
IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-I, NO. 1, MARCH 1985

Navigation for an Intelligent Mobile Robot

Abstract-A navigation system is described for a mobile robot
equipped with a rotating ultrasonic range sensor. This navigation system
is based on a dynamically maintained model of the local environment,
called the Composite local model. The composite local model integrates
information from the rotating range sensor, the robot’s touch sensor, and
a pre-learned global model as the robot moves through its environment.
Techniques are described for constructing a line segment description of
the most recent sensor scan (the sensor model), and for integrating such
descriptions to build up a model of the immediate environment (the
composite local model). The estimated position of the robot is corrected
by the difference in position between observed sensor signals and the
corresponding symbols in the composite local model. A learning tech-
nique is described in which the robot develops a global model and a
network of places. The network of places is used in global path planning,
while the segments are recalled from the global model to assist in local
path execution. This system is useful for navigation in a finite, pre-
learned domain such as a house, office, or factory.

I. INTRODUCTION

HIS work describes a system for autonomous navigation
T b y an intelligent mobile robot in a known domain. This
system is based on maintaining a description of the external
environment of the robot using a focused rotating ultrasonic
ranging device. The system is designed to provide autonomous
navigation by an intelligent mobile robot in a previously
learned floorplan.

The techniques described are part of an effort to develop a
low-cost intelligent mobile platform (IMP). By the term
“intelligent” we mean that the system is designed to plan and
execute tasks based on a model of the current state of the
external world. The IMP is designed to respond to commands
of the form “go to (place)” where (place) is a pre-learned
location in a network of “learned places. ” The IMP is able to
use its network of places to plan a path to (place). It is then
able to use its sensing, modeling, and navigation abilities to
execute this plan and to modify the plan dynamically in
reaction to unexpected events. The IMP is to serve as a
foundation for mobile household, business, and factory robots
which require intelligent navigation.

This first section introduces the problems of world model-
ing, position estimation, and navigation and summarizes
solutions for each of these problems. Techniques for dynamic
world modeling, path planning, learning, position estimation,
and navigation are then described.

Manuscript received September 4, 1984; revised February 1985. This work
was supported by Commodore Business Machines, Inc., Denning Mobile
Robotics, Inc., and The State of Pennsylvania.

The author is with The Robotics Institute, Carnegie-Meilon University,
Pittsburgh, PA. He is currently on leave with IMAG, Laboratoire LIFIA, BP
68, 38402 St. Martin d’Heres Cedex, France.

0882-4967/85/0300-003 ‘1

31

A . Navigation and Dynamic World Modeling: The
Problem

The task of a navigation system is to plan a path to a
specified goal and to execute this plan, modifying it as
necessary to avoid unexpected obstacles. The path planning
problem can be divided into global path planning and local
obstacle avoidance. Global path planning requires a pre-
learned model of the domain which may be a somewhat
simplified description of the real world and might not reflect
recent changes in the environment. This global model must
provide the planning algorithm with a network of landmark
points which are connected by simple local movements.

A local navigation system carries out the steps in the global
plan, maintaining an estimate of the robot’s position with
respect to the global model and planning local paths as needed
to avoid unexpected obstacles. Whereas global navigation may
operate on a pre-stored model, local navigation requires a
model that reflects the state of the evironment, including
changes, as the plan is being executed. This is provided by the
composite local model.

The composite local model is built up by integrating recent
information from different sensors, taken from different
positions. When available, information from a pre-learned
global model is also integrated into the composite local
model. The construction and maintenance of a composite local
model involves:

1) building an abstract description of the most recent sensor
data (a sensor model);

2) matching to determine the correspondence between the
most recent sensor models and the current contents of the
composite local model;

3) modifying the components of the composite local model
and reinforcing and decaying the confidences to reflect
the results of matching.

Having the correspondence between the sensor model and the
-composite local model also makes it possible to measure and
correct for errors in the estimated position and orientation of
the robot due to wheel slippage.

