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Abstract

This paper describes a new approach to the intcgration and control of continuously operating visual processes.
Visual processes are expressed as transformations which map signals from virtual sensors into commands for devices.
These transformations define reactive processes which tightly couple perception and action. Such transformations
may be used to control robotic devices, including fixation of an active binocular head, as well as the to sclect and
control the processes which interpret visual data.

This method takes inspiration from so-called “behavioural” approaches to mobility and manipulation. However,
unlike most previous work, we define reactive transformations at the level of virtual sensors and device controllers.
This permits a system to integrate a large number of perceptual processes and to dynamically compose sequences of
such processes to perform visual tasks. The transition between visual processes is mediated by signals from a
supervisory controller as well as signals obtained from perception. This method offers the possibility of constructing
vision systems with large numbers of visual abilities in a manner which is both scalable and learnable.

After a review of related work in mobility and manipulation, we adapt the reactive process framework to
computer vision. We define reactive visual processes which map information from virtual sensors to device
commands. We discuss the selection and control of reactive visual processes to accomplish visual tasks. We then
iltustrate this approach with a system which detects and fixates on different classes of moving objects.

1. Introduction by experiments and replaced by techniques which
stress low computational-complexity and robust-
As available computing power has increased, it ness. These advances have brought us to a new
has become possible to build and experiment with aspect of computer vision: the integration of a
vision systems that operate continuously. One large number of visual processes into a single
result has been a rapid advance in the robustness system, and the control of attention and process-
and sophistication of vision techniques, as com- ing within such a system.
plex and fragile techniques have been discredited The framework developed in this paper is the

result of several years of experiments in the inte-

gration and control of continuously operating in-
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and their control procedures. This early approach

proved rigid and difficult to adapt to new tasks.

By reformulating our system using the approach

described in this paper we have obtained a sys-

tem in which:

(1) 1t is possible to formally prove properties
about compositions of perceptual processes
[24].

(2) Perceptual processes may be learned using
connectionist approaches to function approxi-
mation (such as Back-propagation [4], ART
[8], radial basis functions), or defined using
techniques from signal processing (such Ga-
bor filters or Correlation).

(3) Compositions of perceptual processes may be
automatically formed using techniques such
as reinforcement learning [27,9,19], or deter-
mined using rule based planning techniques.

This approach is inspired by an approach to

mobile robotics often referred to as “Behaviou-

ral” [5]. The notion of a reactive behaviour has
been shown to provide a compact and general
formalism for such tasks as grasping and haptic

exploration [26], autonomous vehicle driving [23],

and navigation [11].

Criticisms of this “behavioural” approach to
robotics contend that

(1) Inhibition based control regimes, such as sub-
sumption [5], are inadequate for constructing
complex systems,

(2) Perception without intermediate representa-
tions are subject to an exponential explosion
in computational cost.

(3) The concept of “goal” is fundamental to sys-
tems which must perform useful tasks in a
changing environment.

Qur experience confirms these criticisms. How-

ever, reactive transformations may be used with

control regimes other than subsumption. Indeed

a number of researchers are beginning to look at

the use of other forms of composition of primitive

reactive transformations [22]. Furthermore, this
approach opens the possibility of techniques for

learning compositions of robot behaviours [27]

through such techniques as reinforcement learn-

ing. With regard to the second criticism, it is
possible to base the perceptual space on func-
tions computed from internal representations of

the world. Such an approach permits the com-
plexity reduction benefits of intermediate repre-
sentations [28). Furthermore, goals may be in-
cluded as intermediate representation.

The framework we propose is related to the
work of KoSecka and Bajcsy {20] on the use of
state transition networks formalised as a Discrete
Event Dynamics Systems (DEDS) notation {24].
In their approach, composite reactive transforma-
tions are hand crafted and expressed in a formal
tool in order to prove properties about such com-
positions. We have approached the problem from
a viewpoint of obtaining a framework in which
the composition of transformations can be con-
trolled by a rule-based planning system. Further-
more, we believe that this approach opens the
possibility of acquiring both visual processes and
their composition using connectionist approaches
to machine learning.

