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Abstract. This paper describes an extension of a technique for the

recognition and tracking of every day objects in cluttered scenes. The

goal is to build a system in which ordinary desktop objects serve as

physical icons in a vision based system for man-machine interaction. In

such a system, the manipulation of objects replaces user commands.

A view-variant recognition technique, developed by the second author,

has been adapted by the �rst author for a problem of recognising and

tracking objects on a cluttered background in the presence of occlusions.

This method is based on sampling a local appearance function at discrete

viewpoints by projecting it onto a vector of receptive �elds which have

been normalised to local scale and orientation. This paper reports on the

experimental validation of the approach, and of its extension to the use

of receptive �elds based on colour. The experimental results indicate that

the second author's technique does indeed provide a method for building

a fast and robust recognition technique. Furthermore, the extension to

coloured receptive �elds provides a greater degree of local discrimination

and an enhanced robustness to variable background conditions.

The approach is suitable for the recognition of general objects as physical

icons in an augmented reality.

Keywords: Object Recognition, Texture & Colour, Appearance-Based Vision,

Phicons

1 Introduction

This article addresses the problem of the recognition of objects with a wide

variety of features under changing background conditions. The proposed system

is to be used in the context of an augmented reality system. In this system,
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physical icons (phicons) are used to enhance the man-machine interface. Physical

icons are physical objects to which a virtual entity can be attached. Such a

virtual entity can represent system commands and their parameters [13,5]. A

classical example for the use of phicons are editing operations. An eraser can

stand for deleting, scissors can stand for cutting, and tape can stand for pasting.

An appropriate selection of phicons allow users to quickly adapt to the graspable

interface. Our problem is to build such a system to investigate the improvement

in usability provided by phicons.

In an augmented reality system, one or more cameras observe a region of

interest in which interaction can take place. Such a region can be a desk or more

general a three dimensional space within a room. In such an environment the

background and the lighting is variable. Translation of objects invoke di�erences

in the view point of the camera and object pose. These problems require a system

that is robust to such di�erences and make the recognition and pose estimation

of phicons in an augmented reality an interesting challenge for computer vision.

An important constraint in a phicon based interface is that the user may se-

lect the object which serve as his personal interface. This imposes the constraint

that the computer vision system can not be engineered for speci�c classes of ob-

jects. The system must be completely general. In addition, the computer vision

system must not interfere with natural interaction. Thus the vision system must

have a very low latency (on the order of 50 milliseconds in the case of tracking),

and a very low failure rate.

The acceptance of objects with a wider variety of features increases the dif-

�culty of recognition and pose estimation. Although there already exist many

di�erent approaches, most established methods work well for restricted classes

of objects.

In this article an approach is proposed that allows the view-variant recogni-

tion of objects in a desk-top scene observed with a steerable camera. A possible

solution could be provided by colour histograms [12,10]. However, this approach

is not suitable for pose estimation. The extension to pose estimation in 2D and

3D is an important factor for the design of the approach. For this reason receptive

�elds are preferred to colour histograms.

The second author [3] has recently demonstrated a technique for the recog-

nition of objects over changes in view-point and illumination which is robust to

occlusions. In this approach, local scale and orientation are estimated at each

point in an image. A vector of receptive �elds is then normalised to this scale and

orientation. The local neighborhood is projected onto this vector. This provides

a representation which can be used by a prediction-veri�cation algorithm for

fast recognition and tracking, independent of scale an image orientation. View

invariant recognition is obtained by sampling this representation at regular in-

tervals over the view sphere. Because the method uses local receptive �elds, it

is intrinsically robust to occlusions.

In this article we adapt this technique to the problem of recognising and

tracking physical icons. The technique extended by employing coloured receptive

�elds. The proposed approach allows the recognition of a wide variety of common



objects, including objects with features that make recognition diÆcult, such as

specularity and transparency. Evaluation of the experiments show that good

results are obtained, even in an environment with variable background.

The next section reviews the description of the local appearance function

by projection onto normalised receptive �elds vectors. We then describe how

this approach can be extended to coloured receptive �elds. We then provide

experimental results which validate the second author`s approach using grey

scale images, and then demonstrate the contribution of colour.