B. Summary of Solution
In the system to be described, global path planning is based

on a pre-learned network of places. The network of places is
learned in a special “active learning mode” in which the robot
explores its environment. Automatic learning greatly simpli-
fies the practical problem of giving the system an accurate
model of the world. Each place in the network is connected to
a set of adjacent places by “legal highways.” Global
navigation is a process of choosing a set of legal highways that

$01.00 @ 1985 IEEE

32 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-1, NO. 1 , MARCH 1985

will carry the robot from its current location to the specified
goal. Traversing each legal highway and planning paths to
avoid unexpected obstacles is the job of the local navigator.
The network of places and its use in path planning is described
in Section VII.

A legal highway consists of a straight line path which
connects two landmark points. Local navigation is accom-
plished by a finite state process which turns the IMP toward
the next landmark point and keeps the IMP on its path as it
moves. Each path is tested for blocking obstacles using both
the raw sensor data and the composite local model. If an
obstacle is detected, a recursive obstacle avoidance procedure
plans a new sequence of straight line paths to the next local
goal. This recursive obstacle avoidance procedure is based on
the current contents of the composite local model. The local
navigation process is described in Section VIII.

The composite local model, the sensor model, and the
global model are represented in terms of line segments in a
two-dimensional (2-D) “floor-plan’’ world. All three models
are expressed in a world-centered coordinate system so that
they can be matched invariant to the robot’s position. The line
segments that compose the sensor model are constructed using
a variation of the recursive line splitting algorithm which is
often used to find edges in images [5] . This process is
described in Section IV.

The confidence of line segments in the composite local
model is represented by a finite set of states. A relatively
simple state transition mechanism is used to reinforce and
decay the confidence in line segments. Segments in the
composite local model are “grown” by an update process that
extends the segments whenever there is a partial overlap with
sensor model segments. The process of incrementally match-
ing and updating a composite local model is described in
Section V.

As the IMP travels it uses the mismatch in position between
the sonar model and the composite local model to detect and
correct errors in its estimated position. These techniques are
described in Section VI.

When the IMP navigates autonomously, it recalls expected
segments from a prelearned global model into the composite
local model. The global model, which provides the basis for
the network of places, is learned during a special Learn
Mode. In learn mode the IMP systematically learns the
geometry of a finite domain by a wall-following technique.
Learn mode is discussed in Section IX.

C. Problem Context
A photograph of the IMP is shown in Fig. 1. At the top of

the IMP is a rotating depth sensor which senses the distance to
external surfaces with a beam with a starting diameter of
approximately 3 in and a beam spread of approximately 5 ” .
The sensor is mounted at a height of 30 in, which is about the
level of most tables. The sensor is turned by a stepper motor in
steps of 3 O . Approximately 10 s are required to obtain the 120
depth readings given by a complete revolution. With each
reading, the sensor returns the distance to the nearest surface
within 25.6 ft to a resolution of 0.10 ft. As the IMP travels,
rotary position encoders mounted on its power wheels are used

Fig. 1 . Experimental prototype intelligent mobile platform.

to maintain an instantaneous estimate of the IMP’S position in
a Cartesian coordinate system.

The world modeling and navigation procedures for the IMP
were originally implemented and refined using an interactive
mobile robot simulation program. These techniques have been
reimplemented on the IMP using the two on-board 16-bit
microprocessors. Similar techniques have recently been imple-
mented for a mobile security robot which uses 24 ultrasonic
ranging devices, arrayed in a ring, in place of the rotating
focussing horn.

II. REVIEW OF PRIOR TECHNIQUES
A number of interesting research results have been obtained

on problems that are relevant to mobile robot navigation. A
quick review of the salient systems provides a picture of the
current state of the scientific art.

A . Find-Path
Planning a path based on a model is a problem that i s

fundamental to intelligent control of robot arms as well as
mobile robots. Lozano-Pkrez has developed a formal version
of the general path planning problem. This formalization is
referred to as the ‘ ‘find-path” problem [7]. In its most general
form, the goal of find-path is to determine a continuous path
for an object from an initial location to a goal location without
colliding with an obstacle.