A crucial problem in a continuously operating
vision system is dealing with the very large quan-
tity of ambiguous and noisy data provided by
cameras. An often overlooked property of the
human visual system 1s that the perceptual pro-
cesses are serial and highly restrictive about what
data is processed at each instant. The human
visual system can be seen as a pipeline of filters
for eliminating unnecessary information. Even
before the visual data arrives at the retina, it is
restricted to a narrow depth of field by the optics
of the eye. The region of the world perceived is
even more severely filtered by simple processes
which restrict attention to the horopter (those
parts of the world which project to the same
location in the stereo retinas). The horopter is
moved dynamically around the scene by saccadic
movements of the eyes, limiting the perception at
each instant to a narrow slice of the world. The
primary role of binocular vision thus seems to be
separation of figure and ground, and not 3D
reconstruction. Active vision systems take inspira-
tion from this “filtering” principle to limit the
amount of data which must be attended to in
order to provide a response within a fixed delay.

Active vision may be defined as “Control of
cameras and control of processing to aid the
observation of the world”. A number of re-
searchers have provided striking demonstrations
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of systems which perform simple visual tasks in
real time using this principle [2,3,6,17,21,22].
However, in each case the system was limited to
demonstrating the advantages which active con-
trol brought to a particular visual process. Little
has been done on the problem of extending an
active approach to all levels of the vision system
and adapting such an approach in a system com-
posed of a large number of visual behaviours.
This paper presents a framework for such inte-
gration and control based on reactive transforma-
tions.

2. Reactive visual process

In order to place our framework on a solid
foundation, this section presents definitions of
reactive visual processes and their components.
These definitions are then used in Section 3 to
develop a framework for integration and control
of visual processes. Examples of these concepts
are presented in Section 4.

2.1. Perceptual spaces

Perceptual systems make observations of the
external world through perceptual organs or
“transducers”. We define a transducer as an or-
gan which provides a digitized measure of some
property of the world from a region of space
during an interval of time. The result is a digital
signal which may be a scalar, a vector, an image,
or even a vector of images. This measured prop-
erty partially reflects the “state” of the external
world. For example, the composition of the lenses,
retina, camera electronics and digitizer which
provide images to a machine vision system consti-
tutes a transducer. The resulting signal has as
many dimensions as pixels in the image.

Brooks has argued [5] that robotic systems can
be composed of reactive behaviours which map
directly from transducers to actuators. While such
an approach is possible, it does not scale well to
non-trivial processes. In order to go beyond the
purely reactive behaviours of insect-like systems,
it is necessary to reduce computational complex-
ity by introducing intermediate processing. This

intermediate processing may involve fusing sig-
nals acquired at different times to construct an
intermediate description (or estimate) of the state
of the external world (a local model). Such an
intermediate description can provide input for a
large number of visual processes with a minimum
of computations.

Let us define an intermediate representation as
a collection of properties, R,(f). Among the in-
termediate representations, we include such
things as the current systems goals and informa-
tion from long-term memory. This provides a way
to include the system goals within a reactive
visual process. We define a virtual sensor to be a
digitized time sampled function, S,(t), which is
computed on a subset of the set of transducers
T(t) and intermediate representations R(¢). Ex-
amples of virtual sensors include a bank of
space-time Gabor filters applied to an image se-
quence [29], perceptual grouping procedures ap-
plied to a gradient image, and the current goal
for a mobile robot expressed as a position relative
to the robot.

A perceptual space is a vector space defined by
a set of virtual sensors. Thus a perception, P,(t),
is a vector in a perceptual space.

P(t) = {8y(2), Sx(1),..., S.(1)}-

An important role of virtual sensors is to reduce
the number of dimensions required for a percep-
tual space.

