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Abstract 

Onc approxh to pattern classifici~tion is to mrkh a ~ t r l ~ c t ~ ~ ~ * i i l  dcscription of a pnttcrn to Inodds which 
dcscrilx tlic structui;il propcrtics 01' pirucvn classes. 'I'hc cclitriil problcm in structural pnttcrn t11i\Iching is lo 
dcterminc thc corrcspo~idcncc bclwccn the symbols which comprisc i1 modcl and symbols which dcscribc a 
pattcrn. 'I'hc difficulty of dctcrinining this coricspondciicc dcpcnds critically 011  ~Jic rcprcscntation t lMt is 
itscd to describe patterns. 

This pnpcr presents a probabilistic rcprcscntation for structural modcls of pattcrn clnsscs. Boll1 pattcrn 
descriptions and modcls for pattern classcs arc bascd on symbols which rcprcscni gray-scalc in forinat ion at 
multiplc rcsolutions. A pattcrn description is givcn by a trcc of symbols with attributc valucs. Structural 
modcls arc rcprcscntcd by a trcc of symbols with probabilistic attributcs. 'Ihc position and scale (rcsolulioii) 
of tlic symbols, as well as other "fcaturcs," arc rcprcscntcd h y  tliesc attributcs. 

An algorithm is prcscntcd for dctcnniriing thc corrcspondcncc betwccn symbols in a description of a pattcrn 
and symbols in a model of a pnttcrn class. This algorithm uscs thc connectivity bctwccn symbols at diffcrcnt 
scales to constrain thc scarch for cc?rrcspondcncc. Ail interactive training program for Icalning modcls of 
pattern classes is dcscribcd, and somc conclusions from thc work are presented. 
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1 Introduction 

' I  his p a l m  dcscribcs a system for classifying two dirncnsional gray xnlc p;i~teriis which is bascd on 
siritclur;il pattcrii matching udng a multiple rcsolution rcprcscntiition. 'I'hc n1;ltheinaticill basis for this 
rcprcscntalion is thc "Ilift'crcncc of' Low Pass" (I)OI,P) Lrai1sh-m [3]. 'I'hc 1x11 ,P transfomi is defined, 
followed b y  rhc definition of a symbolic structurc which is used to rcprcsctit patlcrns. A ninlching algorithm 
is described which cxploits thc multiplc resolution structiirc to cffiicicntly miitch a modcl For ;I pattern class to 
an obscrvcd piittern. A training algorithm for deriving pattcrn models from observation sets is also prcscntcd. 

1 . I  The Structural Pattern Recognition Problem 

'I'lic purpose of a pattern recognition systcm is to labcl a pattern as an instance of ;I predcfincd class. One 
approach to pattern classification is structural pattern matching. In this approach, a striictiiral description of a 
pnttcrn is matched tu a set of models which describe prcdcfincd pattcrn classes. A similarity measurc is 
computed for thc match for each pattern class. The pattern is then classificd as an instance of the class for 
which thc similarity mcasure is maximized. 

'I'hc most important aspects in the design of a structural pattern matching systcm are 

rhc represenlalion which is used for the pattern and models, 

o tlic rriatching algordhm, and 

the sirnilariiy measure. 

'This paper dcscribcs the use of a multiple resolution reprcscntation for pattern descriptions and objcct 
modcls. It thcn prcscnts 3 matching algorithm which uses the results of matching at low resolution to guide 
and simplify the matching at  higher resolutions. A similarity measure is presented bascd on the logarithm of 
thc probability that each symbol in the dcscription is an instance of the corrcsponding symbol in the model. 

1.2 Summary of Solution 

A structural dcscription for patterns typically has the form of a network of symbols. In the systcm describes 
below each symbol has an associated set of attributes. We call such a description an "attributed graph" [12]. 
This paper describes an attributed graph representation for image patterns in which the symbols are derivcd 
from pcaks and ridges in the Difference of Low Pass (D0L.P) transform [3]. 

A structural modcl of a pattern represents the ensemble of descriptions of patterns in the training set. Thus, 
wliilc a model has the same form as a description, symbols in the modcl are assigned a probability of 
Occurrcncc and the symbol attributes are described by probability distributions. In its general form, such a 
pattern tnodcl is a "probabilistic graph model."' In this paper we describe tcchniquts for leariling arid 
representing probabilistic graph pattern models from examplcs of multiple resolution descriptions of patterns. 
These tcchniyiic arc restricted to a subsct of the multiple rcsolution representation described in [3], given by 
local peaks. '['his subset has the form of a multiple resolution tree. 'hus, in this paper we will describe a 
structural modeling technique based on a "Probabilistic Tree Model." 

lAlso c a k d  a "Random Graph Model." 
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Matching i\ patlcrn dcscription to ii modcl is a problcrn of dctcrniining thc niost likc!y corrcspondcncc 
bclwccn syrribols in Ihc pi~ttcrn dcscription and symbols in cach niodcl. Onc of tlic' propcrtics of ;I niultiplc 
rcsolution rcprcscnt;ilion is that it pcrinits tlic matching prtxcss to bc dccomposcd into a scqircncc of vcry 
sniall 1iii1t~lii11g problcins. 'J'hat is, nWdiing inay bcgiii with a sinall numbcr of low rcsolntiorl sy~~tl~ols.  'I'hc 
conncctivity of symbols at adjaccnt rcsolutions pcnnits the corrcspondcncc at low rcsolu tions to bc uscd to 
constrain thc possiblc corrcspondcnccs at highcr rcsolutions. This papcr dcscribcs such it lniitchilg ;dgoritllm. 

'I'hc most likcly corrcspondcncc providcs thc basis for a similarity mcasurc. In this paper wc dcscribc a 
siniilarity nicasurc bascd on thc log likclihood that thc most likcly con-csponding synibol is an instrcncc of tllc 
modcl symbol. The sum of thc log likclihoods is uscd as a global similarity mcasurc for thc match bclwccn 
thc dcscription and thc modcl. 'I'hc pattern is assigned the labcl of the class for which chc miltch produccs thc 
laigcst similarity nicasure abovc a Uircshold. 

1.3 The Multiple Resolution Representation of Patterns 

Farlicr papcrs[3] havc dcscribcd a rcprcscntation for shape bascd on pcaks and ridgcs in thc 1101.P 
transform. A dcscription of a pattcrn cxpressed in this representation was shown to rctain its structurc dcspitc 
changcs in sizc or oricntation, and such a dcscription was shown to dcgradc graccfully whcn boundarics are 
blurrcd and whcn the image is corrupted by various forms of image noise [2]. Expcrimcnts havc bccn 
pcrformcd in matching motion stcrco imagcs using the DOLP transform. An algorithm for matching rows 
from co-planar stcreo irnagcs has reccntly bccn dcscribed using a onc dimcnsional form of 11OIP transform 
[4]. A fast computation tcchniquc for the DOLP transform has also bceii defined [5].  

Thc rcprescntation prcscntcd in this paper is based on connectcd scqucnccs of pcaks called "Pcak Paths" 
and on conncctcd scqucnccs of ridges called "ridge paths." This paper describcd a matching algorithm that 
only makcs usc of Pcak Paths. Extcnding this algorithm to use ridgc paths is belicvcd to bc straight forward. 
Each such symbol has a set of attributes associated with it. Thcsc symbols arc conncctcd through the 
rcsolution levcls by conncctivity relations which give it the form of a tree. Using thcsc higher lcvcl symbols 
hrther decreases the complexity of the pattern description, and thus simplifies the matching problem. 