Lozano-Pkrez provided a mathematical treatment of the
find-path problem using the “configuration space” approach.
The idea is to find those parts of free space which the object at
particular orientations may occupy without colliding with an
obstacle. Obstacles are “expanded” by the shape of an object
at a set of orientations, while the object to be moved is shrunk
to a point. The shortest path for the object, including rotations,
is computed as the shortest connected path through the
expanded obstacles.

The shortest path through obstacles generally leads through

CROWLEY: NAVIGATION FOR AN INTELLIGENT ROBOT 33

a sequence of points that are adjacent to the expanded
obstacles. If there is position error in the control of the path
execution, such points can possibly result in a collision.
Brooks has recently proposed a new approach to the find-path
problem based on modeling free space [2]. Brooks’ solution,
developed in a two-dimensional plane, involved fitting two-
dimensional “generalized cylinders” to the space between
obstacles to obtain pathways in which the object may freely
travel on a plane. The technique was extended to the third
dimension by stacking planes.

B. The Stanford Cart and the C-MU Rover

Moravec [8] developed a navigation system based on
sensory signals using the Stanford cart. This cart sensed its
environment using a set of nine stereo images obtained from a
sliding camera. A set of candidate points were obtained in each
image with an “interest” operator. Small local correlations
were then made at multiple resolutions to arrive at a depth
estimate for the points. The matched points were plotted on a
two-dimensional grid and then expanded to a circle. A best
path from the current location to a goal was then chosen as the
shortest sequence of line segments which were tangent to the
circles. The cart would advance by 3 ft and then repeat the
sensing and planning process. Stereo matching was also
performed between the images taken at different steps to
obtain confirming and additional depth information. A new
vehicle, called the C-MU Rover [9], has recently been
constructed by Moravec to support these techniques.

C. Hilare

A team under the direction of George Giralt at the LAAS
laboratory in Toulouse has been investigating the design and
control of mobile robots since 1977. They have developed a
mobile robot named Hilare. Chatila developed a navigation
system for Hilare that is based on dividing a pre-learned floor
plan into convex regions [3]. Convex regions were formed by
connecting nearest vertices to form areas called C-Cells.
Laumond, at the LAAS in Toulouse, extended this idea by
developing hierarchies of C-Cells to represent rooms and parts
of a known domain [6].

D. Comment

A few other efforts towards developing autonomous mobile
robots have also been reported. In many cases the efforts focus
on engineering problems and pay little attention to the issues of
world modeling or path planning [lo]. Other groups have
become bogged down on the vision problem, often spending
their efforts on general solutions to the problems of low level
vision. We believe that the most important problems to be
addressed now are sensor interpretation, navigation, and
system organization. Toward this end, we have developed a
computational paradigm for intelligent robotic systems. This
computational paradigm provides a framework for the proc-
esses involved in sensor interpretation, path planning, and
path execution.

Motion Commands

Fig. 2. Framework for intelligent navigation system.

III. THE COMPUTATIONAL FRAMEWORK
A . The Composite Local Model

The navigation system of the IMP is based on the
computational framework shown in Fig. 2. At the core of this
framework is a dynamic model of the surface and obstacles in
the immediate environment of the IMP called the composite
local model. “Local” refers to the fact that only information
in the local environment of the IMP is represented. “Compos-
ite” refers to the fact that this model is composed of
information obtained over time from multiple sensors and
from many views.

The composite local model plays two fundamental roles in
this computational framework.

1) It is the structure in which potentially conflicting
information from diverse sensors is integrated with
recently observed information and information recalled
from long term storage (the Global Model).

2) It is the structure on which processes for local path
planning, path execution, learning, object tracking,
object recognition, and other “higher level” processes
are based.