A perceptual signal is a signal which is created
when a perception occurs within a predefined
region of a perceptual space. Perceptual signals
are used to signal a change in state within a visual
process. This change in state may be planned
(such as finding a landmark object) or unexpected
(an avoidance reflex triggered by motion).

2.2. Action spaces

A symmetry exists between perception and ac-
tion. Each of the concepts defined above for
perception has a counterpart in action. The coun-
terpart of a transducer is an actuator. An actua-
tor applies a change to the state of the external
world. An actuator interprets a command, A (1),
which we will define to be a time sampled, digi-
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tized signal. Thus we group the motor controller,
power amplifier, motor and mechanical system
together as an actuator. A command may be a
scalar, a vector, or have any number of dimen-
sions. Most actuators interpret velocity or posi-
tion commands specified as scalar quantized val-
ues.

Each actuator operates in its own coordinate
space. It is often preferable to specify actions in
coordinates which relate to the device or to the
external world. We define a device controller as
an interpreter which transforms commands from
a “virtual” device to the real actuators. A device
controller interprets a time sampled digitized sig-
nal, D(¢). A parameter may be a scalar or a
vector and provides a reference signal for the
device controller. A common example of a device
controller is the Cartesian arm controller which is
standard for most robot manipulators. Other ex-
amples include a vehicle controller for a robotic
vehicle [16] and a Cartesian head controller for a
binocular head [14].

A composition of parameters for device con-
trollers and /or actuators forms an action space
{4]. A command is a vector of parameters in an
action space.

C(1) = (Dy(1) ... D,(1)).

2.3. Behaviors: From perception to action

Using the above definitions, the behavior of a
reactive process is defined as a transformation
from a perceptual space to an action space.

Reactive Process: C(t) « B,(P.(1)).

A large variety of techniques exist for defining
such transformations. The classical approach is to
use a PID controller. A modern control theory
approach involves applying a controller based on
a Kalman filter, lattice filter, of alpha-beta
tracker. The use of fuzzy control is rapidly gain-
ing popularity [25]. A large number of systems
have recently been built using various artificial
neural network approaches such as ART [8] and
back propagation [23]. By defining reactive visual
processes using virtual sensors, it becomes possi-
ble for such processes to exploit local models of

the environment. Thus it is possible to take ad-
vantage of the reduction in complexity made pos-
sible by clever use of intermediate representa-
tions.

2.4. Predictions: From action to perception

In order to select the appropriate action, it is
useful for a supervisory system to be able to
predict the effect that an action will have on the
external world. Since the system cannot directly
know the world state, it must perceive it through
its transducers and virtual sensors. Thus predict-
ing the effect of an action is equivalent to predict-
ing the change in a perception from an action.
We define a prediction as a transformation from
an action space to perceptual space.

P(1 +AT) « B(C(1)).

As with a reactive visual process, a prediction
may be defined by any number of techniques.

3. Selection and control of visual processes

The subsumption architecture 5] posits the
use of a simple hierarchy of processes using inhi-
bition as a control mechanism. Such a mechanism
assumes that the tasks of the system do not
change. Efforts to construct such systems with
more than a few “behaviours” soon leads to
problems of which process should inhibit which
and when. As an alternative, we propose to con-
struct systems with a large repertoire of possible
reactive visual processes (or behaviours or modes
or controllers) and to use a supervisory controller
to select the appropriate process based on cur-
rent circumstances and goals.

3.1. Supervisory control of reactive processes

The supervisory controller and its relation to
the repertoire of visual processes is illustrated in
Fig. 1. This figure shows a set of possible pro-
cesses (B, through Bg) set up to receive their
perceptual data from a set of virtual sensors and
to produce commands for a set of device con-
trollers. The currently active processes (shown as
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Supervisor

Virtual
Sensors

Device

R 9‘-@— Controllers

Fig. 1. A Supervisory controller selects and controls the se-
quencing of perceptual processes (shown as B for Behaviours).
Multiple processes can be active at the same time. Arrows
indicate flow of data, dashed lines indicate control, the high-
lighted ellipses are currently active.

dark ellipses) are selected by the supervisory con-
troller based on perceptual signals and current
goals. Any conflicts in the commands issued by
the processes are resolved by the device con-
trollers.