2 The Difference of Low-Pass Transform 

This rcpresentation is bascd on a reversible transform referred to as the "Difference of Low-Pass" (DOLP) 
transform [2]. The DOLP transform is a reversible transform which converts an image (or signal) into a set of 
band-pass imagcs (or signals). Each band-pass image is cquivalent to a convolution of thc original image with 
a band-pass filtcr, bk. Each band-pass filter is formed by a difference of two size scaled copics of a low-pass 
filtcr, gk-l and g,. 

Ebch low-pass filtcr g, is a copy of thc low pass filter gkeI scaled larger in size. These band-pass images 
comprise a thrce space (the DOLP space) in which the third diinension is scale (or rcsolution). 

bk = gk-1 - gk 

Thc DOLP transform cxprcsses the imagc information at a discretc set of rcsolutions in a manncr which 
prcscrves all of thc image information. This transform separates local forms from morc global forms in a 
manncr that makcs no assumptions about the scalcs at which significant information occurs. The DOLP filters 
ovcrlap in thc frcqucncy domain; thus there is a smooth variation from cach band-pass lcvcl to the ncxt. 'This 
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"sinoorhncss" makes size-indcpcndcnt iiialcliing of forms possiblc and makcs it possiblc lo usc the syinbols 
from onc band-pass lcvcl to constrain lhc corrcspondcticc of symbols at thc ncxt ( highcr rcsolu tion ) Icvcl. 

2.1 Definition of the DOLP Transform 

'I'hc I l 0 I . I '  transform cxp;inds an N = M x M imngc signal p(x,)g into K band-pass imagcs. '3k(x.~l).  I-hch 
band-pass imagc is cquivalcnt to a convolutioti of thc imagc /(x,y) with a band-pass impulsc rcsponsc bk(x.)$. 

"$k(x&) = / f X . . d  * bk(-x.y) (1) 

For k = 0, tlic band-pass filtcr is formed by subtracting R circularly symmetric low-pass filtcr go(x.y) from a 
uni t  samplc positioned ovcr tlic ccntcr cocfficicnt at thc point (0,O). 

bO(X.Y)  = W , Y )  - go(x9Y) (2) 

The filtcr bo(x,y) gives a high-pass image. '?Bo(x.y). This image is equivalent to thc rcsult produccd by the 
cdgc dctcction technique known as "unsharp masking" [LO]. 

%o(x.Y) = p(x.Y) * ( %Y) - go(x.Y)) 
= P(x.Y) - (p(x.Y) * go(x.Y)) 

(3) 

For band-pass levels 1 5 k < K the band-pass filter is formed as a difference of two sizc-scaled copies of the 

(4) 

low-pass filter. 

bk(x*Y) = gk.l(x*Y) - gk(x.Y) 

In ordcr for thc configuration of peaks in a DOLP transform of a form to be invariant to the sizc and 
orientation of a form, it is necessary that each low-pass filter, gk(x,y) be a copy of thc circularly symmctric 
low-pass filtcr g,(x,y) scalcd larger in sizc by a scale factor raised to the k~ power. [2]. Thus for cach k, the 
band-pass impulse response, bk(x,y), is a size scaled copy of the band-pass impulse response, bk-Jx,y). For 
two-dimensional circularly-symmetric filters which are defined by sampling a continuous function, sizc 
scaling increases the density of sample points over a fixed domain of the function. The change in scale 
between filter gk(x,y) and filter gk+ Jx,y) is denoted by the the scale factor, denoted S,. For Gaussian filters, 
S, is the ratio of the standard deviations for the kb and the (k+ l)b filters. 

ss= 0 k+ d c k  

It is possible to define a DOLP transform with any scale factor for which the difference of low-pass filter 
provides a uscful pass band. Marr, for example, argues that a scale factor of Ss = 1.6 is optimum for a 
difference of Gaussian filtcrs[9]. We have found that a scale factor Ss = fi yields effectively the Same 
band-pass filtcr and provides two otlicr interesting properties [2]. 

In principle the DOLP transform can be defined for any number of band-pass levels K. A convenient value 
o fKis  

K = Logs,(N) - R o (5) 
Wherc R o  is the radius of g,(x,y). With a scale factor of Ss, Log,$N) is the level at which the original 
distance bctwccn filter samples becomes cqual to the width of the image. Subtracting R o  givcs thc lcvcl at 
which the filter gK(x,y) becomes larger than the image. 
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'I'lic 1101 .I' timsfonn is rcvcrsiblc which provcs that no infi)rm;ition is lost. 'Ihc origiiiiil hiigc may bc 
rccovcrcd by  iddil\g all of thc band-pass iiiiagcs. ~ I U S  i1 low-pass rcsidtrc. 'I'his l ow PilsS rcsidiic, which hils not 
bccn li)iind to bc uscful for dcscribing thc imagc, is thc convolution of tllc lowcst frcqiicncy (Iill*gCSt) low-pass 
liltcr. gA(x,j9) with Uw image. 

K- 1 

(6) 
=0 

2.2 Fast Computation Techniques: Resampling and Cascade Convolution 

A full IX)I,P transform of an imagc composcd of N snmplcs, produces K = Isg,.(N) band-pass images of 
N saiiiplcs cach. and requires O(N2) niultiplics and additions. 'I'wo tcchniqucs can bc uscd to rcducc the 
computi7tioniil complexity of the IXLP transform: "rc~?mpling" and "cascadcd convolthon with cxpansion" 
(31. Combining thcsc two techniques give an algorithm which will compute a WIR transform of an N 
samplc signal i n  O(N) multiplics, producing 3N sample points. 

2.3 A n  Example of a DOLP Transform 

Figure 1: A sampled DOLP transform of an imagc with two bolts 

Figure 1 shows a DOLP transform of an image of two bolts that was produced using the fast computation 
techniques described above. In this figure the imagc at thc lower right is thc high frequency imagc, %,(x,y). 
The upper lcft corner shows the level 1 band-pass imagc, %,(x.)% while the uppcr right hand corner contains 
the level 2 band-pass image, %2(x.j$. Undemcath the level 1 band pass imagc arc Icvcls 3 and 4, then 5 and 6, 
etc. 



5 

Figure 2: An enlargement of band-pass levels 5 through 11 

Figure 2 shows an enlarged view of band-pass lcvels 5 through 13. 'I'his cnlargcinent illustrates thc unique 
peaks in thc low frcquency images that occur for each gray-scale form. Examplcs will bc given bclow using 
the symbolic description which was produccd from this image. 

3 A Multiple Resolution Representation for Gray Scale Patterns 

The amount of information required to represcnt the structure of a pattern may be greatly rcduced by 
encoding a symbolic dcscription of thc DOLP band-pass images. We have developcd two levels of symbolic 
reprcscntation for patterns based on the peaks and ridges from the DO1.P transform. The first level is 
composed of symbols derived directly from the individual DOLP samples. Thesc are DOLP samples which 
arc found to bc local positivc maxima or negative minima in one, two or three dimciisions within a DOLP 
band-pass image. The second level symbols exploit a connectivity betwecn peak and ridge samplcs which is 
inliercnt in the DOLP transform. Sequences of connected peaks and ridgcs are grouped to form symbols 
called "Peak Paths" and "Ridge Paths." These two levels of symbols are described below. 

3.1 Definition and the Symbols Set 

The "local neighborhood" of a DOLP samplc includes the ncarest cight neighbors on the samplc grid at its 
band-pass levcl. A "peak" (or P-node) is a local positive maximum or negative minimum within a two- 
dirncnsional band-pass image. A "ridge-nodc" (or R-nodc) is a local one-dimensional positivc maxiinum or 
negative minimum within a two-dimcnsional band-pass image. 
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‘I’hc I101 .I’ ShiipC rcprcscrii;ition is bascd 011 four types ol‘symbols. l’wo of thcsc arc dctcctctl in each 1101 .I’ 
Hand-Pass imagc. ‘I‘hcsc arc: 

It- nodcs: I l 0 I . P  samplcs which arc on a ridgc (1-11 maxima or ncgativc minima within ;i band-pass 
image). 