Because of the nature of the navigation task and the sensors
that are employed, the composite local model in the IMP is
implemented with a relatively simple 2-D representation. The
IMP models the world and plans paths in a 2-D “flat-land’ ’
universe. Because the rotating range sensor is mounted at a
height of 30 in, the robot is able to detect and represent most of
the furniture that it encounters. Surfaces and obstacles are
represented as connected sequences of line segments. Thus a
table and a wall have the same structure; both appear as a
barrier with an infinite (or unknown) extent in vertical
dimension.

The composite local model must include the ability to
represent the uncertainty of information. In this system,

34 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. R A - 1 , NO. 1, MARCH 1985

confidence is represented by a set of states. The line segments
which compose the composite local model include a “state”
attribute which represents the degree of confidence. Consist-
ent line segments are reinforced and extended while inconsis-
tent line segments are decayed and eventually removed from
the model. Representing uncertainty with states permits easy
implementation of arbitrary rules for reinforcement and decay.
B. The Sensor Models

Sensors typically produce large amounts of information.
Before the information from a sensor can be integrated into the
composite local model, surface information must be abstracted
from it. The sensor model may be viewed as a form of logical
sensor which provides the sensor information in a standard
form which may be integrated into the composite local
model.

In the first version of the IMP, the sensors are a set of
contact sensors on a skirt and the rotating sonar sensor. In each
case, the sensor model is an abstract description expressed as
line segments which represent surfaces in the real world.
C. Match and Update

The module labeled “match” determines the correspon-
dence between the line segments which compose the sensor
model and the line segments which compose the composite
local model. The correspondence is then used to determine
errors in the estimated position and to update the position,
length, and confidence of the segments in the composite local
model. Special procedures also exist for detecting and tracking
moving objects.

The module labeled “update” integrates the information
from the sensor models with the current composite local
model. This module adjusts the position, size, connectivity,
and confidence of the segments in the composite local model to
reflect the results of correspondence matching. This update
process also removes segments for which the confidence is
low or for which the distance is too far. The process does not
remove nearby surfaces which are not currently visible.

IV. CONSTRUCTING AN ABSTRACT DESCIUPTIQN
OF RANGE DATA

Depth readings from the rotating sonar are converted into
line segments by a sequence of four steps.

Project the reading to a Cartesian world coordinate
system.
Segment measured points into line segments by detecting
“discontinuities” and then applying a recursive line
fitting process.
Compute the line equations of the points from the most
reliable interior points.
Recompute the segment endpoints as the intersection
points with neighboring line segments.

These processes are described below.
A . Projection to Cartesian World Coordinates

Depth readings are obtained from the rotating sonar in
cylindrical coordinates, i.e., as depth at a particular angle. As
each depth reading is made, the current estimated position and
orientation of the IMP is affixed to it. This permits the system

Surf ace

Sonar Beams

0 Robot

Fig. 3. Edges of sonar beam are projected to world coordinates.

to project the reading into a world coordinate system at a later
time, even if the data were taken while the IMP was moving.

As a consequence of the detection mechanism in the sonar,
the depth reading refers to the depth to the nearest reflecting
surface anywhere in the sonar beam’s circular footprint. When
the beam reflects from a flat surface at a non-perpendicular
angle, the sonar returns the distance along the short edge of the
beam. Knowledge of this physical process is used in interpret-
ing the sonar depth readings.

As each sonar reading is obtained, it is converted from
robot-centered polar coordinates to a world-centered Cartesian
coordinate system. This is done by projecting a line by the
specified depth at the specified angle, as illustrated in Fig. 3. If
the readings are decreasing as the sonar rotates in a counter-
clockwise turn, the angle is adjusted to be the left edge of the
beam by adding the estimated half angle of the sonar beam. If
the depth is increasing, the angle is adjusted to the right by
subtracting the estimated half angle. The difference in depth
between the adjacent readings to the right and to the left is
computed and affixed to the projected beam as a quality
measure.