A number of techniques are available to or-
ganise the supervisory controller. The most natu-
ral of these appears to be to organise the pro-
cesses as a network of states, where each state
corresponds to a set of reactive processes with
associated control parameters. For each state, a
set of possible next states can be selected based
on both the current goals (or sub-goals) and on
perceptual signals. Multiple states can be active
at the same time, and transitions to states can be
conditioned on unexpected events, such as detec-
tion of an impending collision, or the presence of
a human master.

A state network approach provides a number
of advantages.
® Networks can be abstracted by collapsing sub-

networks into “super-states” to form a more

abstract network. In this way, a system can
reason hierarchically about its actions, reduc-
ing complexity.

® The same visual process (or sets of visual pro-
cesses) with different parameters can be repre-
sented by different states.

® Formal methods exist to prove properties about
such state transition networks.

Such an approach also makes it possible for plan-

ning techniques to be used in the design of state
transitions networks, and provides an approach
for control of plan execution. In this way, a
mission may be specified as a sequence of tasks
to be accomplished [12}. Each task can be trans-
lated into sub-goals expressed in terms of desired
world state. The system can then select a se-
quence of reactive processes which may be ap-
plied at the current world state to transform the
world to the desired state.

This approach also opens new problems. One
such problem is the transition between reactive
processes. It is relatively easy to construct pairs of
reactive processes which drive the system back
and forth between a transition and thus generate
an oscillation. Even when there is no oscillation,
care must be taken at the transition between
reactive processes to avoid [18].

3.2. Selection and sequencing by signals

The supervisory control problem for reactive
processes can be expressed as selection and se-
quencing. Selection is the process of determining
which reactive processes can next be executed.
Sequencing determines when to make the transi-
tion to the next process. From the point of view
of the reactive process, both selection and se-
quencing are controlled by signals. A signal trig-
gers a change of reactive process. The value of
the signal serves to select the next process, while
the time of arrival of the signal serves to deter-
mine when the transition occurs.

We distinguish two kinds of signals: command
signals and perceptual signals. Command signals
flow from the supervisory controller to the reac-
tive processes. These may be divided into two
sub-classes: unconditional commands and condi-
tional commands. An unconditional command or-
ders an immediate transition to the new reactive
process. A conditional command enables a transi-
tion to a new reactive process at the reception of
an appropriate perceptual signal. In this way the
delay in communication between the supervisor
and the reactive controller can be avoided in the
actual transition. A set of conditional commands
can enable a set of possible reflex-level reactions
to uncontrollable events. The state transition,
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whether conditional or unconditional, should be
accompanied by an acknowledgement to the su-
pervisor.

Perceptual signals are generated by a form of
reactive process and are used to change the cur-
rent set of reactive processes. Perceptual signals
can be used to trigger the transition of reactive
processes from external events with a minimum
of delay. They can also be used as watch-dogs
which enable the system to quickly react to un-
controllable events.

4. Example: A system for detection, fixation and
tracking

To illustrate our approach, we describe a mini-
mal system designed as a composition of four
reactive visual processes for detection, fixation
and tracking. This example illustrates how a sys-
tem composed of reactive visual processes can be
designed to attend to dynamic events, including
events which occur unexpectedly.

4.1. Attending to motion and while watching for
faces

The state transition network which describes
the demonstration is shown in Fig. 2. The basic
task of our demonstration is to watch for motion,
and when motion is detected, to maintain a 3D
fixation on the thing that moved. In its initial
state, the system is looking for motion within the
binocular visual field. If motion is detected by
either camera, the system attempts to fixate the

Motion Face
Detection Fixation
M.D. F.L.

