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Navigation for an  Intelligent Mobile Robot 

Abstract-A navigation system is described for a mobile  robot 
equipped  with  a rotating ultrasonic  range sensor.  This  navigation system 
is based on a  dynamically  maintained  model of the local environment, 
called  the Composite  local model. The  composite  local model  integrates 
information  from the  rotating  range sensor, the robot’s  touch  sensor,  and 
a  pre-learned global model as the  robot moves through its environment. 
Techniques  are  described for constructing  a line segment  description of 
the  most recent sensor  scan (the sensor model), and for integrating  such 
descriptions to build  up  a model  of the  immediate  environment  (the 
composite local model). The  estimated position  of the  robot is corrected 
by  the difference  in  position between  observed  sensor  signals  and  the 
corresponding symbols in the  composite  local  model. A learning  tech- 
nique is described in which the  robot  develops a global model  and  a 
network of places. The  network of places is used in global  path  planning, 
while the segments are  recalled from  the  global model to assist in  local 
path execution.  This system is  useful  for navigation in a finite, pre- 
learned domain such as a house,  office, or factory. 

I. INTRODUCTION 

HIS work describes a  system for autonomous  navigation 
T b y  an intelligent mobile  robot  in  a  known  domain.  This 
system is based  on  maintaining  a description of the external 
environment  of the robot  using  a  focused rotating ultrasonic 
ranging device. The system is designed to provide  autonomous 
navigation by  an intelligent mobile robot in  a  previously 
learned floorplan. 

The techniques  described are part of  an effort to develop  a 
low-cost intelligent  mobile platform (IMP). By the term 
“intelligent” we mean that the system is designed to plan  and 
execute tasks based  on  a  model  of the current state of the 
external world. The  IMP is designed to respond to commands 
of the form “go to (place)” where  (place)  is  a pre-learned 
location in  a  network  of  “learned places. ” The IMP is able to 
use its network  of places to plan  a  path to (place). It is then 
able to use its sensing, modeling,  and  navigation abilities to 
execute this plan  and to modify the plan  dynamically  in 
reaction to unexpected events. The IMP is to serve as a 
foundation for mobile  household, business, and factory robots 
which require intelligent navigation. 

This first section introduces the problems of world  model- 
ing, position estimation, and  navigation  and  summarizes 
solutions for each  of these problems.  Techniques for dynamic 
world  modeling,  path planning, learning, position estimation, 
and navigation are then described. 
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A .  Navigation and Dynamic World  Modeling:  The 
Problem 

The task of a navigation system is to plan  a  path to a 
specified goal and to execute this plan, modifying it as 
necessary to avoid  unexpected obstacles. The  path  planning 
problem  can  be  divided into global path  planning  and local 
obstacle avoidance.  Global  path  planning requires a pre- 
learned model  of the domain  which  may be a  somewhat 
simplified description of the real world  and  might  not reflect 
recent  changes  in the environment.  This global model  must 
provide the planning  algorithm  with  a  network  of  landmark 
points  which are connected  by  simple local movements. 

A local navigation system carries out the steps in the global 
plan, maintaining an estimate of the robot’s position with 
respect to the global model  and  planning local paths as needed 
to avoid  unexpected obstacles. Whereas global navigation may 
operate on  a pre-stored model, local navigation requires a 
model  that reflects the state of the evironment, including 
changes, as the plan  is  being executed. This is provided  by  the 
composite  local model. 

The  composite local model is built up  by integrating recent 
information  from different sensors, taken  from different 
positions.  When available, information  from  a pre-learned 
global  model is also integrated into the composite local 
model.  The construction and  maintenance  of  a  composite local 
model  involves: 

1) building an abstract description of the most recent sensor 
data (a sensor model); 

2) matching to determine the correspondence  between the 
most recent sensor models  and the current contents of the 
composite local model; 

3) modifying the components  of the composite local model 
and reinforcing and  decaying the confidences to reflect 
the results of  matching. 

Having the correspondence  between the sensor model  and the 
-composite local model also makes it possible to measure  and 
correct for errors in the estimated position and orientation of 
the robot due to wheel slippage. 

B. Summary of Solution 
In the system to be described, global path  planning  is  based 

on  a pre-learned network of places. The network of places is 
learned in a special “active learning mode”  in  which the robot 
explores its environment.  Automatic learning greatly simpli- 
fies the practical problem  of giving the system an accurate 
model  of the world.  Each place in the network is connected to 
a set of adjacent places by “legal highways.”  Global 
navigation is a  process  of  choosing  a set of legal highways  that 
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will carry the robot  from its current location to the specified 
goal. Traversing  each legal highway  and  planning paths to 
avoid  unexpected obstacles is the job of the local navigator. 
The  network  of places and its use  in  path  planning is described 
in Section VII. 

A legal highway consists of  a straight line path  which 
connects  two  landmark points. Local navigation is accom- 
plished by  a finite state process  which turns the IMP toward 
the next  landmark point and  keeps the IMP  on its path as it 
moves.  Each  path is tested for blocking obstacles using  both 
the raw  sensor data and the composite local model.  If  an 
obstacle is detected, a recursive obstacle avoidance  procedure 
plans a  new  sequence  of straight line paths to the next local 
goal. This recursive obstacle avoidance  procedure is based  on 
the current contents of the composite local model.  The local 
navigation process is described  in Section VIII. 

The  composite local model, the sensor model,  and the 
global model are represented in terms  of line segments in a 
two-dimensional (2-D) “floor-plan’’ world.  All three models 
are expressed in a  world-centered coordinate system so that 
they  can  be  matched invariant to the robot’s position. The line 
segments that compose the sensor  model are constructed using 
a variation of the recursive line splitting algorithm  which  is 
often used to find edges in images [ 5 ] .  This  process  is 
described in Section IV. 

