) =

{
1, ifId(φ) > nc

0, else
(21)

For all regions of interest (entry regions and regions that are
likely to contain targets), we compute

card(ROI) =
∑

φ∈ROI

Ib(φ) (22)

A target is detected, whencard(ROI) > dc with dc de-
tection threshold. The first moment of image coordinates
of the pixels withIb > 0 give the center of gravity of the
target and the second moment (covariance) gives the extent.
From the covariance we compute the width and height of
the bounding box and the global orientation of the target.

The background imageB is updated everykth frame us-
ing a weighted averaging technique that updates the back-
ground image by incorporating the current image with a
small weightα (we usek = 20 andα = 0.1 in the exper-
iments). The background image is only updated for those
pixels that do not belong to targets. This procedure con-
stitutes a simple first order recursive filter along the time
axis for each pixel with the effect that slow changes such as
moving shadows are integrated into the background. This
method allows to create a background that is valid over a
long time.

Bt(φ) =
{

αIt(φ) + (1− α)Bt−1(φ), (φ) ∈ bg
Bt−1(φ), else

(23)

In order to assure real time constraints, the detection of
new targets is restricted to a small number of manually de-
fined entry regions. This technique reduces significantly the
computation time of the detection, is more robust to false
positive detections and does not miss any true targets (under
the condition that the entry regions cover all regions where
new targets may appear).

7.2. Robust Tracking
The robust tracking module operates on the list of current
targets. For each target a search region and a Gaussian mask
centered on the most likely position is determined using a
first order Kalman filter. The targets are then updated by
collecting data from the detection module that processes the
search region and computes first and second moments of the
energy image weighted by the Gaussian mask. The Gaus-
sian mask makes the tracking robust to outliers.

After the update step of each target, the module manages
split and merge of targets. The distance between close tar-
gets is measured. If this distance is smaller than the merge
threshold, the targets are merged.

For splitting of targets, the module performs a connectiv-
ity analysis of the pixels within the bounding box. If there
are several components, their distance is evaluated and if
this distance is superior to the split threshold, the target is
split into its components.

7.3. Parameterization
The performance of the tracking system depends on the cor-
rect choice of the parameters. In many systems, these pa-
rameters are set manually. In this article, we use an auto-
matic parameter regulation technique as in [4] that selects
the best parameter setting with respect to an output qual-
ity metric. This metric is based on a Gaussian mixture
model (GMM) computed from positive examples using a
generative technique. Under the constraint that the GMM is
computed from representative training data, the GMM rep-
resents the distribution of correct (positive) observations.
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For the definition of this metric, we transform the hand
labelled bounding boxes of the training sequences into 4-
dimensional vectors~x = (xc, yc, w, h). These 18411 ex-
amples are clustered using k-means with varying number of
clustersk. The best clustering solution is retained and trans-
formed into a GMM. For each clusterCj we estimate the
meanµj and covarianceUj from the data points associated
to the cluster that form the parameters of the Gaussian. The
resulting GMM allows to compute for any observed bound-
ing box~x the probability that this bounding box belongs to
the Gaussian mixture model by following equation:

p(~x) =
K∑

j=1

p(~x|Cj)P (Cj) (24)

p(~x|µj , Uj) =
1

(2π)d/2|U |1/2
e−0.5(~x−µj)

T U−1(~x−µj)

(25)
with µj andUj mean and covariance of GaussianCj . The
priorsP (Cj) are estimated from the training data:

P (Cj) ≈ |Cj |
M

(26)

with |Cj | number of data points associated toCj during
training andM total number of data points used for training.

This metric allows to judge the quality of the output of
a particular tracking system and a particular scene. Auto-
matic parameter selection proceeds as follows. First, the
parameter of the tracking system are set, then the test se-
quence is played and the system produces output in form of
bounding boxes. This output gives rise to a quality score
using the above metric. The system tests a predefined num-
ber of parameter settings and keeps the result with the best
quality score. In this article, we test 400 parameter settings
(20 generations of 20 individual settings) of a 4 dimensional
parameter space (detection threshold, noise threshold, split
parameter, merge parameter) using a genetic algorithm [7].