2 Describing local appearance

In 1991 Adelson and Bergen [2] reported a function that derives the basic visual

elements from structural visual information in the world. This function is called

the plenoptic function (from \plenus", full or complete, and \opticus", to see).

The plenoptic function is the function of everything that can be seen. In machine

vision the world is projected onto an image, which is a sample of the plenoptic

function:

P (x; y; t; �; Vx; Vy; Vz) (1)

where (x; y) are the image coordinates, t, the time instant, � the response wave-

length, and (Vx; Vy; Vz) the view point. If the plenoptic function for an object

is known it would be possible to reconstruct every possible image of the object;

that is from every possible view, at every moment, for every image pixel, at every

wavelength.

Adelson and Bergen propose to analyze samples of the plenoptic function

using low order derivatives as feature detectors. Koenderink [8] expands the

image signal by the �rst terms of its Taylor decomposition, that is in terms of

the derivatives of increasing order. The vector of this set is called \Local Jet".

The Local Jet is known to be useful for describing and recognising local features

[11]. The signal derivatives are obtained by convolution of the signal by a set of

basis functions.

2.1 Gaussian derivatives

Gaussian derivatives provide a basis for a Taylor series expansion of a local

signal. This means that a local image neighborhood can be reconstructed by a

linear combination of weighted Gaussian derivative �lters. This reconstruction

becomes an approximation which increases in error as the number of �lters is

reduced. The formula for the nth 1D Gaussian derivative with respect to the

dimension, x, is:
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where Hen stands for the nth Hermite \type e"polynomials [1].

Gaussian derivatives have an explicit scale parameter, �, and can though be

generated at any scale. With steerable �lters proposed by Freeman [6] Gaussian

derivatives can be oriented in any arbitrary direction. With automatic scale

selection [9] the local scale of a feature can be determined. The object in an image

can be normalised by scale which allows recognition under scale changes. The

determination of the dominant orientation of a neighborhood allows to normalise

by orientation. These two properties are used by all techniques presented in this

article.

3 Sampling local appearance

In the technique proposed by Colin de Verdi�ere [3] a training set consists of all

overlapping image neighborhoods, referred to as imagettes, of all model images.

An imagette is projected onto a single point in the descriptor space R. Each

model image can be represented as a grid of overlapping imagettes. The projec-

tions of these imagettes form a surface, a local appearance grid, which models

the local appearance of the image in R (see �gure 1).

Fig. 1. An image as a surface in a subspace of R

Each object is represented by a set of images from di�erent view points. As

every image results in a local appearance grid, each object is modeled by the set

of surfaces in R. The recognition process equals the search of the corresponding

surface for the projection of a newly observed imagette. The basis of all surfaces

in R are stored in a structural way, so that the searched surface can be obtained

by table lookup. The resulting surface contains information about the object

identity, the view point of the camera and information about the relative location

of the imagette to the object position. The information from several points allow

to estimate the pose of the object.



The approach based on Gaussian derivatives proposed in [3] serves as bench-

mark for the evaluation of the results. This approach is fast due to eÆcient

storage and recursive �lters [14], rotation invariant due to steerable �lters [6],

invariant to scale due to automatic scale selection [9], and robust to occlusions

due to receptive �elds. It produces good results for compact textured objects

(see section 5.1). The approach fails completely for objects with sparse texture

or objects of small sizes or with holes. The reason is that the Gaussian deriva-

tives are computed only from the luminance image. In the luminance image

the structure is very well preserved but the chromatic information is lost, and

thereby the ability to distinguish objects by their colour. Small or non compact

objects can not be recognised because the imagette contains part of the vari-

able background. If the portion of the background is important the imagette is

projected on a di�erent point within the descriptor space. The detection of a

surface belonging to another object or no surface at all is possible.