P-nodcs: I)OI-I’ samplcs which arc local 2-11 maxima or ncgativc minima within a band-pass imagc. 
‘I’hcsc arc It-nodcs which arc a maxima in cvcry dircction. 

The otlicr two symbols arc dctcctcd within thc thrcc ditncnsional spacc (x, y, k) dcfincd by thc I101,P 
transform. 

M-nodes: P-Nodcs which havc a IX)I,P samplc of larger magnitudc than P-nodcs at adjoccnt 
positions in adjacent band-pass images. 

L-nodes: DOI,P sirnplcs which arc on a ridgc across lcvcls (Le. in the thrce space (x,y,k) ). ‘I’hcsc arc 
It-nodcs which arc largcr than thcir neighbors at adjacent band-pass Icicls abovc and 
below in tiic Il0I.P spacc. 

The symbol set provides thc basis for structural rcprescntation of gray-level shapcs in images. To complctc 
thc representation, cach symbol, p, M, L, R, retains four attributes, (x,y,k,d): 

( K Y )  the imagc coordinatcs of the symbol; 

k the band-pass lcvel of the symbol: 

d the intensity of the DOLP image at the sample. 

These attributes attach quantitative information to each symbol. The attributes arc used to improve the 
efficiency of matching by constraining possible structural correspondences, as well as improvemcnt in 
matching accuracy and reliability. 

Let us define the the first lcvel symbols as a list of nodcs {vi}, which arc connected between lcvcls by a set 
of links, {eij). A node consists of a type from the set {PI R, M, L} and a set of attributes {x, y, k, d}. 

A link, eij is made between node vi at lcvcl k and node vj at level k-1 if and only if 

1. vi and v. have DOLP values of the same sign, and 

2. vi and v. arc at adjacent band-pass levels and are within a predefined distance of each othcr. The 

J 

J neighborhood sizc is approximately equal to the inner positive lobe of the larger DOLP filter. 

We havc implcmcnted peak linking with an algorithm that starts at the highest resolution level (l), and 
stcps up through the band-pass images to the lowest resolution level (K-1). For each peak at level k, a search 
is made over a 5 by 5 sample region in levcl k + l .  The peak at level k is linkcd to thc nearcst peak at levcl 
k+ 1 within this region. 

The nodc types of R and P are assigned bascd on the value of a L)OI,P sample relative to its local 
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Figure 3: Subsct rclations of nodc typcs 

ncighborhood. A DO1.P band-pass samplc which is a local 1-D positivc maximum or ncgativc minimum 
witltin an band-pass imagc is labelcd as an R. A node of typc R which is a positivc maximiiin or negative 
minimum in all four directions in an image is labeled as a P. 

‘I’hc nodc typcs of L and M are assigned based on thc relative valucs of the DOLP samplc attributes to 
linkcd nodcs of typc R or P. A node at levcl k of type I< may bc labclcd as a nodc of typc L, if it is connected 
to nodcs at lcvcl k+ 1 of typc R which havc a smaller D0L.P samplc. and it is not conncctcd to a nodc at lcvel 
k-1 of typc I< with a larger DOLP sample. Similarly, a nodc of typc 1’ may bc labclcd as a node of type M if it 
is conncctcd to nodes at lcvel k +  1 of type P which havc a smaller ImLP mmplc. and it is not connected to a 
nodc at lcvcl k-1 of typc P with a larger DOLP satnplc. 

Thus the node types can be groupcd into subsets, based on context, as shown in figure 3. All nodcs arc type 
R. Somc nodes of type R can be type L. Some nodes of type R or I, can also be type P. Some nodes which are 
both type P and typc L can also be type M. 

Figure 4: Circle represcntation of the negative peaks from levels 11 through 4 
of the largcr bolt from figure 2. Darkcr circles represent 

M-nodes. tighter circlcs represent P-nodes. 

An example of the usc of peaks to rcprcsent a gray scale pattern is given in figures 4 and 5. Figurc 4 shows 
the negative pcaks from band-pass levels 11 through 4 for the largcr bolt in the DOIY transform imagc shown 
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(80, 158) (94, 158) 

Figure 5: The negative peaks from levels of 11 through 4 which 
describe the larger bolt from figure 1 

in figures 1 and 2. For simplicity, only negative P-nodes over this bolt at the low resolution levels are shown. 
Figure 5 shows somc of the attributes of these peaks. At the top of each symbol, the DOLP sample value, and 
the symbol type (M or P) are shown. In the second row, the coordinates are shown in parentheses as (x, y). 
L-nodes and K-nodes, and the opposite signed peaks are not shown in these figure. 

3.2 Peak Paths 

In general, when a DOLP filter has a high correlation with an image pattern, a peak node will occur at 
similar locations in the set of adjacent band-pass images. These pcaks will be assigned a connectivity as 
dcscribcd above. Except in rare cases, the magnitude of DOLP sample attributes of thesc pcaks will rise 
monotonically through die levcls to a local maximum and then decrease. It is possible to use this rcgularity to 
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group collcctions of conncctcd pc;iks inlo a sccoiid lcvcl symbol callcd a Pcak Path. ’I’liis sccond lcvcl 
encoding can grcatly rcducc ~lic contplcxity of pat~crn dcscription. 

A conncctcd SCL of P-nodcs form ;I trcc which spans from low rcsolution to high rcsolution. I’eiIk PiIthS 

rcprcscnt branchcs in Uiis trcc. A connccted sct of 1’-nodcs from lcvcl i to lcvcl j (i > j) arc groupcd into a 
l’cak Path whcncvcr: 

0 a 1’-nodc at lcvcl j is a local minimum along a Pcak Path, or 

0 a P-nodc at lcvcl j has morc than onc P-nodc at lcvcl j-1 attachcd to it. 

Whcn a Pcak Path is formcd by cutting a conncctcd sct of pcaks with onc of thcsc rulcs, thc top (low- 
rcsolution) Pcak Path is said to bc a I’amnl Pcak Path. while thc bottom (high rcsolution) Pcak Path is said to 
bc a child Pcak Path. Pcak Paths formed in this manncr retain thcir connections. Thcsc conncctioris arc thc 
basis for the trcc structure of both &he shapc dcscriptions and probabilistic models dcscribcd in this pnpcr. 

A Peak Path, Pn, is dcfincd by 
A 
a a vector of attributes, 

1 a set of conncctioiis to the parent and children Peak Paths, if they exist. 

‘The attributes for a Peak Path arc the set: 

$= {top. x, Y. k, d, t, 1, c l  

Thesc attributes are somctimcs rcfcrred to as a. through 3. As defined above, every Pcak Path contains an 
M node. The M-node plays a crucial role in defining the attributes of a Peak Path. The attributes (x- y. k, d) 
are simply the attributes of the M-node. The attributes t and 1 reflect the length of the Peak Path, while the 
attribute c describes the number of children. 

Top A boolean which is true if the Peak Path is not the child of a lower resolution Peak Path. 

(x. Y) The image coordinates of the M-node of the Peak Path. 

k The band-pass level of the M-node. 

d The DOLP amplitude of the M-node. 

t The distance (in band-pass levels) from the top most node in the Peak Path to the M-node. 

1 The number of band-pass levels spanned by the Peak Path. 

C The number of children Peak Paths which descend from this Peak Path. 