N.M. l F.D.

Correlation
Tracking

Fixate
on motion

Fig. 2. The state transition network for the demonstration.

center of gravity of the motion using both cam-
eras. Such fixation is servoed in 2D but provides
an estimate of the fixation point in 3D head
centered coordinates. When a region of motion is
centered in both visual fields, the system switches
to a mode in which a correlation tracker is used
to hold the 3D fixation point on the object which
is found in the center of the image. If fixation on
the object is broken, the system reverts to the
motion detection state. A face detection process
operates in parallel with these processes. If a face
is detected in either visual field, the system
switches its fixation to the face. If the face corre-
lation is lost, the system reverts to correlation
tracking on the “form” found where the face was
present (usually the human’s head). In this way, a
person can turn his back to the robot and walk
away and the robot will follow.

4.2. Implementation in the SAVA [II test-bed

This example uses the SAVA III distributed
vision test-bed [15]. SAVA III provides an infras-
tructure for experiments in continuously operat-
ing vision. The SAVA system is composed of a
number of individual modules connected by a
message passing facility composed of a number of
individual modules connected by a message pass-
ing facility implemented using sockets. Each
SAVA module is constructed within an inter-
preter (CLIPS 5.1) which provides a lisp-like syn-
tax for functions, rules and objects. This inter-
preter acts as a scheduler, a message interpreter
and an interpreter for rule-based ‘“demons”.

Each module contains a collection of proce-
dures which concern a data structure. A small set
of rules provide a scheduler which calls the se-
lected procedures in a cyclic manner. Because the
scheduler is interpreted, the set of procedures
and their parameters can be changed dynami-
cally. Between each procedure call, the inter-
preter reads and interprets any messages recieved
from the other modules. Such messages are typi-
cally used to interrogate local data structures, or
to define the processing within a module. The
SAVA modules send and receive messages en-
coded as ASCII strings using a mail box facility.
The first word of each message is a function
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which is interpreted by the CLIPS interpreter
using lisp-like “eval” function. The “build” com-
mand in CLIPS makes it possible to define a new
message type with a message from another mod-
ule. Using an interpreter for control and commu-
nications between modules has greatly acceler-
ated experiments in control of perception,

The robotics part of the SAVA III system
includes a binocular head mounted on a 6-axis
manipulator, itself mounted on a mobile platform
[13]). An image acquisition and processing module
uses special purpose hardware to acquire syn-
chronised stereo images and compute a half-oc-
tave binomial pyramid [10]. SAVA 11l provides
independent modules as distributed processes for
fixation control, navigation, image acquisition and
processing, image description, 3D modeling, and
system supervision. This particular demonstration
uses only a subset of the available SAVA 111
modules. The system has been able to exploit
cxisting capabilities for 3D fixation, for redun-
dant control of the head and vehicle, and for
reflex level control of focus, aperture and ver-
gence.

Fig. 3 shows the configuration of modules
which are used for this demonstration. Two syn-
chronised stereo cameras are connected to a
module for image acquisition and processing. This
module responds to requests from the system

Supervisor

Image Acquisition
and Processing

Lo Vehicle
! Navigation l‘ v Controller

—e  High Bandwidih Data

Camera
Controller

XO QT ==

Synch

M 185
d

/A Radio Modem

Fig. 3. Configuration of demonstration system within he
SAVA I vision test-bed.

supervisor and from the fixation control module.
The fixation control module contains state vari-
ables for the current 3D fixation point, and for
2D fixation points for each camera. Messages
from the supervisor set the desired value for
these fixations. Fixation control interprets the
fixation command to generate commands 1o the
10-degrec of freedom head-body system. If main-
taining fixation requires movement by the vehicle,
fixation control can send messages to the naviga-
tion system to perform the necessary movements.
A synchronization module provides a global time
reference so that all data and commands can be
time-stamped. This time stamp is used to produce
timing diagrams to illustrate the execution speeds
of the modules as their processes change.