The approach described in this section serves as a starting point for the de-

velopment of an improved approach. For the discrimination of poorly structured

objects, chromatic information is indispensable. In the case of other objects,

chrominance improves discrimination. A system that employs structural and

chromatic information describes an additional dimension of the plenoptic func-

tion. Because this dimension includes more information, it can be expected to

produce superior recognition results, at the cost of increased computation. Most

of the additional cost may be avoided by keeping the number of receptive �elds

constant. We compensate the addition of receptive �elds for chrominance with

a reduction in the number of receptive �elds for higher order derivatives. Our

experiments show that chrominance is more e�ective than third order derivatives

in discrimination of local neighborhoods.

4 Coloured receptive �elds

A new descriptor space is needed that is based on Gaussian derivatives and capa-

ble of processing colour images. A direct approach would be to �lter each colour

channel separately. The advantage would be that no information is lost and no

new technique needs to be developed. The disadvantage is that the normalisation

process would need to be duplicated independently for each colour channel.

An alternative is to maintain the use of the luminance channel, and to com-

plement this with two channels based on chrominance. The chrominance chan-

nels are described using colour-opponent receptive �elds. Luminance is known

to describe object geometric structure while chrominance is primarily useful for

discrimination. Thus a receptive �eld vector is used in which chrominance recep-

tive �elds are normalised with the scale and orientation parameters computed

from the luminance channel.

4.1 Selection of an appropriate colour space

This section addresses the problem of designing the colour opponent receptive

�elds for chrominance.



The RGB coordinate system is transformed according to following transfor-
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This transformation, illustrated in �gure 2, moves the origin to the center of

the colour cube. One axis corresponds to the luminance axis, which will be

used for structure analysis. The other two axis are orthogonal to the luminance

axis and are used for colour analysis. We note that the two axis coding colour

information are sensitive to red green di�erences and blue yellow di�erences,

inspired by models of the human visual system [7].
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Fig. 2. Transformation of the RGB coordinate system.

Projection of the image neighborhood onto the luminance axis provides a

description of geometric structure. Projection onto the colour di�erence channel

improves discrimination.

5 Experimental Results

The experiment is based on 8 ordinary objects form an oÆce desktop, that are

appropriate to serve as physical icons (shown in �gure 3). This set of objects is

used to demonstrate the capability of the approaches to cope with general ob-

jects, among them objects with diÆcult features. The set contains textured and

uniform objects, compact objects and objects with holes, specular and transpar-

ent objects. Some of the objects can be discriminated easily by their structure

(eraser, sweets box), or by their colour (pen, scissors). Other objects exhibit

specularities and transparencies which would render most object recognition

techniques unreliable (tape, pencil sharpener, protractor). Recognition of such

objects is diÆcult, because small changes of illumination or background condi-

tions invoke important changes in the appearance of these objects.

For imagettes at variable scales, extracted from images of objects in the real

world, object background regions tend to be generally lighter or generally darker



(1) pen(0) eraser

(7) sweets box

(2) scissors

(6) protractor(5) sharpener(4) tape

(3) stapler

Fig. 3. Object set used in the experiments.

Fig. 4. Test scenes used in the experiments.



than the object. While clutter can introduce mixed backgrounds, such cases tend

to be rare. In order to assure recognition over a range of backgrounds, we train

models placing our objects on both black background and white background

during training. Figure 3 shows the training images on white background. Section

5.1, 5.2, 5.3 applies the technique to images with uniform background, section

5.4 shows results on cluttered background.

The training phase results in a separate data structures for purely luminance

based receptive �eld vectors up to third order, and for a receptive �eld vector

which includes both luminance and chrominance, but are limited to second or-

der. A recognition cycle was run on the test images. A set of 15 test images are

used that contain between 2 to 6 di�erent objects of the test set (see Figure 4).

The orientation and the position of the objects in the test images is di�erent

from the orientation and position in the training images. The distance from the

camera is constant and the camera is pointing on the desk. A grid of image

neighborhood locations were selected for evaluation using a step size of 5 pixels

between neighborhoods. At each neighborhood, the local scale and orientation

are determined. The local neighborhood is then projected onto a vector of recep-

tive �elds which has been normalised to this scale and orientation. The vector

was then used as an index to generate a list of hypotheses for possible objects

and image neighborhoods having similar appearance.