The confidence  of line segments  in the composite local 
model  is represented by  a finite set of states. A relatively 
simple state transition mechanism is used to reinforce and 
decay the confidence  in line segments.  Segments  in the 
composite local model are  “grown” by an update  process  that 
extends the segments  whenever there is a partial overlap  with 
sensor  model  segments.  The  process  of incrementally match- 
ing and  updating  a  composite local model is described  in 
Section V. 

As the IMP travels it uses the mismatch  in position between 
the sonar model  and the composite local model to detect and 
correct errors in its estimated position. These techniques are 
described  in Section VI. 

When the IMP navigates autonomously, it recalls expected 
segments  from  a  prelearned global model into the composite 
local model. The global model,  which  provides the basis for 
the network  of places, is  learned  during  a special Learn 
Mode. In learn mode the IMP systematically learns the 
geometry  of  a finite domain  by  a  wall-following technique. 
Learn  mode is discussed in Section IX. 

C. Problem  Context 
A  photograph of the IMP  is shown in Fig. 1. At the top of 

the IMP is a rotating depth  sensor  which senses the distance to 
external surfaces with  a  beam  with  a starting diameter  of 
approximately 3 in  and  a beam spread  of  approximately 5 ” .  
The  sensor  is  mounted at a height of 30 in, which  is  about the 
level of  most tables. The  sensor is turned  by  a stepper motor in 
steps of 3 O . Approximately 10 s are required to obtain the 120 
depth  readings  given  by  a  complete revolution. With  each 
reading, the sensor returns the distance to the nearest surface 
within 25.6 ft  to a resolution of 0.10 ft. As the IMP travels, 
rotary position encoders  mounted  on its power  wheels are used 

Fig. 1 .  Experimental  prototype  intelligent  mobile  platform. 

to maintain an instantaneous estimate of the IMP’S  position  in 
a Cartesian coordinate system. 

The  world  modeling  and  navigation  procedures for the IMP 
were originally implemented  and refined using  an interactive 
mobile  robot simulation program.  These techniques have  been 
reimplemented on the IMP using the two  on-board  16-bit 
microprocessors. Similar techniques have recently been  imple- 
mented for a  mobile security robot  which  uses 24 ultrasonic 
ranging devices, arrayed in a ring, in place of  the rotating 
focussing horn. 

II. REVIEW OF PRIOR  TECHNIQUES 
A  number  of interesting research results have  been  obtained 

on  problems  that are relevant to mobile  robot  navigation.  A 
quick  review  of the salient systems  provides  a picture of the 
current state of the scientific art. 

A .  Find-Path 
Planning  a  path  based  on  a  model is a problem  that i s  

fundamental to intelligent control of robot arms  as well as 
mobile robots. Lozano-Pkrez  has  developed  a  formal version 
of the general path  planning  problem.  This formalization is 
referred to as the ‘ ‘find-path” problem [7]. In its most general 
form, the goal of find-path is to determine  a  continuous  path 
for an object from  an initial location to a  goal location without 
colliding with an obstacle. 

Lozano-Pkrez  provided  a  mathematical treatment of the 
find-path  problem  using  the  “configuration  space”  approach. 
The  idea is to find  those parts of free space  which  the  object at 
particular orientations may  occupy  without colliding with  an 
obstacle. Obstacles are “expanded” by the shape  of  an  object 
at  a  set  of orientations, while the object to be  moved is shrunk 
to a point. The shortest path for the object, including rotations, 
is  computed as the shortest connected  path  through  the 
expanded obstacles. 

The shortest path  through obstacles generally leads through 
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a sequence  of  points  that are adjacent to the  expanded 
obstacles. If there is position error in the control of the  path 
execution, such  points  can  possibly result in a collision. 
Brooks  has  recently  proposed a new approach to the  find-path 
problem  based on  modeling free space [2]. Brooks’ solution, 
developed  in a two-dimensional  plane,  involved  fitting  two- 
dimensional “generalized cylinders” to the  space  between 
obstacles to obtain  pathways  in  which  the  object may freely 
travel  on a plane. The technique  was  extended to the  third 
dimension by stacking  planes. 

B. The Stanford Cart and the C-MU Rover 

Moravec [8] developed a navigation  system  based  on 
sensory  signals  using  the  Stanford cart. This cart sensed  its 
environment  using a set of nine stereo images  obtained from a 
sliding camera. A set  of  candidate  points  were  obtained  in  each 
image  with  an “interest” operator. Small  local correlations 
were  then  made at multiple  resolutions  to arrive at a depth 
estimate for the points. The matched  points  were  plotted  on a 
two-dimensional grid and  then  expanded to a circle. A best 
path from the current location  to a goal  was  then  chosen  as  the 
shortest sequence of line segments  which  were  tangent to the 
circles. The  cart would  advance  by 3 ft and  then  repeat  the 
sensing  and  planning process. Stereo matching  was also 
performed  between the images  taken at different  steps to 
obtain  confirming  and  additional  depth  information. A new 
vehicle, called  the  C-MU  Rover [9], has  recently  been 
constructed by Moravec to support  these  techniques. 

C. Hilare 

A team under the direction of George  Giralt  at the LAAS 
laboratory  in  Toulouse  has  been  investigating the design  and 
control of  mobile  robots since 1977.  They  have  developed a 
mobile  robot  named Hilare. Chatila  developed a navigation 
system for Hilare that is based  on  dividing a pre-learned  floor 
plan into convex  regions [3]. Convex  regions  were  formed by 
connecting  nearest vertices to form areas called  C-Cells. 
Laumond,  at the LAAS in Toulouse, extended  this  idea by 
developing hierarchies of  C-Cells to represent  rooms  and parts 
of a known  domain [6]. 