4.3. Vocahulary of visual processes

The wvisual processes which make up  this
demonstration include motion detection, fixation,
face detection and tracking. Each of these pro-
cesses depends on an image processing procedure
executed by the image acquisisition and process-
ing module, and commanded by the fixation mod-
ule. For cach process we identify the virtual sen-
sors and the device level commands that are
generated, and describe the transformation from
perceptual space to action space,

Motion detection

The motion detection process is based on the
energy in a temporal derivative of the images.
The process relies on virtual sensor values:

Virtual sensors:

M: The sum of squared difference of succes-
sive images

C,, C,: The bary-center of squared difference im-
age.

The action space for this process is composed
of the pan and tilt directions for camera:
Action space.
a, ¢: Pan and tilt angle to bring bary-center of
motion to the center of image.

The motion detection process is implemented
as a sum of squared difference of successive
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images followed by a calculation of the bary-
center of local energy. The input images are
selected from one of the levels of a binomial
pyramid [10]. The pyramid gives an important
reduction in communication and computation. An
resampled image size of 64 X 64, correponding to
smoothing by a binomial filter (¢ = 4) is used for
the experiments described below. A difference
image is computed from the previous image and
then squared. If the sum of the squared differ-
ence is below a threshold, the process signals no
motion. Otherwise, the barycenter is computed
for the squared difference image. The row and
column values of the barycenter, and the sum of
squared difference constitute the virtual sensor
for this first reactive behaviour.

The pan and tilt values are specified to the
fixation controller. The fixation controller uses
the sum of the pan angles to set the head orienta-
tion ¢, and the difference to set the vergence
angles of the cameras. When the head orientation
reaches a limit, the system uses other axes, and
the vehicle to turn the head towards the fixation
point [14]. Fig. 4 shows examples of images, the
difference image, and the detected barycenter.

Fixation on motion

The motion fixation process operates by nor-
malized correlation of a small template, typically
8 by 8 or 16 by 16. The template is registered at
the barycenter of an image when motion is de-
tected. The template is correlated with both the
right and left images to indicate the pan and tilt
angle for the left and right cameras. The area of
the window over which the correlation is per-
formed is large so that the moving pattern can be

|
|

found in both cameras so that stereo convergence
can be established. The virtual sensors are thus
the position in each image at which the best
normalized correlation is found and the normal-
ized correlation (sum of squared difference) val-
ues.

Virtual sensors:

D,, D,: Best normalized correlation scores for

left and right images.

Image position of best correlation score

in right image.

x|, y;: Image position of best correlation score
in left image.

The action space is the pan and tilt angle
required to bring the best correlation positions to
the center of the left and right images.

Action space:

@, ¢,: Pan and tilt angle to bring correlation to
center of right image.

a,, ¢,: Pan and tilt angle to bring correlation to
center of left image.

Conversion of the pan and tilt angles to a 3D
fixation point is performed by the fixation control
module.

Xy Vit

Tracking fixation

Once the form is centered in both images, it is
possible to reduce the search region, resulting in
a gain in processing speed. The system moves to a
tracking behaviour in which the virtual sensors
are of the same nature as motion fixation, except
that the search region is much smaller and at
higher resolution. We have recently begun experi-
ments in which the search region is a parameter
of the delay since the last cycle of fixation.

Fig. 4. Motion detection. Two images and the difference with the previous image. The cross indicates the baryeenter where motion

was detected
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Face detection

Face detection is a back-ground signal detec-
tion process, programmed as a demon. Face de-
tection operates by normalized correlation of a
small (16 by 16) average face image with several
levels of the Gaussian pyramid. The average face
image has been formed by acquiring a number of
face images of laboratory members with a neutral
background, normalising their position and orien-
tation, and then computing an average image.
Detection of a face constitutes a perceptual sig-
nal which moves the system to the face fixation
process. In face fixation, the virtual sensors are
the row and column positions of the best correla-
tion of the average face in the left and right
images, and the sum of squared difference be-
tween the face window and each image at this
best correlation value.