For recognition the hypothesis list of the current test point is evaluated.

No previous knowledge is used. We point out that the performance of the sys-

tem can be increased by combining hypotheses with previous knowledge in a

prediction-veri�cation algorithm. Comparing the recognition results based on

the hypotheses of one single point only gives more precise information about

the precision and reliability of the di�erent approaches. The approach can be

generalised to recognition under di�erent view points by including images from

sample points along the view sphere in the training set.

For each neighborhood, the method produces a sorted list of image neigh-

borhoods from all the trained objects with a similar appearance. Similarity in

appearance is determined by the distance between the vector of responses to

the receptive �elds. A list of neighborhoods within a tolerance distance (epsilon)

are returned. This list is sorted by similarity. If the list is too large, then the

neighborhood is judged to be non-discriminant and is rejected. Similarly, if no

neighborhoods are found within a tolerance, the neighborhood is judged to be

unstable, and is rejected. Neighborhoods for which a small number of similar

matches are found are labeled as \accepted" in the experiments below.

The recognition rates must be seen in combination with the acceptance rate.

The goal is to obtain high acceptance rates together with high recognition rates.

Thus, to evaluate the results of the techniques, three values are presented. First,

the percentage of neighborhoods that produced a hypothesis are displayed. The

number of such neighborhoods is labeled as the \acceptance rate". This is the

percentage of neighborhoods which are both unambiguous and stable. Secondly,

we display the number of neighborhoods for which the most similar recalled

neighborhood is from the correct object. These cases are labeled \1st answer



correct". A third value presents the number of returned neighborhoods for which

the correct object and neighborhood was in the best three returned neighbor-

hoods (correct answer among �rst 3). Such slightly ambiguous neighborhoods

can be employed by a prediction-veri�cation algorithm for recognition. All val-

ues are average values over the test scenes with uniform background (section 5.1,

5.2, 5.3) or over the test scenes with cluttered background (section 5.4).

5.1 Local appearance technique based on luminance

This experiment is computed on luminance images according to the technique

described in section 3 using recursive �lters, automatic scale selection, and steer-

able �lters. This experiment is the benchmark for the following experiments.

object number 0 1 2 3 4 5 6 7

acceptance rate 0.30 0.41 0.65 0.04 0.47 0.54 0.07 0.23

1st answer correct 0.40 0.27 0.62 0.59 0.28 0.12 0.91 0.43

correct answer

among �rst 3

0.77 0.51 0.83 0.82 0.62 0.47 1 0.81

Table 1. Results of technique based on luminance receptive �elds. Neighborhoods of

objects with discriminant structure are easily recognised. However, luminance provides

poor discrimination for uniform and specular objects.

Neighborhoods from objects eraser (0), pen (1), scissors (2), tape (4), sharp-

ener (5) and sweets box (7) produce good acceptance rates. The acceptance rates

for neighborhoods from the stapler (3) and protractor (6) are very low which in-

dicates that for most of the observed neighborhoods are unstable or ambiguous.

The recognition rates for these objects are thus based on an insuÆcient number

of windows and should not be considered to judge the accuracy of this particular

experiment. These two objects are very hard to recognise by a system using only

luminance.

Objects eraser (0), scissors (2) and sweets box (7) produce suÆciently high

recognition rates and a simple voting algorithm could be used for recognition.

A prediction-veri�cation approach would produce a robust recognition for these

objects, as reported by Colin de Verdi�ere [4]. Poor results for recognising neigh-

borhoods are obtained for objects pen (1), tape (4) and sharpener (5).These

objects are either uniform or specular, which makes the recognition using only

luminance diÆcult.

5.2 Coloured receptive �eld technique using 0th order Gaussian

derivative in colour channels

In this experiment two chrominance channels are added to the receptive �eld

vector. These two axis, which are orthogonal to the luminance axis, are encoded



with a 0th order Gaussian with size � as determined by local normalisation.