D. Comment 

A few other efforts towards  developing  autonomous  mobile 
robots  have also been reported. In many  cases the efforts focus 
on  engineering  problems  and  pay little attention  to the issues of 
world  modeling or path  planning [lo]. Other groups have 
become  bogged  down on the  vision problem, often  spending 
their efforts on general solutions to the  problems of  low level 
vision. We believe  that  the  most  important  problems to be 
addressed now are sensor interpretation, navigation,  and 
system organization. Toward this end, we  have  developed a 
computational  paradigm for intelligent  robotic  systems.  This 
computational  paradigm  provides a framework for the proc- 
esses involved  in  sensor interpretation, path  planning,  and 
path  execution. 

Motion Commands 

Fig. 2. Framework  for  intelligent  navigation  system. 

III. THE COMPUTATIONAL FRAMEWORK 
A .  The Composite Local Model 

The navigation  system  of the IMP is  based  on  the 
computational framework shown  in Fig. 2. At the core of  this 
framework is a dynamic  model  of  the surface and  obstacles in 
the  immediate  environment  of the IMP called  the  composite 
local  model. “Local” refers to the fact  that  only  information 
in  the  local  environment  of the IMP is represented. “Compos- 
ite” refers to the fact  that  this  model is composed of 
information  obtained  over  time from multiple sensors and 
from many  views. 

The  composite  local  model  plays  two  fundamental  roles  in 
this  computational framework. 

1)  It is the structure in  which  potentially  conflicting 
information  from diverse sensors is integrated  with 
recently  observed  information  and  information  recalled 
from  long  term storage (the  Global  Model). 

2) It is the structure on  which  processes for local  path 
planning,  path execution, learning, object tracking, 
object recognition, and other “higher level” processes 
are based. 

Because  of the nature of the  navigation task and the sensors 
that are employed,  the  composite  local  model in the IMP is 
implemented  with a relatively  simple 2-D representation. The 
IMP models  the  world  and  plans  paths  in a 2-D “flat-land’ ’ 
universe.  Because  the  rotating  range  sensor  is  mounted  at a 
height of 30 in, the robot is able to  detect  and represent most  of 
the furniture that it encounters. Surfaces  and  obstacles are 
represented as connected  sequences of line segments.  Thus a 
table  and a wall  have the same structure; both  appear as a 
barrier with  an infinite (or unknown) extent in  vertical 
dimension. 

The composite  local  model  must  include  the  ability to 
represent  the  uncertainty of information. In this system, 
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confidence is represented by  a  set  of states. The line segments 
which  compose the composite local model include a “state” 
attribute which represents the  degree  of confidence. Consist- 
ent line segments are reinforced and  extended  while  inconsis- 
tent line segments are decayed  and eventually removed  from 
the model.  Representing uncertainty with states permits  easy 
implementation  of arbitrary rules for reinforcement  and decay. 
B. The  Sensor Models 

Sensors typically produce large amounts of information. 
Before the information  from a sensor  can  be integrated into the 
composite local model, surface information  must  be abstracted 
from it. The  sensor  model  may  be  viewed as a  form  of logical 
sensor which  provides the sensor information  in a standard 
form  which  may  be integrated into the composite local 
model. 

In the first version of the IMP, the sensors are a set  of 
contact sensors on  a skirt and the rotating sonar sensor. In each 
case, the sensor  model is an abstract description expressed as 
line segments  which represent surfaces in the real  world. 
C. Match and Update 

The  module labeled “match” determines  the  correspon- 
dence  between the line segments  which  compose  the sensor 
model  and  the line segments  which  compose the composite 
local model.  The  correspondence is then  used to determine 
errors in the estimated  position  and to update the position, 
length, and  confidence  of  the  segments  in the composite local 
model. Special procedures also exist for detecting and tracking 
moving objects. 

The  module labeled “update” integrates the information 
from the sensor models  with the current composite  local 
model.  This  module adjusts the position, size, connectivity, 
and  confidence  of the segments in the composite local model to 
reflect the results of  correspondence  matching.  This  update 
process also removes  segments for which the confidence  is 
low or for which the distance is too far. The  process  does  not 
remove  nearby surfaces which are not currently visible. 

IV.  CONSTRUCTING  AN  ABSTRACT  DESCIUPTIQN 
OF RANGE  DATA 

Depth readings from the rotating sonar are converted  into 
line segments  by a sequence of four steps. 

Project the reading to a Cartesian world coordinate 
system. 
Segment  measured  points into line segments by detecting 
“discontinuities” and  then  applying  a recursive line 
fitting process. 
Compute  the line equations of the points from  the  most 
reliable interior points. 
Recompute the segment  endpoints as the intersection 
points  with  neighboring line segments. 

These  processes are described  below. 
A .  Projection to Cartesian World Coordinates 

Depth  readings are obtained  from the rotating sonar  in 
cylindrical coordinates, i.e.,  as depth at a particular angle. As 
each  depth  reading is made, the current estimated position and 
orientation of the IMP is affixed to  it. This  permits the system 
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Fig. 3. Edges of sonar  beam  are  projected to world  coordinates. 

to project the  reading  into  a  world coordinate system at a later 
time, even  if the data were  taken  while the IMP was  moving. 

As  a  consequence  of the detection mechanism  in the sonar, 
the depth  reading refers to the depth to the nearest reflecting 
surface anywhere  in the sonar  beam’s circular footprint. When 
the beam reflects from a flat surface at a  non-perpendicular 
angle, the sonar returns the distance along the short edge of the 
beam.  Knowledge  of  this physical process is used  in interpret- 
ing the  sonar  depth readings. 