Virtual sensors:

Dy, Dg: Best normalized correlation scores for
left and right images.

Xq, Yo Image position of best correlation score

in right image.

Image position of best correlation score

in left image.

The action space is the pan and tilt angle
required to bring the face position to the center
of each image.

Action space:
a, ¢ Pan and tilt angle to bring face to center of
image.

Xey Yar

The set of perceptual signals and their defini-
tions are as follows:

F.D. The face detection signal is given by a
threshold on normalized correlation (SSD)
with the average face.

M.D. Motion detected is signaled by the sum of
the squared temporal difference greater
than a threshold.

M.F. The motion fixated signal is triggered when
the motion field is within 16 pixels of the
center of both images.

F.L. A face lost signal is detected when the best
normalized correlation (sum of squared dif-
ferences) of the average face with both im-
ages falls above a threshold.

600 ¢
400+

2004

0 ——
11121 31 41 51 61 71 81 91 101 111 121
Fig. 5. Timing diagram for image acquisistion and processing
from a typical tracking session. Vertical axis is milliseconds.
Horizontal axis is cycle number.

N.M. The no motion signal is triggered when the
tracked window has not moved by more
than n pixels in last m images

M.L. A motion lost signal occurs in motion fixa-
tion if the motion signal (sum of squared
temporal difference) falls above a thresh-
old.

4.4. Systems execution

Timing diagrams have proven to be a useful
tool for debugging visual behaviours. Each mod-
ule contains a synchronised clock. At the start of
each cycle, the module retrieves the time that has
elapsed since the start of the last cycle. This value
is appended to a list which is output to a file at
the end of execution.

Fig. 5 illustrates timing in the image acquisi-
tion and processing module during a typical
tracking session using 64 by 64 images. The verti-
cal axis is cycle time measured in milliseconds,
while the horizontal axis is the cycle number. The
motion detection demon is invoked near cycle
number 17, causing the cycle time to rise from
200 ms to 360 ms. At cycle number 101, the
demon detected motion and sent a signal to en-
gage the fixation process. During fixation, the
cycle times oscillate between 500 ms and 200 ms.
The 500 ms cycle occurs when a command has
been received to compute correlation with the
template in both images. A 200 ms cycle occurs
when no command is received, and only image
acquisision and pyramid computatio are per-
formed. At cycle 111, fixation is achieved and the
tracking demon is invoked. During tracking the
module requires around 400 ms to determine the
correlation. At cycle number 276, tracking was
lost, and the motion detection demon resumed
operation.
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5. Conclusions

Vision systems which cannot dynamically con-
trol acquisition and processing are limited to a
small number of tasks in a fixed environment. In
order to integrate more than a few visual be-
haviours, an approach is required which permits
data and processing to be dynamically selected in
response to system goals and external events.
This paper presents such an approach based on
the concept of reactive vision processes.

The use of reactive processes for robotics has
generally been restricted to transformations from
sensor signals to motor commands. In order to
overcome limitations imposed by the complexity
of perception we define the reactive transforma-
tion on virtual sensors which may include local
modeling systems, long-term memory and even
system goals. Commands are generated to device
level controllers which integrate such commands
with proprioceptive signals, and resolve contra-
dictory commands. Formulating a continuously
operating vision system in terms of such reactive
processes permits the system to be scalable and
to adapt to a changing and unpredictable envi-
ronment.

This new approach to vision systems opens
new problems, including techniques for:
® Analysing the stability of compositions of reac-

tive transformations.
® Learning reactive controllers and prediction

functions for reactive processes.
® Learning to detect perceptual signals which are
relevant to control.
® Learning the composition of visual processes to
form perceptual “skills”.
The tight coupling of vision and action and the
introduction of learnable techniques may provide
the keys to bringing computer vision out of the
laboratory and into every-day use.
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