These two channels capture information about the chrominance in the neighbor-

hood of each point. This provides good recognition rates for structural objects

in the previous experiment as well as a large improvement in acceptance and

recognition for the constant and specular objects.

object number 0 1 2 3 4 5 6 7

acceptance rate 0.82 0.78 0.86 0.97 0.86 0.87 0.19 0.91

1st answer correct 0.87 0.93 0.79 0.96 0.66 0.74 1 0.99

correct answer

among �rst 3

0.94 0.98 0.91 1 0.88 0.96 1 1

Table 2.Results of technique extended to 0th order Gaussian derivative in chrominance

channels. High recognition rates are obtained for all objects, although the acceptance

rate for transparent objects remains low.

The addition of chrominance information raised the acceptance rates from

an average of 0.34 in the previous experiment to an average of 0.78. Many fewer

neighborhoods are rejected because of ambiguous or unstable structure. Figure

5 illustrates the decrease of the number of ambiguous windows using grey scale

and coloured receptive �elds. This is an important improvement because even

for diÆcult objects many windows produce a result, which was not the case in

the previous experiment. The only object with a low acceptance rate is object

protractor (6), which is transparent and particularly diÆcult to describe.

(b)(a)

Fig. 5. White points mark non-ambiguous (accepted) windows. (a) accepted windows

for grey scale receptive �elds. (b) accepted windows for coloured receptive �elds.

Very good recognition rates are obtained for all objects. The lowest �rst

answer recognition rates are obtained for objects tape (4) and sharpener (5).

These objects are highly specular and thus change their appearance with pose



and illumination. Even for these objects the recognition rates are suÆciently

high that a simply voting scheme could be used for recognition in restricted

domains.

5.3 Coloured receptive �eld technique using 0th and 1st order

Gaussian derivatives in colour channels

In this experiment the chrominance information is extended to the �rst deriva-

tives in order to capture colour gradients that are characteristic for the object.

The structure analysis is performed in the 1st and 2nd order derivatives. The 3rd

order derivative is abandoned, because its analysis is only interesting when the

2nd order derivative is important [8]. The descriptor space has than 8 dimension

which helps to avoid the problems that occur in high dimensional spaces. The

comparison of table 1 and table 3 validates that the improvement by using colour

is much superior to the loss in structure recognition by abandoning the 3rd order

derivative.

object number 0 1 2 3 4 5 6 7

acceptance rate 0.88 0.87 0.91 0.98 0.83 0.98 0.23 0.99

1st answer correct 0.91 0.98 0.86 0.97 0.74 0.77 0.96 1

correct answer

among �rst 3

0.98 0.99 0.94 0.99 0.90 0.97 0.99 1

Table 3. Results of technique extended to 0th and 1st order Gaussian derivatives in

chrominance channels. High recognition rates are obtained for all objects. Average

results are slightly superior than those in section 5.2.

The acceptance rates are in the average higher than in the previous exper-

iment. The acceptance rate for object protractor (6) is still relatively low. The

recognition rates are slightly superior to the recognition rates obtained previous

experiment. This shows that colour gradient holds information which improves

the discrimination of objects.

5.4 Experiments on cluttered background

The benchmark technique (section 3) produces very low recognition rates (table

4). We obtain a mean of 0.1238 in the �rst answers, which is even worse than

guessing. This means that the background introduces new structures that were

not present in the training base. These structures are so important that a correct

classi�cation is very diÆcult.

In the case of a cluttered background, the use of chrominance provides a dra-

matic improvement in recognition rates. Objects eraser (0), pen (1), tape (4) and

sweets box (7) have high recognition rates together with high acceptance rates

which allow a reliable classi�cation. There are problems with objects scissors (2),



object number 0 1 2 3 4 5 6 7

acceptance rate 0.04 0.52 0.44 0.33 0.59 0.92 0.54 0.25

1st answer correct 0 0.15 0.39 0 0.03 0 0.17 0.25

correct answer

among �rst 3

1 0.42 0.70 0 0.17 0.15 0.27 0.64

Table 4. Results for objects on cluttered background using technique based on lumi-

nance images. Very low recognition rates are observed. Object recognition is diÆcult.