The connections, I ,  include a connection to a parent Peak Path if it exists, and a connection to cach of the 
children Peak Paths. 
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11 is also possiblc to dclinc path structurcs for Il itodcs itnd for I, nodcs. A ridgc path, "K-1'3th'' is a 
scqiiciicc of I-idgcs of thc samc sign from adjacent locations in Uic s;iinc band-pass iinagc. Il-Paths arc 
chiir;ictcristic o f  boundary scgnicnts at a givcn rcsolution lcvcl. ll-pnths wcrc iisccl in  thc shapc matching 
tcchniquc dcscribcd in [2]. A n  "l,-lWh" is ;I coiincctcd scqiiciicc of 1 ,-Noclcs of Uic smic sign conncctcd to 
nci.j,wnt locations at thc same or adjacent band-pass Icvcls. I,-l'alhs iii'c cliarrtctcri$t!c of clongatcd shapcs. 
A n  l~- l%tl i  usually tcrminatcs in an M-Nodc. In thc ncar futurc wc will cxtcnd lllc training and matching 
tcchniqucs dcscribcd bclow to include I .-paths. 1 nclusion of I .-padis into dcscriptions and modcls will crcatc 
a network structurc bctwccn the branches of thc Pccak lWh trccs. 

Figure 6: A circlc rcprescntation of thc M-nodcs of the 
Pcak Paths for thc largcr bolt in figure 1. 

The scale of the M-Nodc is rcprcscntcd by the radius of the 
circlc. The radius is chosen to approximatc the radius of 

the inncr positive lobc of thc Diffcrcncc of Gaussian filter. 
Thc position of thc M-node is rcprcscntcd by the position 

of the circle. 

-106 M <9> 

-78 M <8> - 9 1  M <8> -67 M <7> 

( 6 4 ,  1 0 0 )  ( 9 6 ,  104) ( 8 8 ,  144) 

Figure 7: The M-node attributcs of the lowest rcsolution negative 
Peak-Paths in the larger bolt shown in figure 5 

Figures 6 and 7 shows the Peak Paths that result from the peaks shown in figurc 5. Figure 6 shows a circle 
rcprcscntation from the M-nodcs from the low resolution Peak Paths. Figure 7 shows thc conncctivity 
bctwccn Peak Paths and the attributes of 1lOJ.P sample intensity and lcvcl for the M-nodc. and thc locations 
of the M-nodcs. Only thc negative Pcak Paths at the lowcr resolution lcvcls (levels 11 through 4) are shown. 
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4 Probabilistic Models of Gray Scale Patterns 

A patlcrti inodcl scrvcs ;is a dcfinition for a class of pattcrns. In structural pattcrri rccognilioii, Ihc pattcrn 
tnodcl dcliiics tlic syinbols. attributcs and conncctivity that hnvc bccn obscrvcd i n  iiti cnsctiilk or training 
smplcs. I ti most cascs thc incmbcrs of a training set will exhibit somc variability in structurc. 'l'his variability 
may bc cxprcsscd in ;i pattcrn modcl by attaching a probability of occurrcncc to cadi syinbol, atid cxprcssing 
thc altributcs ol'ciicll symbol as  a probability distribution. 

l'hc pwhability of oxcurrcncc and the attributes for cach symbol arc Icarncd by "training" on a samplc sct 
for each class. In thosc cascs whcrc the structure of thc training samplcs arc thc sumc, thc probability of 
(xcurrcncc for thc symbols will bc high, and thc attributes will bc cxprcssed by a narrow probability 
distribution. I n  thosc cases whcrc the stnicturc varies, thc probability of (xciirrcncc for cilch syinbol will be 
dccrcascd and thc attributcs will be cxprcsscd by probability distributions with a largc variancc. A training 
proccss for rnultiplc rcsolution probabilistic graph modcls is described i n  scction 6.  This scction dcfincs a 
tcchniquc for rcprcscnting a probabilistic graph model bascd on Peak Paths. 'I'hc cxtcnsion of this to I, paths 
has not bccn pcrformcd as of this writing, but is thought to be straight forward. 

4.1 Definition of Model Symbols 
- 

A inultiplc rcsolutioii probabilistic graph modcl, M, is cornposcd of a position transformation (or "pose") T, 
and a list of labclcd Pcak Paths, n, for n = 1, . . . , N, with probabilistic attributes and with conncctions to 
othcr Pcak Paths. FAch Pcak Path, n,, contains: 

1. a labcl from Lhc sct {PI', TP, CP} (dcscribed below), 

2. a probability of occurrcnce, P(n,,), 

3. a sct of attribute probabilities, zn, and, 

4. a conncction to a parent Peak Path (if it exists) and a set of connections to children Peak Paths An. 

FAch attribute probability is represented by a Gaussian probability density function. The mean and 
standard deviation of thc density function are determined incrementally during training. In principlc, tbc 
connections, An, can be implemented with a probability attribute. In the techniques described in this paper 
this is not done. 

It is dcsirablc to be able to rcpresent classes of objects which can undergo transformations such as scaling, 
translation, rotation, various forms of stretching, and articulation of rigid components. The probabilistic 
modcls defined here are designed to accommodate such transformations. This is accomplished by defining 
the position, orientation and scale of each symbol relative to a parent symbol. Only a root symbol, called the 
"Principal Peak Path" has attributes in absolute coordinates. For other Pcak Paths in the modcl the absolute 
attributes at a particular pose are obtaincd by following thc trce structure from the Principal Peak Path. 

Thus, for cxample, in the training samples whcn a part of a pattern occurs scaled or rotatcd with respect to 
the rest of thc pattern, thc probability distributions for position or scale of the lowest rcsolution symbol which 
describes that part is given a largcr variance, but the distributions for higlicr rcsolution childrcn symbols arc 
kcpt small. Ilcfining attribute probabilitics relative to parent symbols rcquircs the dcfiiiition of labels for 
Peak Paths. 
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4.2 Peak Path Labels in a Model 

l’cak-Paths arc divided into ~lircc classcs according to thcir position in the modcl: 

e Principal 1’c;ik-t’;tths (IT) contain tlic lowcst rcsolution M-Nodc in thc modcl. I t  is thc only I’cak 
I-’;ith whosc attributc probabilities arc cxprcsscd in absolutc coordinatcs. 

e ‘l’q~ Peak-Paths (W), othcr than thc Principal Pcak Path, havc no parent pcuk-paths (k, arc not 
childrcn). Altributc probabililics of ‘I’P symbols are dcfincd with respcct to thc PP. 

e Child I’cak-PiIths (CP) arc dircctly conncctcd to lowcr-resolution “parent” Pcak Paths. ‘l’hc 
attributc probabilitics arc dcfincd with rcspcct to the attributes of the parents. 

4.3 Attribute Probabilities and Likelihoods 

Matching a dcscription to ii modcl rcquires finding the correspondence mapping which maximizcs the joint 
Haycsian probability that cach dcscription symbol is an instance of the corresponding inodci symbol. I n  the 
tcchniqucs below, thc matching algorithm is dcsigncd to maximize the sum of thc log likclihood of the 
conditional probability [6]. 

Thc probability that an obscrved dcscription Peak Path, P, is an instance of model Peak Path, n,, is given 
by Baycs law to be 

.., 
P(Pj )  

Thc probability of the dcscription Pcak Path, P( Pi), is constant for all possible model Pcak Paths, and thus 
may bc ignored in a search for a maximum. The probability that a model symbol exists, P(7rn), is the 
prilbability of occurrcncc. Thus, the model symbol which has the highest probability of being an instance of a 
description symbol may be found by finding thc model symbol, n,, for which similarity, is maximized. 

Thc expression P(cln,) may be evaluated as the probability of obtaining the attributc vector, 5 of Pj 
given thc the attribute probabilities, ai, of the model Peak Paths w,,. 

Z 

This equation assumes that cach of the attributes are independent. While this may not be strictly true, it 
significantly simplifics the implementation of the probability calculations, without seriously affecting the 
pcrformancc of thc system. 