As  each  sonar  reading is obtained, it is converted  from 
robot-centered polar coordinates to a  world-centered Cartesian 
coordinate system. This  is  done  by projecting a line by  the 
specified depth at the specified angle, as illustrated in Fig. 3. If 
the readings are decreasing as the sonar rotates in a counter- 
clockwise turn, the angle  is adjusted to be the left edge  of the 
beam  by  adding the estimated  half  angle  of the sonar  beam.  If 
the  depth is increasing, the angle is adjusted to the right  by 
subtracting the estimated half angle. The difference in  depth 
between the adjacent readings to the right and to the left  is 
computed  and  affixed to the projected beam as a quality 
measure. 

B. Segmenting  the Points Into Line  Segments 
The points are first grouped into a  sequence  of  roughly  co- 

linear readings such  that the distance between  each adjacent 
pair of  points is less than a tolerance. This tolerance is  selected 
as a  compromise  between  the  maximum distance at which the 
depth readings can  be  taken  and  the  smallest  gap  between 
objects that the system  can detect. For a difference in 
orientation of a degrees  per reading, the minimum distance 
gap size Gmin is determined  by the desired maximum  range R 
by considering the difference of  beam  edges for a perpendicu- 
lar surface. Such  a  geometry gives the relationship 

G ~ n  > R Tan@) 

In our  system, cy = 3” and R = 25.6 ft, giving Gmin of 1.34 
ft. We  have  found  a  value  of Gmin of 1.5 ft to be satisfactory. 
Thus, the points are scanned to detect any  points  where  the 
distance between adjacent readings is greater than 6 ~ n .  Such 
points are called break  points or discontinuity points. Break 
points  mark the boundaries  of collections of  points  that are 
passed to a recursive line fitting procedure. 

Recursive line fitting has  been  used for years to fit lines to 
edge  points  in  images [ 5 ] .  The  algorithm is illustrated in Fig. 
4. A line equation  of the form 

A x + B y + C = O  

is computed  between  the  two  endpoints  in the collection of 



CROWLEY: NAVIGATION FOR AN INTELLIGENT ROBOT 

+ + 

+ 
/ 

/ 
’ ’+ 

+’+ + + 
+ ‘+r 

+, 
P 

Y- 

Fig. 4. Recursive  line  fitting. 

points.  If the coefficients A aid B are normalized so that  the 
sum  of  their  squares is  one, then  evaluating the line  equation at 
the  location  of a point (x, y)  gives  the  perpendicular  distance 
from the computed line equation. The  points  in  the  group 
between the endpoints are tested to detemine the point  where 
the perpendicular distance is largest. If this largest perpendicu- 
lar distance is below a tolerance, then the line is accepted  as 
representing the points. Otherwise, the collection  of  points is 
divided into two groups at  the  point  where  the  perpendicular 
distance  was largest.  The  line fitting  procedure is then 
evaluated recursively for each  of  these  two groups. The result 
is a collection  of line segments  which  represents  the collktion 
of points. 

C. Refining the Line Equation 

When a sonar  beam  measures  depth  near a corner, the depth 
measurement  is  often corrupted by reflections. Yet  these 
points  give the breakpoints which are used for recursive line 
fitting. Thus it is desirable to recalculate  the  equation of each 
line  segment  from interior points. 

In our early experiments, we observed  that  the  most  reliable 
sonar  points are those to either side of the measurement  which 
is perpendicular to the surface. The  perpendicular  measure- 
ment  may  be  detected as a smooth  minimum  in  the  depth 
readings. However, if a line equation is fit to points  that are 
too close to each other, the  equation is very  sensitive to small 
errors in position. To compromise  between  these  conflicting 
constraints, the difference in  depth  between  sonar  readings is 
used  as a quality  measure.  For  each point, a first difference 
operator (a discrete derivative) is computed  from the differ- 
ence in depth  of  the  point to the left and  to  the right. That is, if 
the  depth  readings are denoted by a sequence, D(k), then  the 
quality measure, Q(k) is given by 

Q(k) = ID(k- 1) - D(k + 1)l. 
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This quality  measure  has  an inverse sense-values  near  zero 
are  “good” quality, while larger magnitudes are “less good.” 

For each line segment, a scan is made for the depth  points 
which are furthest apart, and  have a quality  measure  below a 
threshold. For the sonar described above, a threshold differ- 
ence in depth of 112 ft was  found to work  well.  This  tolerance 
was  selected  based  on  geometric calculations which are 
beyond  the  scope  of this work.  If  two  such  points are found, 
then the line equation for the segment  is  recomputed  using 
these  two  points.  These new line equations  then  permit a 
readjustment of the vertex locations between  adjacent line 
segments. 

D. Adjusting the Vertex Locations 

Vertices  which are shared  between  two line segments are 
referred to as “connected” vertices. Although  sonar  beams 
are very  poor at measuring the position of corners, the  location 
of a corner can be determined  with  good  precision by 
computing  the  intersection  of  connected line segments. 

Whenever  the recursive line fitting  procedure  divides a 
group of points, the resulting  pair of line  segments  will share a 
common endpoint. In such a case,  the position of the shared 
vertex is computed from the  intersection  of the line  equations 
which express the two lines. This  has  been  found  experimen- 
tally to yield corner locations  whose  position  accuracy is close 
to the  depth  resolution  of the sonar ranging  device.  It is 
important to accurately  detect the locations of corners because 
these  points are used  to correct for  errors in  the  estimated 
position of  the IMP that arise due to wheel  slippage. 

The  result of this  sequence of operations is a list of line 
segments.  These  line  segments comprise the  sensor  model 
used to verify  that the IMP is not  about to collide with  an 
obstacle, to correct errors in the IMP’S  estimated position, and 
to update the composite  local  model. 

V. THE  COMPOSITE  LOCAL MODEL 

As previously  noted, the composite  local  model  is  at  the 
core of the  world  modeling  and  navigation  system.  Three 
functions  based on the composite  local  model  have  been  found 
to have  very  wide  utility  throughout the navigation  system. 
These functions-vrsrBLE, FREEPATH, and ComEsPoND-are de- 
scribed  as  follows. 