object number 0 1 2 3 4 5 6 7

acceptance rate 0.65 0.71 0.51 0.80 0.70 0.81 0.53 0.86

1st answer correct 0.91 0.80 0.50 0.34 0.70 0.35 0.29 0.94

correct answer

among �rst 3

0.94 0.90 0.61 0.68 0.87 0.42 0.31 0.98

Table 5. Results for objects on cluttered background obtained by technique extended

to 0th order Gaussian derivative in colour channels. Few windows are rejected. Object

recognition is possible.

object number 0 1 2 3 4 5 6 7

acceptance rate 0.75 0.60 0.50 0.79 0.60 0.14 0.41 0.96

1st answer correct 0.85 0.82 0.58 0.19 0.77 0.27 0.39 0.99

correct answer

among �rst 3

0.93 0.86 0.64 0.39 0.84 0.55 0.43 0.99

Table 6. Results for objects on cluttered background with technique extended to

0th and 1st order Gaussian derivatives in colour channels. High acceptance rates are

observed. Object recognition is possible.



stapler (3), sharpener (5) and protractor (6) either due to low acceptance rates

or low recognition rates. For transparent objects such as the object protractor

(6) this is expected, because it depends very much on the background condi-

tions. Objects scissors (2), stapler (3) and sharpener (5) are either small, thin

or have holes. This means a large amount of neighborhoods contain background

information which perturbs the classi�cation.

Another interesting observation is that in the case of background clutter,

the acceptance rates using only the 0th order Gaussian in the colour channel

are slightly higher to the acceptance rates obtained by the technique using the

0th and 1st order derivative in the colour channels. The cluttered background

contains a large set of colours, which are not present in the training base. This

variety leads to colour gradients at boundaries which have not been observed in

training and are thus rejected. Receptive �elds based on the 0th order Gaussian

are much less sensitive to such background distraction. This is interesting because

on uniform background the technique using the colour gradient has been found

superior to the technique using only the 0th order Gaussian.

6 Conclusions

The results presented in this article are incremental and primarily experimen-

tal. We have experimentally investigated the extension of the technique of [4] to

the problem of real time observation of the physical icons for computer human

interaction. Certain characteristics of real world objects, such as specularity,

transparency or low structure, variable background and changing camera posi-

tions make the identi�cation of objects diÆcult.

The recognition technique evaluated in this article employs local orientation

normalisation to provide invariance to image plane rotations. Robustness to scale

changes are provided local normalisation using automatic scale selection. The

technique can be implemented to operate in real time by recursively computing

separable Gaussian �lters. Such �lters are steered to the local orientation using

the steerability property of Gaussian derivatives. Training was performed for

the grey scale technique in 237s on a Pentium II 333 MHz. The techniques using

colour needed both 278s for 16 training images of average size of 39 212 pixels.

The benchmark technique produces satisfactory recognition results on uni-

form background. It can clearly be stated that structured objects exhibit higher

classi�cation rates. The approach fails for uniform objects, because of a lack

of structure. A pure luminance based approach also has problems with diÆcult

objects, such as transparent or specular objects. Recognition rates for cluttered

background using only luminance are below chance.

The method is extended by the addition of chrominance information. An

chrominance descriptor space is presented that can describe colour images and

does not increase the dimensionality greatly in comparison to the starting point

technique. Problems with high dimensional spaces are avoided. A system is ob-

tained that preserves the advantages of the pure luminance approach and is

capable of classifying a much wider range of objects. It is not signi�cantly more



expensive in computation and storage. The experimental section validates that

objects with diÆcult features can be recognised, even on cluttered background.

It also indicates that chrominance is more important to recognition than higher

order derivatives.

We are currently working to extend the approach to view-variant pose esti-

mation. Recognition under di�erent view points is obtained by including images

taken under di�erent view points in the training base. The object pose will

be estimated by using the geometrical information of the results from several

recognised points. A more robust pose estimation will be obtained by using a

prediction-veri�cation algorithm. The result should be a system with high pre-

cision, robustness and reliability.
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