B. Segmenting the Points Into Line Segments
The points are first grouped into a sequence of roughly co-

linear readings such that the distance between each adjacent
pair of points is less than a tolerance. This tolerance is selected
as a compromise between the maximum distance at which the
depth readings can be taken and the smallest gap between
objects that the system can detect. For a difference in
orientation of a degrees per reading, the minimum distance
gap size Gmin is determined by the desired maximum range R
by considering the difference of beam edges for a perpendicu-
lar surface. Such a geometry gives the relationship

G ~ n > R Tan@)

In our system, cy = 3” and R = 25.6 ft, giving Gmin of 1.34
ft. We have found a value of Gmin of 1.5 ft to be satisfactory.
Thus, the points are scanned to detect any points where the
distance between adjacent readings is greater than 6 ~ n . Such
points are called break points or discontinuity points. Break
points mark the boundaries of collections of points that are
passed to a recursive line fitting procedure.

Recursive line fitting has been used for years to fit lines to
edge points in images [5] . The algorithm is illustrated in Fig.
4. A line equation of the form

A x + B y + C = O

is computed between the two endpoints in the collection of

CROWLEY: NAVIGATION FOR AN INTELLIGENT ROBOT

+ +

+
/

/
’ ’+

+’+ + +
+ ‘+r

+,
P

Y-

Fig. 4. Recursive line fitting.

points. If the coefficients A aid B are normalized so that the
sum of their squares is one, then evaluating the line equation at
the location of a point (x, y) gives the perpendicular distance
from the computed line equation. The points in the group
between the endpoints are tested to detemine the point where
the perpendicular distance is largest. If this largest perpendicu-
lar distance is below a tolerance, then the line is accepted as
representing the points. Otherwise, the collection of points is
divided into two groups at the point where the perpendicular
distance was largest. The line fitting procedure is then
evaluated recursively for each of these two groups. The result
is a collection of line segments which represents the collktion
of points.

C. Refining the Line Equation

When a sonar beam measures depth near a corner, the depth
measurement is often corrupted by reflections. Yet these
points give the breakpoints which are used for recursive line
fitting. Thus it is desirable to recalculate the equation of each
line segment from interior points.

In our early experiments, we observed that the most reliable
sonar points are those to either side of the measurement which
is perpendicular to the surface. The perpendicular measure-
ment may be detected as a smooth minimum in the depth
readings. However, if a line equation is fit to points that are
too close to each other, the equation is very sensitive to small
errors in position. To compromise between these conflicting
constraints, the difference in depth between sonar readings is
used as a quality measure. For each point, a first difference
operator (a discrete derivative) is computed from the differ-
ence in depth of the point to the left and to the right. That is, if
the depth readings are denoted by a sequence, D(k), then the
quality measure, Q(k) is given by

Q(k) = ID(k- 1) - D(k + 1)l.

35

This quality measure has an inverse sense-values near zero
are “good” quality, while larger magnitudes are “less good.”

For each line segment, a scan is made for the depth points
which are furthest apart, and have a quality measure below a
threshold. For the sonar described above, a threshold differ-
ence in depth of 112 ft was found to work well. This tolerance
was selected based on geometric calculations which are
beyond the scope of this work. If two such points are found,
then the line equation for the segment is recomputed using
these two points. These new line equations then permit a
readjustment of the vertex locations between adjacent line
segments.

D. Adjusting the Vertex Locations

Vertices which are shared between two line segments are
referred to as “connected” vertices. Although sonar beams
are very poor at measuring the position of corners, the location
of a corner can be determined with good precision by
computing the intersection of connected line segments.

Whenever the recursive line fitting procedure divides a
group of points, the resulting pair of line segments will share a
common endpoint. In such a case, the position of the shared
vertex is computed from the intersection of the line equations
which express the two lines. This has been found experimen-
tally to yield corner locations whose position accuracy is close
to the depth resolution of the sonar ranging device. It is
important to accurately detect the locations of corners because
these points are used to correct for errors in the estimated
position of the IMP that arise due to wheel slippage.

The result of this sequence of operations is a list of line
segments. These line segments comprise the sensor model
used to verify that the IMP is not about to collide with an
obstacle, to correct errors in the IMP’S estimated position, and
to update the composite local model.