‘I’hc probability distribution for each attribute ai is represented by the mean, pi, and the variancc, of of a 
Gaussian distribution. Thus, given thc assumption that the attributes have a covariance which is thc identity 
matrix, thc probability of obscrving an attributc value, ai, given a probabilistic attributc, ai, is givcn by 
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Note Uint n in this cquation rcfcis to the wcll known constant. 

Ibq-mscntiiig thew probahilitics with a Gaussian distribution providcs thc opportunity to rcplacc the 
calculation o f  a plobiibility for cach ilttribtltc. with the calculation of a computationally chcilpcr log 
likclihood. 

aj,ndZ~ 

scales the probability distribution of each attribute so that it has an area of one. This tcnn is constant for a 
givcn modcl Peak Path attributc, and is not necdcd whcn searching for the dcscription Peak Path with the 
highest likclihood of correspondcncc. It is, however, ncedcd for the global similarity mcasure. 

‘I’hus. tlic likclihood, I%,,, that an observed description Peak Path, P, is an instance of a modcl Peak Path n, 
is givcn by 

This formula replaces thc use of truc probabilities with a log likelihood measure which rcturns a ncgative 
value near 0 for attributes near the mean and a more negative number for less likely values. Bccause the 
logarithm is a monotonic function, the sorted order and the maximum of the log likclihoods will bc thc same 
as for probabilities. ‘The log likelihood is also considerably less expensive to compute. 

4.4 Probabilistic Attributes in the Model 

For Principal Peak Paths, the attribute set is identical to those used for description, except that each 
attributc has a random variablc with an associated probability distribution in place of a value. 

For TP and CP Peak Paths, the attribute probabilities used in the model divide into two classes: 

1. attributes which are dependenf on the parent Peak Path, 

2. attributes which are independent of thc parent Peak Path. 

The dcpendcn/ attributes are: 

al 8:  thc angle of the vector from the parent Peak Path. The Principal Peak Path is the parcnt 
for Peak Paths of type TP. 



Path 

a1 Ad: thc ratio of thc I>OIP samplc intcnsity of tllc M nodc of this Pcak Path to thc parcnt Peak 
Path 

Modcl indcpcndcnt attributes haw bcen dcfincd by 

as t: the number of lcvcls bctwcc!i thc M iiodc and the top-most peak in the path, 

a6 1: the numbcr of lcvcls hctwccn thc top most and thc bottom-most pcak in thc path, 

a7 c: the number of children Pcak Paths. 

4.5 The No-Match Likelihood 

A lowcr bound on thc log likclihood measure, callcd the "no-match" likelihood, Ln, none, is providcd by the 
probability of Occurrence of a modcl Pcak Path. 'This is the likclihood that will be used in a global similarity 
incasure if no corrcspondcnce is found <or a modcl Pcak Path. 

L. none = In( 1 .o - q nJ) + p, 

' h e  term p,  is a constant detcriniiicd from the attribute dibtributions in order to scale. likelihoods of 
obscrvcd and iinobservcd symbols. 

4.6 Model Transformation 

Exccpt for the Principal Pcak Path, cacli calculation of a log likelihood function requires that dcscription 
Pcak Path attributes which correspond to modcl dependent attributes be converted to a "relativc" coordinate 
system. The attributes of distance, R. scale, Ak, and intensity, Ad, can be computed relative to thc attributes 
of a parent Peak Path. However, orientation requires additional information. This information is supplied by 
the "pose" of the model. 

During matching, the pose of the modcl is given by a "transformation," which is hypothcsized to 
translate, scalc, and rotate the modcl Peak Paths so that they can best correspond to description Peak Paths. 
?'he first step in matching is to deterniine the position. scale and intensity parts of from the Peak Path in the 
description which is hypothesized to match to the Principal Pcak Path in thc model. The second step is to 
dctcrminc an estimated orientation from the correspondence of the modcl Peak Paths of type ?'P to the 
dcscription Peak Paths of type TP. 

5 Multiple Resolution Probabilistic Matching 

Matching a probabilistic graph or tree modcl to a structural description is a problem of finding a 
corrcspondcncc relation betwecn the symbols in the model and the symbols in the description which 
maximizcs somc global similarity measure. In the algorithm dcscribcd here, thc global similarity measure is 
thc sum of thc log Iikclihoods of the individual Peak Path correspondences. 
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'I'his iilgoridiin iiscs thc hicrnrchical structiirc of lhc inultiplc rcsolution description and modcl to 
succrssivcly constrain possiblc corrcspoiidcnccs. 'I'hus the dgorilhni ilsshiincs LIliiL Lhc lowcst rcsolution Pcak 
I'ath ciin bc rclialdy found in the data. 'I'his may not bc an ilppropriiltc :issumption i n  situations whcrc thc 
2-13 imagc of it 3-1) object can havc a significant v;lriiltion j i i  furin duc to cliangcs i n  3-1) oricnlation or 
photoinctric cffccts. 

'I'hc matching nlgorirhm consists of tJic following stcps: 

1. Dctcrminc an  initial "POSC" which translatcs, scalcs chc inodcl onto thc dcscription. 

2. Ilctcrniinc a correspondcncc bctwccn thc list of f'cilk f'aths of typc 'I'P in thc inodcl and the Pcak 
I'ilths in tlic description. This correspondcnce providcs thc oricntation part of thc posc. 

3. I>ctcrminc the corrcspondcncc for the list of Pcak Paths of typc CP. 

As cach ncw corrcspoiidcnce is obtained, a likclihood cstimate is updatcd. This partial cstimatc may bc used 
tu lialt  the matching if "reasonable" correspondences are not bcing found. 

5.1 Finding the Pose 

'I'hc matching proccss bcgins with a hypothcsis that a low resolution Peak Path, P, in a dcscription is an 
instancc of thc Principal Peak Path, n,,  from the model. The similarity measure, Se,  is initialized by 
cvaluating thc absolutc attributes of Pi with the sum of the log likclihoods for the Principal Peak Path, nl, for 
the sct of attribiitcs i = 2 to I. l l ic  orhitation attribute, al, is not meaningful for thc Principal Peak Path. 

If this initial estirnatc is above a threshold, then matching may continue. 

Accepting the hypothesis for the Principal Peak Path specifies an estimate of the position, intensity, and 
scale for matching. It docs not provide any information about the orientation. In our initial matching 
algorithm tlic oricntation cstimate is dctermined from the correspondcnce for a Sccond Peak Path. In the 
section bclow we describe an algorithm in which a set of possible orientations are hypothesized as the first 
stagc in a search for thc best correspondence mapping. 

The Peak Paths of type TP in the model are sorted by probability of occurrence, resolution Icvel, and 
distance from the Principal Peak Path. Our initial matching algorithm, uses the Peak Path at the top of this 
list to dctcrmine thc orientation of the Pose. This Peak Path is sometimes referred to as the "Sccond Peak 
Path." The log likelihood similarity measure for the Second Peak Path is computed for each Peak Path of 
typc '1'P in the dcscription, using attributes a2 through a7. The Peak Path that maximizes this similarity 
measure is choscn as thc corresponding description Peak Path. Thc pose orientation is detcrmined by the 
diffcrcncc in angle of the vector to this Peak Path in the model and in the description. 

i 
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5.2 Matching Top Peak Paths 

Givcii a poac. t l ic iiialchiiig problcm bccomcs a problcm of Finding a corrcspo1idciicc m;ipping for llic 'I'op 
(typc '1.1') I k i k  I'ntlis h i t  ni,ixinibcs somc global mcnsurc of similarity. This is pcrliaps llic inost iinportaiit 
and most diflicirlt st,igc ol' thc matclii~ig prtxcss. l'hc similarity function for iI corrcspondcncc Ixtwccn air 

individual inotlcl k a k  Pat11 and dcscription l'cak Path is mcasurcd by tlic log lihclihood of oblniiiiiig tllc 
dcscriplioii I b k  Path's attribirtcs givcn lhc modcl Pcak Path and the currciit posc. A nornmali~cd sum of such 
likclihoocls is iisccl cis a global similarity nicasure. 