8. Experiments
In this section we evaluate the performance of the differ-
ent methods on the same data set. The CAVIAR entry
hall sequences [6] (27 sequences) are partitioned into 14
sequences for testing (13692 frames, 21217 boxes) and 13
sequences for training (12023 frames, 18411 boxes). This
database contains people interacting in an entry hall of a
public building at different times of the day (see Figure 2).
The light regions are close to the saturation point of the
camera and moves within the sequence. These are indoor
sequences, but we need to deal with typical problems of
outdoor scenes. We compare the performance of the fol-
lowing methods:BBS (Section 2),W4 (Section 3),SGM
(Section 4),MGM (Section 5),LOTS(Section 6) andTrack
(Section 7).

Figure 2: Example frame of the evaluation database.

The system performance is measured for each method
by recall and precision of the targets compared to the hand-
labelled ground truth (TP: correct (true positive), FP: inser-
tion (false positive), FN: missed (false negative)) as in [1].

recall=
TP

TP + FN
precision=

TP
TP+ FP

(27)

Precision and recall are given for a particular overlap thresh-
oldT (see eq 28). In addition we compute the area under the
curve (AUC) for precision and recall as in [10]. The AUC in
this article is computed by the mean of the values sampled
between [0.0,1.0] with steps of 0.001. AUC is a compari-
son measure with the advantage that it is independent of a
particular overlap threshold. A perfect system would have
AUC values of 1.0.

Figure 3 and Figure 4 display respectively recall and pre-
cision of the different methods evaluated on the test se-
quences. Table 1 shows the precision and recall with an
overlap requirement of 50%. A correct match is registered,
when the bounding boxes of the targetsAobs and Atruth

overlap at leastT = 50%.

Aobs ∩Atruth

Aobs ∪Atruth
≥ T (28)

with

A(x, y, w, h) = [x− w

2
, x +

w

2
]× [y − h

2
, y +

h

2
] (29)

All methods (exceptW4) have similar recall (for an over-
lap of 60% and AUC). The methods should therefore be
evaluated with respect to the precision. The methodTrack
achieves the best precision, because it is the only method
that takes into account temporal filtering using a Kalman
filter. This result closely followed byLOTS. This is inter-
esting, sinceLOTSdoes no temporal filtering. The next best
performing algorithms areSGMfollowed byMGM. W4has
a good precision, but since the recall is bad, this method
seems not to be appropriate for the task. The simple method
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Method Recall
% atT = 50% abs values AUC

BBS 42.5 9024/21217 0.379
W4 30.3 6426/21217 0.276
SGM 42.8 9075/21217 0.380
MGM 38.2 8097/21217 0.373
LOTS 47.9 10161/21217 0.375
Track 44.4 9425/21217 0.348

Precision
% atT = 50% abs values AUC

BBS 27.6 9024/32734 0.246
W4 43.0 6426/14951 0.392
SGM 46.0 9075/19711 0.409
MGM 36.7 8097/22081 0.358
LOTS 59.7 10161/17012 0.467
Track 64.8 9425/14536 0.507

Table 1: Comparison of recall and precision of the methods
evaluated on the test sequences.
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Figure 3: Comparison of recall with respect to overlap.
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Figure 4: Comparison of precision with respect to overlap.

BBSgives the lower benchmark on precision, since it pro-
duces a very high number of false detections. The method
MGM has the best recall for high overlap thresholds, which
means that the size estimates are quite good. This is due
to the connected component analysis of the methodsMGM,
SGM, W4andBBSfor bounding box estimation.

In the experiments, several problems occurred. The de-
tection and tracking results are evaluated with respect to
hand labelled ground truth. In the case of two persons walk-
ing side by side, the detectors report one single target. The
ground truth labels each person of a group as individual tar-
get. This causes problems for the detection system. Groups
of persons are perceived as single targets by the detectors.
For small overlap requirements, these cases1 are counted as
one correct match and one missed target. For large overlap
requirements (since the bounding box covering both per-
sons is larger), these cases are counted as two missed targets
and one insertion.