VISIBLE : 

FREEPATH: 

CORRESPOND: 

Is the point P visible from the location L? If 
not, what is the index of the nearest  compos- 
ite  local  model line segment  which  blocks it, 
and  what is the  location of the  intersection 
point  between  this line segment  point  and  the 
line segment from L to P? 
Is it  possible for the IMP to pass  from 
location L to location P? If not, what  is  the 
index of  the line segment  that  gives  the 
nearest  collision? FREEPATH is  implemented 
as a sequence of calls to VISIBLE along  parallel 
lines. 
What is the  index  of  the  line  segment  in  the 
composite local model  which corresponds to 
a given line segment? 
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A .  Representing the Composite Local Model 
The  composite local model is represented as a list of 

directed line segments.  Each line segment contains two 
vertices which are ordered  in a counterclockwise direction. 
Each vertex is labeled as concave,  convex, or disconnected. If 
the vertex is  shared  with  another line segment, a pointer is 
given to that line segment. To save  time  in calculations, the 
line equation  and the angle of  the vertex are also stored in the 
structure. 

In addition to the line segment information, each  segment 
also has a state and  a type. The state represents the confidence 
that the system  has  in the existence of  that  segment.  At  the 
current time, the state is represented by integers ranging  from 
1 (transient) to 5 (stable and connected). The  type  number 
represents the source of the segment.  There is a  precedence 
between  sources  of  segments to resolve the type  when a 
segment is given  by  more  than  one source. 

B. Matching the Sensor Model to the Composite Local 
Model 

The correspondence  between line segments  in the sensor 
model  and line segments  in the composite local model is 
needed to correct errors in the estimated position  and to update 
the composite local model.  Correspondence  matching is also 
used in introducing line segments into the composite local 
model  from the global model  and  from the contact sensor, for 
keeping track of the "current" line segment  during active 
learning, and for a variety of other spatial  reasoning functions. 

The  sensor  model  is  matched to the composite local model 
in  two stages. In the first stage, the best  correspondence  is 
found for each line segment  in  the  sensor  model by  making a 
call to the function CORRESPOND. This list is then  scanned to 
determine the sensor  model line that has  the  best  correspon- 
dence to each  segment  in the composite local model.  This 
second  correspondence list, from the composite local model to 
the sensor model, is then  used for updating the composite local 
model. 

C. The CORRESPOND Function 
The function CORRESPOND is a general purpose  function for 

determining  which line segment  in the composite local model 
has the best  correspondence  with a given line segment. A call 
to CORRESPOND is made for each  segment in the sensor model. 
The CORRESPOND function is organized as a sequence  of tests of 
increasing cost based  on  the attributes of orientation, position, 
and length. The correspondence  problem  is  made  very  simple 
by  assuming that the position and orientation of a segment are 
known within some tolerance. In the case of the sensor model, 
this assumption  is justified because the IMP has  kept track of 
its estimated position using  wheel  encoders as it moves.  The 
required error tolerance in the estimated position  can  be 
reliably estimated. 

The  sequence  of tests used  by the correspondence function 
are illustrated in Fig. 5. In this figure, LM denotes  composite 
local model,  while SM denotes the line segment for which 
correspondence is sought. For  a  given  segment SM the 
following tests are computed for each  segment LM in the 
composite local model.  If  a  segment LM fails any test, then the 

0 e SM Segment 
0 o LM Segment 

Difference in  Angle 

Perpendicular  Distance 
From Center  Point to Line 

Outside  Tolerance Box 

Fig. 5. Tests used in determining  correspondence. 

I -LM __d 1 -'' - No Correspondence 

Correspondence  Type 0 
1 I 

* - - p q - -  Correspondence  Type 1 

I z : ; T  Correspondence  Type 2 

"/,::=e. I Correspondence  Type 3 

Fig. 6 .  Correspondence types. 

process  advances to the next  segment  in the composite local 
model. 

Is the difference in  angle  between SM and LM less than  a 
tolerance (currently 15 ")? 
Is the perpendicular distance from the center of SM to 
the line equation  of LM less than  a distance tolerance 
(currently 2.0 ft)? 
Does SM pass  through a box  formed  around LM? This  is 
a  fattened  box,  formed  by  adding a tolerance (0.5 ft) to 
the largest x and y coordinates of the segment LM. 
There are five possible outcomes, illustrated in Fig. 6. 
These are 

no  overlap  (segment rejected), 
both  endpoints  of SM inside box  (correspondence 

both  endpoints of SM extend outside box (corre- 
spondence  type l),  
first endpoint  of SM extends outside of  box 
(correspondence  type 2), or 
second  endpoint  of SM extends outside of  box 
(correspondence  type 3). 

type O), 
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The  correspondence types are used to extend the 
composite local model  segment  during the update proc- 
ess . 

- Local   Model   Segment 

Sensor  Model  Segment - 
4) Is the segment  LM the longest found so far? 

The  correspondence function provides  both the index  of the 
corresponding  segment  and the type  of  correspondence. 

D. The Update Process 
The  update  process is the mechanism  by  which line 

segments  from the sensor  model, global model,  and contact Fig. 7.  Orientation  error given by average  difference  in  angle  between 
sensor enter and refine the composite local model.  During sensor model segments and  corresponding local model  segments. 
each sonar scan, segments  from the sensor  model are matched 
to  the current composite local model,  and the result of F. Updating  the  Vertex Positions and  Segment States 

The  main functions of the update  process are as follows. Unconnected vertices should be extended  when there is a 

1) Increase the confidence state of transient segments for 
which there  is a  corresponding  segment  in the sensor 
model. 