V. THE COMPOSITE LOCAL MODEL

As previously noted, the composite local model is at the
core of the world modeling and navigation system. Three
functions based on the composite local model have been found
to have very wide utility throughout the navigation system.
These functions-vrsrBLE, FREEPATH, and ComEsPoND-are de-
scribed as follows.

VISIBLE :

FREEPATH:

CORRESPOND:

Is the point P visible from the location L? If
not, what is the index of the nearest compos-
ite local model line segment which blocks it,
and what is the location of the intersection
point between this line segment point and the
line segment from L to P?
Is it possible for the IMP to pass from
location L to location P? If not, what is the
index of the line segment that gives the
nearest collision? FREEPATH is implemented
as a sequence of calls to VISIBLE along parallel
lines.
What is the index of the line segment in the
composite local model which corresponds to
a given line segment?

36 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-1, NO. 1, MARCH 1985

A . Representing the Composite Local Model
The composite local model is represented as a list of

directed line segments. Each line segment contains two
vertices which are ordered in a counterclockwise direction.
Each vertex is labeled as concave, convex, or disconnected. If
the vertex is shared with another line segment, a pointer is
given to that line segment. To save time in calculations, the
line equation and the angle of the vertex are also stored in the
structure.

In addition to the line segment information, each segment
also has a state and a type. The state represents the confidence
that the system has in the existence of that segment. At the
current time, the state is represented by integers ranging from
1 (transient) to 5 (stable and connected). The type number
represents the source of the segment. There is a precedence
between sources of segments to resolve the type when a
segment is given by more than one source.

B. Matching the Sensor Model to the Composite Local
Model

The correspondence between line segments in the sensor
model and line segments in the composite local model is
needed to correct errors in the estimated position and to update
the composite local model. Correspondence matching is also
used in introducing line segments into the composite local
model from the global model and from the contact sensor, for
keeping track of the "current" line segment during active
learning, and for a variety of other spatial reasoning functions.

The sensor model is matched to the composite local model
in two stages. In the first stage, the best correspondence is
found for each line segment in the sensor model by making a
call to the function CORRESPOND. This list is then scanned to
determine the sensor model line that has the best correspon-
dence to each segment in the composite local model. This
second correspondence list, from the composite local model to
the sensor model, is then used for updating the composite local
model.

C. The CORRESPOND Function
The function CORRESPOND is a general purpose function for

determining which line segment in the composite local model
has the best correspondence with a given line segment. A call
to CORRESPOND is made for each segment in the sensor model.
The CORRESPOND function is organized as a sequence of tests of
increasing cost based on the attributes of orientation, position,
and length. The correspondence problem is made very simple
by assuming that the position and orientation of a segment are
known within some tolerance. In the case of the sensor model,
this assumption is justified because the IMP has kept track of
its estimated position using wheel encoders as it moves. The
required error tolerance in the estimated position can be
reliably estimated.

The sequence of tests used by the correspondence function
are illustrated in Fig. 5. In this figure, LM denotes composite
local model, while SM denotes the line segment for which
correspondence is sought. For a given segment SM the
following tests are computed for each segment LM in the
composite local model. If a segment LM fails any test, then the

0 e SM Segment
0 o LM Segment

Difference in Angle

Perpendicular Distance
From Center Point to Line

Outside Tolerance Box

Fig. 5. Tests used in determining correspondence.

I -LM __d 1 -'' - No Correspondence

Correspondence Type 0
1 I

* - - p q - - Correspondence Type 1

I z : ; T Correspondence Type 2

"/,::=e. I Correspondence Type 3

Fig. 6 . Correspondence types.

process advances to the next segment in the composite local
model.