The Track method relies on entry regions and therefore
misses all targets that are within the scene at the beginning
of the sequence. All detectors build a background model
from several frames. Anything that is not part of this learned
background is detected. The ground truth labelles targets
only once they start moving. This causes a lot of insertions
by the detectors, since persons waiting but not moving and
the person at the reception desk are systematically detected,
but not labelled in the ground truth. To remove the false
detections of the receptionist, we declared a region of no
detection around the reception desk.

The hand labelling chooses the smallest bounding box
that covers the target. The methodLOTSuses the result
of the QCC algorithm for bounding box computation. The
QCC is a lighter version of a connected components al-
gorithm. The methodTrack estimates the bounding boxes
from the position and covariance of target blobs for speed
up. For compact objects, both bounding box computation
methods give similar results. The sequences contain many
targets where a person is raising a hand. In this case, the la-
belled bounding box and the bounding box estimated from
the covariance are significantly different. This is the rea-
son for the rapid decrease of correct targets with increasing
overlap threshold.

Table 2 shows additional statistics for the targets with an
overlap of≥ 50%. All methods have equal position errors.
The observation concerning the size is confirmed with these
statistics.TrackandLOTSperform worse than the other ap-
proaches for the sake of speed. The use of detection regions
in Track increases the time lag for initial target detection
which is compensated by very good results in continuously
tracking targets once they are detected (small number of
dropped frames ). This is due to the temporal filtering of
the Kalman filter.

1There are 1656 groups in the test sequences.
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Error BBS W4 SGM MGM LOTS Track
Metric [unit] mean (std.) mean (std.) mean (std.) mean (std.) mean (std.) mean (std.)
position [pix] 4.9 (4.5) 5.0 (4.8) 5.0 (4.4) 5.1 (5.8) 5.0 (5.3) 5.2 (5.8)

size [%] 3.1 (24.2) 5.6 (23.6) -1.6 (18.5) -0.2 (24.5) 33.5 (33.3) 11.7 (98.2)
entry [frames] 34.4 (47.5) 38.6 (126.7) 34.4 (48.2) 40.1 (45.2) 39.1 (131.1) 107.9 (193)

dropped [frames/100] 20.4 (26.5) 41.5 (27.5) 21.7 (26.8) 28.0 (29.0) 14.4 (22.4) 8.8 (14.5)
processing time [Hz] 8.3 16.7 4.5 2.8 130 70

Table 2: Additional error metrics at 50 % overlap.

9. Conclusions
We presented six types of adaptive background differencing
techniques with background models of different complex-
ity. These approaches were evaluated on indoor sequences
with difficult lighting conditions. Manually labelled ground
truth is available for these sequences. It is interesting to note
that the most complex background model using an adaptive
mixture of Gaussians per pixel(MGM) is outperformed by
the simpler methodsSGM, LOTSandTrackboth in terms of
detection performance (precision and recall) and computa-
tion time.

Several problems occurred in the experiments. All de-
tectors learn a background model from several frames. The
ground truth labels only mobile targets. Persons that don’t
move during the sequence are considered as background.
These targets are typically detect by these methods and
counted as false positives. Furthermore, the ground truth
contains bounding boxes for each individual person of a
group. The detectors can only detect one target for a group,
because we have no higher level analysis associated to the
detectors. This fact significantly reduces the recognition
rates of the detectors. The comparison between the detec-
tors is still valid, because the results are obtained using the
same ground truth.

The next step would be to integrate theLOTSmethod
and the tracking system. This would enhance the robust-
ness of target detection, reduce the number of false positives
and allows to decrease the computation time further. Both
methods currently run in real time on 1/4 PAL images. A
further speed up would allow to process higher resolution
images and conserve processing time for higher level image
analysis.
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