2) Decay the confidence of segments  that  should  be visible, 
but for which there is not  a  corresponding  segment  in the 
most recent sensor model. 

3) Add  newly  observed  sensor  model  segments  and seg- 
ments recalled from the global model to the composite 
local model. 

4) Refine the vertex position of  segments  which are 
“reinforced”  by the sensor  model. 

E. Marking  the  Visible  Segments in the Composite Local 
Model 

Segments  in the composite local model for which there is no 
correspondence are only  modified  under  two conditions. 

The segment  was  marked as visible during construction 

The nearest point on the line segment is more  than  a  given 

The second condition is a  simple  mechanism  by  which 
segments “fall off the end  of the world” as the IMP  moves 
away  from  them.  The actual distance is relatively unimportant 
as long as it is beyond the sonar  range  and the current area of 
local navigation. Of course, the larger this distance, the more 
“extra” segments the system  has to consider  on  each 
calculation. 

The first condition establishes a “visible horizon” for the 
IMP. As  each point is added to the Sensor  Model, the function 
VISIBLE is called, for a point at the direction of the beam  and  the 
range  of the sonar, to determine  which  segment  in  the 
composite local model  should  be visible. If  a  segment is found, 
the difference in angle  between the beam  and that segment is 
computed. If this difference in angle is not small ( c 15 ”) then 
that  composite local model  segment is marked as visible. 
Segments for which the angle  of incidence of the sonar  beam is 
very  small are not detected reliably by the sonar  and are thus 
not  marked as visible. 

of the sonar  model. 

distance from the IMP’s current position. 

correspondence  of types 1, 2, or 3. 

the position  of  an  unconnected vertex. 

connected. 

The position of  connected vertices has  precedence  over 

A  segment  is  more stable when  both its vertices are 

The actual rules for state updates are implemented as case 
statements based  on the current state and  then ’on the 
correspondence type. 

After the vertex positions and states of the segments  in the 
composite local model  have  been  updated,  segments  from the 
sensor  model for which there was  no  correspondence  in the 
composite local model are added to the composite local model 
in the lowest  confidence state (state 1). A relabeling process  is 
then  used to connect adjacent segments for which the vertices 
are very close. 

VI.  CORRECTING  THE  ESTIMATED  POSITION 

Local  path  execution  and learning and  updating the compos- 
ite local model all depend critically on  maintaining an accurate 
estimate of the IMP’s current position. An instantaneous 
estimate of the IMP’s position is maintained  from the rotary 
position encoders  on the IMP’s  wheels.  This estimated 
position is monitored  and corrected by  a  process  based  on 
comparing the sensor  model to the composite local model. 
Before the composite local model is updated  from the sensor 
model,  the  correspondence  between the sensor  model  and the 
composite local model is used to detect and correct any 
systematic error in the estimated position of the IMP. 

As  each  sensor  model line segment is obtained, the 
correspondence is found to the most likely line segment  in the 
composite local model.  The difference in  angle  between these 
segments is then  computed.  When  a  sensor  model  has  been 
constructed from  a  complete  scan  of the rotating depth sensor, 
the average error in  angle is computed.  This  average error is 
computed  from the difference in orientation between  Sensor 
Model  segments  and the corresponding  composite local model 
segments, as illustrated by Fig. 7. The  sensor  model  is  then 
rotated  around the position of the IMP by this average error in 
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- Local Model Segment 

Sensor  Model Segment - 

;1.1 
\ 

Fig. 8. Position error given by average  difference in  position  between 
connected  vertices  in sensor model  and corresponding connected vertices 
in the  local  model. 

angle, as illustrated by Fig. 8, and the average error is 
subtracted from the estimated orientation. 

Next, the average error in position is  computed  by 
computing the average x and y errors between  connected 
vertices in the rotated sensor model  and the corresponding 
vertices in the  composite local model.  This  average error in 
position is  then subtracted from the estimated position  and 
from the position of the line segments  in the sensor model.  The 
segments  in the composite local model are then  updated to 
include the results of  matching to the sensor model. 

VU.  GLOBAL  PATH  PLANNING  AND  NAVIGATION 
Global  path  planning is based  on the network  of places, 

whereas local path  planning  and  execution are based  on the 
information  in the composite local model.  The global path 
planning  process  uses the network of places to determine the 
shortest sequence  of straight line paths  that  will take the IMP 
to a specified goal point. Global paths are planned  based  on a 
network  of “Adit” points  which are connected by straight line 
paths. The  path is then  executed as a sequence  of straight line 
movements. 

A .  Navigation Modes 
There are three modes in which the IMP may travel. 

Learn Mode: Limited exploratory movements  in  an  unfa- 
miliar environment,  with the purpose  of learning the environ- 
ment. 

Manual Mode: User specified motion  executed  by local 
navigation. 

Automatic Mode: Autonomous  movement to a named 
goal point  in  response to a command  of the form “go  to 
(place) ’ ’ . 

Learn  mode  permits the IMP  to learn the global model  from 
which it constructs the network of places. Automatic  mode is 
designed to permit the IMP to execute  navigation tasks in the 
learned environment.  Manual  mode  is  a default mode  in  which 
the IMP may travel to a visible point  using  only local straight 
line navigation. 

B. The Network of Places  and  the Global Model 
The  learned  domain  of the IMP is represented in  two related 

data structures: the “global  model”  and the “network  of 
places.” The global model is the collection of line segments 
observed  by the composite local model  while  making a tour of 

ini 
Fig. 9. Global  model  produced for typical floor plan  used in simulator. 