Jf' thcrc arc N, modcl '1'011 Pcak Jjaalhs and N, description Top Pcak Pallis tllcn IJic~'c arc as many as 
N,N,, log likclihoods to bc cvaluatcd. Such a corrcspondcncc problcm has bccotnc a classic problcm in 
nixhinc vision, for which il varicty of approachcs havc bccn invcstigatcd and rcportcd. Soinc cxainplcs 
include thc maximal cliques algorithm [l], relaxation labcling [15]. posc clustcring [ 131, hypothcsis of rigid 
transformation [8] and [7] and licuristic scarch [14]. Most of thcsc algorithms could bc adiipled for this task, 
although in some cases it would bc difficult or cxpcnsive to incorporate a gcncrirlizcd similarity mcasurc. 

A crucial aspcct in thc application of any correspondencc matching algorihm is thc rcprcscntation in which 
thc information is cxprcsscd. Wc initially believed that the cxprcssive powcr of thc Pcak Path rcprcscntation 
would permit us to detcimiinc thc bcst corrcspondence without backtracking. I n  particular wc sought to LISC 

tlic lowcst rcsoliitioii I'cak Paths to dctcrminc the pose transformation for thc inodcl. instcad of using a long 
scarch prtxcss. Thus wc implcincntcd a vcry simple correspondence matching matching algorithm which wc 
havc come lo call tlic "grcedy algorithm." 

'L'hc grccdy algoriihm is scqucntial, and docs not guarantce an optimal match. The algorithm is based on the 
idea of forming thc list of N,N, possible corrcspondences and sorting this list bascd on lhc likclihood ialue 
for each pair. Corrcspondcnces are thcn assigned in thc order of thc likclihoods with no possibility of 
mcitiplc matchcs. 'To kccp the problem small, we only include Top Peak Paths within 6 rcsolution lcvels (a 
factor of 8 in scale) of tlie Principal Peak. For our bolts images, this typically lirnitcd the number of 'Top I'cak 
Paths to lcss thaii 10. 

Stated morc precisely, the greedy algorithm operates as follows: 

1. For all model Peak Paths of type TP, n,, for n = 1 to N, and for all description Peak Paths , Pm, 
is the likclihood that nn is an for m = 1 to M, construct the triple (n, m, L,, ,), where Ln, 

instance of Pm . 

2. Sort this list of triples on the field L,, 

3. Starting with the top of the sorted list, retrieve the triple, (n, m, Ln, ,). 

. 

a. If thc corrcspondcnce for n, or for P, has bccn found, then discard this triple and advance 
to the next. 

b. If ncithcr correspondence has been found, thcn mark both symbols and save the 
correspondence. 

c. Add thc likclihood to the partial similarity estimate, Le. Se = Se + Ln,m. 
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d. If  a t  Imit onc model syinl)ol rcniiiiiis with no corrcspondcncc, and at least one dcscription 
syml)ol rcn-i:iins w i t h  iio ~orrcspondci~cc, and tlic most  rcccnt likclihood incasurcs rctricvcd 
from thc sorted list is abovc a lhrcshold, llicn continuc rctricving triplcs from tlic list. 

4. If thc partial cstimatc S, is bclow a thrcshold, halt. 

‘I’hc prir.cipd bcncfit of thc grcctly algorilhm is that it is fist; it has a computational coinplcxity of 
O(N,N, ,  l,og(NMNI,)). I t  is also vcry casy to iniplcmcnt. 

Altliough, the grccdy algoritlitn has bccii found to work wcll in most cases, thcrc are soinc situations in 
which it fails. Most of thcsc situations fall into Ihc following thrcc catcgorics: 

‘Ihc comb cffcct: If il pattern contains a scquencc of idcntical small pattcrns spaccd at closc rcplnr iiitcrvals, 
thcn if thc corrcspondcncc for onc is not corrcctly assigned, tlic corrcspondcncc for all its 
neighbors is also affcctcd. 

Noise Effccts: If thcrc are spurious Pcak Paths of typc TP in thc dcscription, thcsc can somctiincs block 
tlic corrcspondcncc of a modcl Pcak Path to the corrcct dcscription Peak Path. I n  this case, 
there is usually no corrcspondcnce or a vcry poor corrcspoiidcncc for thc cliildrcn Pcak 
Paths in thc modcl, and the overall likelihood is scverely dcgradcd. The biggest source of 
noise was middlc resolution photomctric cffects (highlights and shadows). 

Low Resolution Pliotomctric Effccts: 
‘l’hc position attributcs of thc Pcak Paths of typc ‘TP arc spccificd with rcspcct to thc 
principal peak path. If highlights or shadows arc larse cnough and scvcrc cnough to 
intcrfcrc with ihc Principal Pcak Path in a dcscription, then the pose traiisforn1atioii will Gc 
incorrect. In this situation, the log likelihoods for all the TP Pcak Paths will be distorted 
and frequent mismatches will occur. 

Most of our expericnce with this matching algorithm was obtained with an interactive training algorithm 
described below. With this trailling program, cach match was displayed graphically, and wc were able to 
intcrvenc by hand to reject an incorrect correspondence. The most frequent error ( -5%)  in our training 
cxamplcs, was an incorrectly chosen correspondcnce for the Second Peak Path which results in an incorrect 
model orientation. Given the fact that the matching can fail completely if the wrong orientation is selected, 
we now believe that this orientation part of the pose is best determined by evaluating the corrcspondciice of 
Top Pcak Paths at a set of hypothesized model orientations. 

The conscquenccs of both noise in the description Peak Paths and the Comb Effect can be minimized by 
only seeking a match for the model Pcak Paths, and by permitting more than one model Pcak Path to 
correspond to thc same description Peak Path. This prevents an error in one correspondence from crcating 
errors in other corrcspondenccs. Altcrnatively it is possible to determine the set of corrcspondcnccs which are 
globally bcst using a heuristic search algorithm. 

The problcrns causcd by low rcsolution photomctric effects are hndamental to using one or two lowest 
resolution Pcak Paths to define thc modcl transformation or pose. Any error in the position or scalc of the 
Principal Pcak Path will degrade the correspondence likelihoods for all thc Peak Paths of typc TP, and thus 
incrcasc the possibility of mismatch. We could avoid this problcm only by abandoning the usc of a “Principal 
Pcak Path” and using onc of thc other matching tcchniqucs listcd above. 



5.3 Determining the Pose by  Pairwise Search 

'I'hc comb cffcct and the cffccts of middlc rcsolution noisc can bc minimixd by only sccking i1 match for 
cach niodcl I'cak I'ath and by pcrmitting more than onc modcl Peak Path to corrcspond to thc siimc 
dcscription Peak I'iith. 'I'hc catastrophic rcsults of an incorrcctly chosen Principal Peak palli o r  Sccond Pcak 
Path can bc avoidcd by hypothcsi/.ing a sct of possiblc pose transformalions bnscd on pairs of'l'op I'cak Paths. 
'l'his idca is ;I gcncroli/ution of the "hypothcsis of rigid transformations" tcchniqiic uscd by 171 and [ 8 ] .  'I'hcse 
two idcas arc cmbotlicd in an algorithm which hypothcsizcs rigid transformations for thc 'l'op l'cilk Paths in 
thc modcl bascd on tlic corrcspondcnccs of pairs of Peak Paths, and thcn cvaluatcs tlic global similarity for a 
subsct of "most likcly" trarisforniations. Such an algorithm would work as follows. 