I ti-, 
Fig. 10. Network of places  composed of adits  and  legal  highways.  Adits 

shown as boxes. 

the house  in learn mode.  The global model  permits the IMP  to 
recall the surfaces that it should  observe at any location in  the 
known  world.  An  example  of a global model constructed by 
the automatic learning process  running  on the simulator is 
shown  in Fig. 9. The  network  of  places  is the structure which 
serves as a  basis for global path planning. The  network  of 
places is obtained by dividing the free space  in the global 
model  into  convex regions. A  convex region has the property 
that  any  two points within the region may be  connected by a 
straight line that  remains entirely within the region. Thus a 
mobile  robot  may travel between  any  two  points  within a 
convex region by a single straight line motion.  An  example  of 
the convex regions for the global model  shown  in Fig. 9 is 
shown  in Fig. 10. 

Convex regions are constructed with an algorithm  which  is 
designed to maximize the area of the largest convex region [4]. 
A pair of  navigation  landmarks, called “adits” (an adit is the 
opposite of  an exit), are created for each cut that is  made to 
partition free space to create the convex regions. The adits are 
displaced to the sides of the cut so that the robot will  pass 
through the cut at a  roughly  perpendicular angle. This protects 
the robot from  grazing the edges  of  door  ways  and tight 
spaces. 

Convex regions are shrunk  by the diameter  of the robot to 



CROWLEY: NAVIGATION FOR AN INTELLIGENT ROBOT 39 

represent the free space  in  which  the  robot  may travel. The 
space  inside a doorway after shrinking forms a special  region 
called a “doorway region.” Doorway  regions are not  guaran- 
teed to be convex. Each  adit  is  connected to the  adit on the 
other side of the  doorway  and  to  all  other  adits  within its 
convex region, as  shown  in Fig. 10. In this figure, the  adits to 
the  convex  regions are illustrated with  boxes. 

The network of places is a three  level structure. At the  top 
level are a list of user-defined  “named places.” At the middle 
is a list of convex regions. Each  named  place  points to a 
convex region, and  each  convex  region  contains a list of 
named  places.  Each  convex  region also contains a list  of  adits. 
The  adits serve as  landmarks to global  path  planning  and 
execution. The convex  regions serve as “legal highways” for 
planning  paths to any  named  place. 

C. Global Path Planning 
A global  path is planned  as a sequence of adits  which  will 

take the robot from  its current convex  region to the convex 
region  which  contains a specified  goal  point. A command  of 
the form “go  to (place)” provides a pointer to a convex  region 
that  in turn provides a list of possible  goal adits. The adit 
closest to the named place is chosen  as a goal for path 
planning.  Knowledge  of  the current convex  region  gives a list 
of adits from which to start the path. The nearest  adit is 
selected  as a starting adit. The shortest path  through  the 
network  of adits is determined  using a version  of Dijkstra’s 
algorithm [ 11 which halts when a path to the  desired  goal  place 
has  been  found. If the start (or the  end) of this  path  leads 
through  two  adits  in the same region, the first (or last) adit is 
dropped from the path. Global  path  execution is then  reduced 
to a three step  process  in  which the IMP 1) moves to the first 
adit  in the path, 2) moves  from  each  adit  on the path to the 
next, and 3) then  moves  from  the last adit  to  the  goal  place. 

VIII. .LOCAL NAVIGATION 
A local straight line path is executed by a finite  state  process 

which  monitors  the  position of the robot to assure that  it 
remains on the desired straight line within a tolerance. This 
process also monitors the local  model to assure that no 
unexpected  obstacle  blocks  the path. A recursive obstacle 
avoidance algorithm is used to plan a path  around  unexpected 
obstacles. 

A .  Local Path Execution 
Straight line movement to a goal  point is monitored by a 

relatively  simple finite state process. The states of this  process 
are the set {HOLD, DECIDE, TURN, MOVE,  WAIT, BLOCKED). The 
state transition diagram for this  process is shown  in  Fig. 11. 
The  process  waits  in the HOLD state for a goal  from the global 
path  execution process. When a goal is received, the IMP 
enters the DECIDE state. In the DECIDE state it first tests the 
distance to the goal.  If  this  distance is less  than a tolerance, it 
returns to HOLD. If the distance is above  the tolerance, the 
difference in  angle  between the current heading  and the goal is 
tested. If  this  angle is above  the  minimum  resolution for 
turning, the IMP enters the TURN state; otherwise  it enters the 
MOVE S b b .  

Fig. 11. State  transition  diagram for local navigation. 

IMP Goal 

Fig. 12. Legal  highway  for  path execution. 

In the TURN state, the IMP turns toward the goal  point  until 
the difference between the estimated orientation and the 
direction to the goal  point falls below  the  minimum  turning 
resolution.  The IMP then enters the WAIT state to make a 
complete  sonar  scan  and  verify the current estimated  position. 
The  sonar  scan \results in  an  update  in  the  estimated  position 
and orientation, even if there is no change  in the estimated 
position or orientation. The call to the function  “Set- 
Estimated-Position”  signals the completion  of the scan  and 
causes a transition back to the DECIDE state. If the IMP is  not  at 
the goal, and is turned  toward the goal, control will  pass  from 

Upon  entering  the MOVE state, the IMP computes  the 
equation of the  line  (the  path  equation)  from the current 
location  to  the  goal point. A cyclic  process is then  initiated  in 
which  the  system  moves  forward  while  performing  the 
following tests as  rapidly  as  possible. 

1) Verify  that the distance to the  goal  point is decreasing. 
When  the  distance to the  goal  stops decreasing, the system 
returns  to HOLD to wait for the next goal. If the distance is ever 
increasing  and is larger than the goal tolerance, then  the 
system  will  go  into the WAIT state to take a clean  view of the 
world. 

2) Verify  that the perpendicular distance from the current 
estimated  position to the  path line segment is below a 
tolerance.  This  test is illustrated by Fig. 12. It is performed by 
evaluating  the  path  equation  using  the current estimated 
position,  yielding  the perpendicular distance to the  path 
equation. If this  distance  exceeds the tolerance, then  the IMP 
will  go to WAIT. 

3) Verify  that there is a free path to the goal. This is done 
by projecting parallel line segments  in the composite l o c a l  
model. If the path  becomes blocked, the  IMP will go into 
blocked  state  and  signal for local  path  planning to avoid  the 
obstacle. 

If the IMP  is in the MOVE or TURN States  and its contact 
sensor is triggered, it immediately  halts  and enters the BLOCKED 

state. Entering BLOCKED triggers the  local  path  planning 
procedures to plan a path  around  an obstacle. A low- 
confidence line segment is also placed into the  composite  local 
model to represent the obstacle. 

DECIDE t0 MOVE. 
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B. Local  Obstacle Avoidance 
The  purpose of local  obstacle  avoidance is to plan a 

sequence  of straight line paths  which  will take the IMP  around 
an  unexpected obstacle. A  very  simple recursive process  is 
used, based on the segments in the composite local model. 
This  process plans two paths, one to the left of the obstacle and 
one to the right. Tests are then  made to see if a free path exists 
in the composite local model  from this point to the goal  and 
from  this  point to the current position. If either path is 
blocked, the procedure is called recursively to see  if it is 
possible to get around  the  blockage. The recursion is  not 
continued  beyond three levels. 

IX. LEARNING THE GLOBAL  MODEL 
The global model  is learned by a process  which detects and 

follows segments  in  the  composite local model  using  a  set of 
pseudo-sensors  which  we  have  come to call “whiskers.” 
These  pseudo-sensors are implemented  in the composite local 
model  using the VISIBLE function. That is, a test  is  made to see 
if  any line segments  in the local model  block a pair of  points to 
the right of the IMP at a distance of 3 ft. 

Learning  begins by loading the current contents of the 
global model into the composite local model.  The  composite 
local model is then  searched for the nearest potential starting 
point. A potential starting point must  be  a point to the left of 
line segment  which  meets the following conditions. 

1) The line perpendicular to line equation  and  passing 
through the IMP’s position (and  the starting point) 
intersects with  the  composite local model line segment. 

2 )  The function FREEPATH to the starting point  from  the 
IMP’s  position  must return the value true. 

The IMP  moves directly to the nearest starting point  and 
then  begins tracking the wall. The IMP moves  in 2 foot steps, 
calculating each  move  based  on the current segment. After 
each  move  a  sonar  scan  is  made  and  then  the  composite local 
model is updated. 

There are two conditions which  can  cause  the  IMP  to stop 
tracking the current segment.  The first is  where a call  to 
FREEPATH detects a segment  blocking the next  goal point. In 
this case the blocking  segment  becomes  the  new current 
segment.  The other condition is that where the current 
segment  is  no  longer visible to the right. In  this case the human 
supervisor is asked if it is OK to turn right. If  the  answer  is 
yes, the IMP proceeds  in search mode,  making  a  sequence  of 1 
ft  moves  and 30” turns to the right, while searching for a new 
segment to the right with its whiskers. If the answer  is no, the 
IMP  proceeds  forward  in  moves of 2 ft, searching to the right 
with its whiskers for a  new  segment. 

Learning terminates automatically when  the  system  comes 
within 3 ft of the first goal while tracking a segment  which 
corresponds to the first segment.  Learning may be terminated 
by the supervisor at any time. On termination, the composite 
local model  is  loaded into the global model  and the network  of 
places is computed by convex  decomposition. 

An  example  of a learned global model  and the path  followed 
during the learning procedure is shown  in Fig. 14. The line 
segments are a global model  produced by the learning 

Fig. 13. Learning global  model.  Left  frame  illustrates whiskers used  in 
detecting presence of current segment  and FREEPATH calculation  used  to 
verify  next  move.  Boxes  show ends of whiskers and  next  goal  point. 
Center frame  shows  new  segment  detected  by FREEPATH function.  Right 
frame  shows IMP turning right in search of new segment to track. 

Fig. 14. Trace of IMP during simulated active learning. Line segments 
represent global  model. “ + ” ’s represent actual  position  of IMP as it 
traveled. “X” ’s represent estimated  position. Errors in  position of 
segments in sensor  model  were  only source of error in experiment. 

algorithm. The “ + ” ’s represent the actual position  of  the 
IMP as it traveled. The “X” ’s represent the  estimated 
position. Errors in  the position of  segments  produced by the 
sensor model  were the source  of error in  the  estimated 
position. 

X. SUMMARY  AND  CONCLUSION 
This  work describes a navigation  system for an  intelligent 

mobile robot. This  system is based  on  maintaining  a  dynamic 
model  of  the external world (the composite local model)  using 
a rotating depth sensor. A side effect of  maintaining .this 
dynamic  model is an error vector which  is  used to maintain  an 
estimate of  the robot’s position as it moves.  The  dynamically 
maintained  composite local model also supports the functions 
of local obstacle avoidance, local planning, and learning. 

A  path  planning  technique  has  been  described  that is based 
on a pre-learned “network  of places.” The robot’s domain  is 
represented as a  network of maximum-area  convex regions. 
These  convex regions serve as “legal highways”  in  which  the 
robot may travel. The  cuts  which  form these convex  regions 
provide  “adits”  which serve as key  points for planning  paths 
through the known  environment.  Each straight line motion  is 
executed  by a finite state process  which  monitors  motion  using 
the composite local model. 

These techniques yield  an  inexpensive  navigation  system 
that  is suitable for indoor  environments.  This  system  plans  and 
executes paths as a sequence of straight line motions.  Such 
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paths are not  necessarily  optimal in the sense  of  being shortest; 
they are, however, a reasonable  trade-off  between  efficiency 
and safety. 
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