I b r  'I'op Peak Paths in thc modcl, the posc dependent attributes (a, through a4), which wcrc prcviously 
computcd with rcspcct to a Principal Pcak Path, are each augmcntcd with a list ofattributc vectors, coinputcd 
for a sct of othcr 'I'op I'cak Paths. This sct can bc kept small by only computing rclativc attributcs for I'op 
Peak Paths with a probability of occurcnce of 1.0 and by restricting cach list to thc closcst N, Pcak Paths. 

Matching thcn bcgins by forming a list of possible correspondcnccs bctwccn pairs of Peak P'itllths from the 
Modcl and pairs of Pcak Paths from thc description. Each correspondcncc of pairs dcfincs a posc hypothesis. 
For cach such corrcspondcncc, thc log likclihood is computed using thc appropriatc attributc vector, ns wcll 
as thc posc indcpcndcnt attributes. The list of pair-wise correspondcnccs arc sorted by log likclihood. The 
members at thc top of thc list provide a set of "most likely" poses. A subset of the "bcst N" or "all abovc a 
thrcshold tolcrancc" can be sclcctcd as candidates. The model Peak Paths of typc 11' are tlicn rigidly 
transfoiincd by the cach hypotlicsizcd pose and a global similarity is computed. 

For cach hypothcsizcd posc, thc algorithm computes a global similarity as follows. For cach inodcl Peak 
Path of typc TP. a list is inadc of thc likelihood of correspondence for cach description Pcak Path of type TP, 
givcn thc posc. Thc bcst log likelihood is selected for inclusion in the global similarity. If thc bcst log 
likclihood is more negative than the "no-match" likelihood, Ln, none, thcn the no-match likclihood is uscd in 
its placc. For each posc, thc sum of the best log likclihoods are computed. The pose which yields thc highest 
sum of log likclihoods will provide both the pose and the correspondence mapping for Pcak Paths of typc TP. 

The computational complexity for this algorithm need not be prohibitive. If each modcl Peak Path is 
rcstrictcd to a list of N, pairwise attribute vcctors, then the total number of painvisc combinations in the 
modcl will bc N,N,. Pairing each description Peak Path with its nearest N, neighbors will give N,N, pairs. 
Thus thc numbcr of log likclihoods to bc evaluated in this stage is N,N,Ni For each pose hypothesis, 
computing a global similarity requires NDNM likelihoods. If  we restrict the search to the N bcst poscs, tlien 
the total number of likclihoods to be computed N, is 

N, = N,N,N~ + N,N,N~. 

5.4 Matching Children Peak Paths 

If thc partial estimate remains above a threshold aftcr finding the bcst correspondcncc for thc modcl Pcak 
Paths of typc TP, then matching continues for the children Peak Paths (Pcak Paths of type CP). Finding the 
corrcspondcnce for the Peak Paths of typc CP is organized as a hicrarchical sequence of correspondcnce 
matclics among a vcry small number of candidates. The organization of this proccss stcms dircctly from the 
structiirc of the Pcak Path hierarchy. That is, a model Pcak Path can only correspond to a dcscriptioii Peak 
Path if their parcnts corrcspond. 

- ... . 
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l'ach step in Lhc m;itchiiip, proccss for child C'c;lk t'aths starts with the corrcspondencc of it Inodd I'cak I'iIllI, 

rn to a dwxiption I'cak Path, I>",. lliis corrcspondcncc providcs ;I list of children from 1)olh thc nwdcl and 
the description. 'I'hc log likclilioods for all possiblc corrcspondcnccs arc thcn computcd. For N inodcl Pcak 
l'atlis and kl dcscriplioii I'ciik Piillis, lliis givcs h4N likclihoods. As M and N arc small (typically 2, and 
maximum 4). it is not uiircasonablc to considcr all possiblc scts of corrcspondcnccs. 'I'hc set of 
corrcspondciiccs for which llic sun1 of likclihoods is maximum is sclcctcd. Any corrcspondcncc in this sct for 
which thc likclihood fYls bclow a tlircsliold are rcjcctcd. 

For each acccpted corrcspondcncc. thc global similarity incnsurc is updatcd by adding thc likclihood. 
s, = s, + Idn,m. 

For cach modcl Peak Path for which no corrcspondcncc was found, or for which thc bcst corrcspondcncc 
was bclow thc no-match likclihood. thc global similarity is updatcd by adding the no-match likclihood. 

s = s + I.'n,"one e e  

The matching algorithm is thcn applicd rccursively to each of the correspondences above thc rejcction 
thrcshold. 

Matching of Child Pcak Paths procceds through thc Top Pcak Path in the model in sortcd ordcr. For cach 
Top Peak Path, the inakhing procecds rccursivcly "depth" first. If  the partial similarity mcasurc evcr 
becomcs kss than thc rejeclioii thrcshold, the process is halted. 

5.5 Similarity Measure 

'Ihc final result of matching is a correspondence list and a numerical measurc of the similarity of the modcl 
and the dcscription. l'hc log likclihood values arc rarely exactly zero. Hcncc every Feak Path in the niodcl 
dccreascs thc ovcrall log likelihood, even if it has a closc match. The log likclihoods for diffcrent modcls can 
not be compared unlcss they are nonnalizcd to remove this effect. We normalize the model similarity by 
dividing by, N, the total number of corrcspondences included in the similarity measure. Thus the similarity 
of model of a pattcrn class to a description of a pattern is given by 

se S ,  = -. 
N 

6 Training 

The probabilistic graph models described in section 4 are learned by a training proccss. An cnscmblc of 
observations, called the "training set," is used to derive the structural components and attributcs for a 
"cornpositc" model of the training samples. Training is performed on a set of "clean" images; that is, the 
images contain only an cxamplc of the pattern class to be learned. Thc presence of spurious forms in thc 
training imagcs is minimized. This helps to assure that only the "important" Peak Paths arc found in the 
modcl. 
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6.1 The Training Algorithm 

'IAc training proccss begins with an cinpty modcl and rcpcats t l~c fbllowing stagcs for cach sainplc hnagc in 
thc training sct: 

1. 'I'hc ncxt image from tlie training sct is cxprcsscd as a trcc of Pcak Paths in absolute image 
coo rdina tcs. 

2. A "posc" is obtained which places the modcl at the position, oricntation, and scale of the pattern 
in thc sample image. T h i s  pose is hypothcsizcd by thc syslcni and confirmcd by thc human 
supervisor. 

3. For each modcl Pcak Path of type TP, thc corrcspondcncc to thc most likely Peak Path in the 
In  our expcriniental implcmcntation, the human dcscription is dctermined and displaycd. 

supervisor may intervene and cxamine thc log likclihoods of alternate matches. 

4. As cach corrcspondcnce is found, thc mean and stmdard dcviation of thc probability distributions 
for the attributes are incremcntally dctermincd, and the probability of occurrcnce for the Peak 
Path is updated. 

5.The most likely correspondences are then found for the Peak Paths of type CP, and their 
probability distributions and probability of Occurrencc are also updated. 

6. Any Peak Path in the description for which there was no corrcsponding Peak Path in thc model, 
and which is within the appropriate bounds of resolution and position, is addcd to the modcl as a 
Peak Path of type TP. When a new Peak Path is addcd to the modcl, the value of each attribute is 
assigned to the mean, and a dcfaulr value is assigned to the standard deviation. 

7. Thc Peak Paths of type TP are sorted with the following prccedence: probability of Occurrence 
(highest to lowest), average lcvel of the M-node (lowest rcsolution to highcst), average distance 
from the Principal Peak Path (furthest to closest). 

6.2 The Training Program 

Training is currently done with an interactive program that uses a raster graphics monitor. Our philosophy 
has been to bcgin with a program in which the uscr must verify each step, and to incrementally automate the 
training proccss as contidcnce and experience are gained with each stage. 

The scrcen of the monitor is divided into three windows. In the upper left is a "model" window, in which a 
copy of the first training sample is shown. In the near future we plan to display a "synthesized" hagc  of the 
model i n  this window. This synthesized image will be created by summing the impulse rcsponsc of the DOLP 
filtcrs for the mean value and location of thc M-node of each Pcak Path. The image of the current training 
sample is shown in the upper right window. At the bottom of the screen a set of text field arc maintained that 
provide information about training. 

Most of training involves specifying Peak Paths that match. Peak Paths in both the modcl and tlie 
dcscription arc indicated by drawing circles in the overlay plane, over the the modcl window or tlic training 
imagcs window. Thcse circle act as a cursor. The radius of the circle is given by the M-nodc levcl of thc Peak 
Path. It  is the radius of the inner "positive" lobe for the DOLP filter at that lcvel in the DOI,P transform. 



21 

Figure 8: The interactive training program. The uppcr left window 
contains the model image (currently the first training sample). 
The uppcr right window contains the currcnt training sample. 

The circlcs indicate the location and scalc of thc principal Pcak Path. 
The lower window is uscd for text messages. 

The position of the circle is given by the mean of the position for the M-node in the Pcak Path. Examples of 
the screen of the training program are shown in figures 8 , 9  and 10. 

A cursor support mechanism permits the user to stcp the "current" cursor through the description or the 
model in a number of ways. The cursor may be stepped through the list of TP Peak Paths, up or down a Peak 
Path trce, or through the list of siblings at a given level. 

6.3 Correspondence Matching in Training 

As with structural matching, the basic problem in training is to find a correspondence betwecn symbols in a 
dcscription and symbols in the model. Thc problem is easier than the general structural matching problem 
because it is known a-priori that the training sample is an instance of the model, and bccausc restrictions can 
be made about the "clcanncss" of the imagcs used for training. The problcm is hardcr, however, bccause 
during training tlic model is only partially constructed and may not be useful in finding the best 
corrcspondence. 

, 

Our initial implemcntation of the training process is bascd on the assumption that the training imagcs arc 
"clean," that is. the cxamplc of the pattern to bc learned is the only thing in the image. In this way, the 
Principal Rak Path (PP) and thc second TPcan be casily found by finding thc lowcst resolution M nodc. l'hc 
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Figuro 9: The interactive training program. The pose orientation 
is determined from thc correspondence of thc "second" Peak Path, 

displaycd graphically for approval. 

uscr is asked to approve this correspondence. The correspondence for the Principal Peak Path spccifies the 
position and scalc of the pose. 

Dctcrmining the Orientation of the pose requires finding the correspondcncc for a Sccond Pcak Path. The 
modcl Pcak Path which acts as the Second Peak Path is the Peak Path at the top of the sorted list. A scarch is 
madc for the description Peak Path which is most likely to correspond to this Second Peak Path, bascd on all 
of thc attributes except orientation. This search uses the similarity function described in the previous scction. 
The uscr is asked to verify this correspondence. The angle to this Peak Path is then used to determine the 
orientation of the pose. An example of determining the Second Peak Path is shown in figure 9. 

Given the pose, the training program advances through the list of model Peak Paths of type TP. The 
"current" modcl Pcak Path is illustrated by a circle drawn over the model image. For each modct Peak Path 
of typc TP, the system locates the description Peak Path of type TP with the highest corrcspondence 
likclihood. Thc likclihood calculation is based on the mean and standard deviation obtained increincntally in 
previoiis training. The description Peak Path with the highest correspondence likelihood is also prescntcd to 
tlic uscr as a circle over the training samplc image. An example of this is shown in figure 10. The uscr has the 
option to accept die match, select a different description Peak Path, or abort the scarch for a match to the 
current model Peak Path. Each time the user indicates the selection of a match, the statistics of the model 
Peak Path are updated and the corrcspondence is saved. 

After specifying thc correspondence for all of the model Peak Paths of type TP, the search is madc for the 
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Figure 10: Thc intcractivc training program. 
Thc corrcspondcncc of top level Peak Paths arc 

displaycd graphically for approval. 

corrcspondcncc fcr thc modcl symbols of typc CP. This scarch is madc "depth-first," from the childrcn Pcak 
Paths from each 'I" Pcak Paths. The matching process proceeds as with modcl Pcak Paths of typc TP, exccpt 
that the uscr is forbiddcn to spccify a match in a case whcrc the parcnts do not match. That is, a modcl Pcak 
Path of type CP can only be matchcd to a description Peak Path of type CP if their parents wcre matchcd. 
The modcl path of typc CP may, howcvcr. be matchcd to a prcviously unmatched description Peak Path of 
type TP. 

If a model Peak Path has children, but the corresponding description Peak Path docs not, then the user is 
informcd. The uscr may elect to not match those Peak Paths, or to search among the unniatchcd model Peak 
Paths of typc TP. 

After all of the model Pcak Paths havc becn processed, the description Peak Paths which rcmain are added 
to the model. Each Peak Path is shown to thc user before it is added to the modcl. If a modcl Peak Path 
which has no children is matchcd to a dcscription Peak Path which has childrcn, these children are addcd as 
cliildrcn of the modcl Peak Path to which heir parcnt was matched. 

7 Conclusions 

This papcr has prcscntcd a multiplc resolution rcpresentatioii technique for gray scalc patterns bascd on the 
DOLP transfonn. A dcscription in this rcprcscntation has thc form of a connectcd trcc of symbols with 
attributes. Information about the position and scalc of a symbol are encodcd in the attribute list along with 
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oihcr fcaturcs. Whilc tlic conticclivity rclatioii is basctl on position and scalc, this information is not cxplicitly 
ciicoticd in tlic conncctivity. 

A rcprcscnlation for a probabilistic modcl was prcscntcd, bascd 011 thc multiplc revolution dcscription. I n  
thc niodcl, thc attributcs of symbols arc rcplaccd by probabilily distributions. 'I'hc connccti-vity structurc of 
tlic modcl has rhc form of a trcc of trccs. In tlic implcmcntation dcscribcd hcrc, ~ h c  top laycr is n trcc with 2 
lcvcls and a largc branching filctor. All symbols arc cncodcd rclalivc to a "principal" sqmbol, givcn by thc 
lowest rcsolution I'cak Path. 'I'he "post dcpcndciit" i~ttributcs of all of the sccond ICVCI synlbols ilrc rclativc to 
tlic priticipal symbol. At thc second Icvcl. cnch top lcvcl symbol is Llie root of a strict trcc striicturc of 
symbols. A t  this Icvcl, the tree may havc an arbitrary dcptli, but thc niaximum branching factor is 4. 

'I'hc conncctivity information in thc modcl and thc dcscription providcs a structure for controlling thc 
scarch for corrcspondcncc bctwecn modcl symbols and dcscription symbols. In  thc matching tcchniqiic 
prcscntcd hcrc, thc corrcspondcnccs bctwccn a modcl and a dcscription arc found first for the principal 
symbol, and this correspondcncc is uscd to dctcimirie a "posc" for furthcr matching. Corrcspondcncc arc 
then found for thc symbols at the top Icvcl. and finally for thc trcc undcr cach top lcvcl symbols. 

If the correct "principal" Pcak Path does not occur in the description, then this matching algorithm fails. 
This wcakncss can be avoided by structuring thc top layer as a graph. However, this introduccs a much more 
difficult control problcm for the scarch for corrcspondcncc. Indccd, one of thc intcrcsting aspccts of this 
rcprcsentation is that the hicrarchical structurc greatly simplifics thc correspondcncc matching proccss. 
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