Is the difference in angle between SM and LM less than a
tolerance (currently 15 ")?
Is the perpendicular distance from the center of SM to
the line equation of LM less than a distance tolerance
(currently 2.0 ft)?
Does SM pass through a box formed around LM? This is
a fattened box, formed by adding a tolerance (0.5 ft) to
the largest x and y coordinates of the segment LM.
There are five possible outcomes, illustrated in Fig. 6.
These are

no overlap (segment rejected),
both endpoints of SM inside box (correspondence

both endpoints of SM extend outside box (corre-
spondence type l),
first endpoint of SM extends outside of box
(correspondence type 2), or
second endpoint of SM extends outside of box
(correspondence type 3).

type O),

CROWLEY: NAVIGATION FOR AN INTELLIGENT ROBOT 37

The correspondence types are used to extend the
composite local model segment during the update proc-
ess .

- Local Model Segment

Sensor Model Segment -
4) Is the segment LM the longest found so far?

The correspondence function provides both the index of the
corresponding segment and the type of correspondence.

D. The Update Process
The update process is the mechanism by which line

segments from the sensor model, global model, and contact Fig. 7. Orientation error given by average difference in angle between
sensor enter and refine the composite local model. During sensor model segments and corresponding local model segments.
each sonar scan, segments from the sensor model are matched
to the current composite local model, and the result of F. Updating the Vertex Positions and Segment States

The main functions of the update process are as follows. Unconnected vertices should be extended when there is a

1) Increase the confidence state of transient segments for
which there is a corresponding segment in the sensor
model.

2) Decay the confidence of segments that should be visible,
but for which there is not a corresponding segment in the
most recent sensor model.

3) Add newly observed sensor model segments and seg-
ments recalled from the global model to the composite
local model.

4) Refine the vertex position of segments which are
“reinforced” by the sensor model.

E. Marking the Visible Segments in the Composite Local
Model

Segments in the composite local model for which there is no
correspondence are only modified under two conditions.

The segment was marked as visible during construction

The nearest point on the line segment is more than a given

The second condition is a simple mechanism by which
segments “fall off the end of the world” as the IMP moves
away from them. The actual distance is relatively unimportant
as long as it is beyond the sonar range and the current area of
local navigation. Of course, the larger this distance, the more
“extra” segments the system has to consider on each
calculation.

The first condition establishes a “visible horizon” for the
IMP. As each point is added to the Sensor Model, the function
VISIBLE is called, for a point at the direction of the beam and the
range of the sonar, to determine which segment in the
composite local model should be visible. If a segment is found,
the difference in angle between the beam and that segment is
computed. If this difference in angle is not small (c 15 ”) then
that composite local model segment is marked as visible.
Segments for which the angle of incidence of the sonar beam is
very small are not detected reliably by the sonar and are thus
not marked as visible.

of the sonar model.

distance from the IMP’s current position.

correspondence of types 1, 2, or 3.

the position of an unconnected vertex.

connected.

The position of connected vertices has precedence over

A segment is more stable when both its vertices are

The actual rules for state updates are implemented as case
statements based on the current state and then ’on the
correspondence type.

After the vertex positions and states of the segments in the
composite local model have been updated, segments from the
sensor model for which there was no correspondence in the
composite local model are added to the composite local model
in the lowest confidence state (state 1). A relabeling process is
then used to connect adjacent segments for which the vertices
are very close.

VI. CORRECTING THE ESTIMATED POSITION

Local path execution and learning and updating the compos-
ite local model all depend critically on maintaining an accurate
estimate of the IMP’s current position. An instantaneous
estimate of the IMP’s position is maintained from the rotary
position encoders on the IMP’s wheels. This estimated
position is monitored and corrected by a process based on
comparing the sensor model to the composite local model.
Before the composite local model is updated from the sensor
model, the correspondence between the sensor model and the
composite local model is used to detect and correct any
systematic error in the estimated position of the IMP.

As each sensor model line segment is obtained, the
correspondence is found to the most likely line segment in the
composite local model. The difference in angle between these
segments is then computed. When a sensor model has been
constructed from a complete scan of the rotating depth sensor,
the average error in angle is computed. This average error is
computed from the difference in orientation between Sensor
Model segments and the corresponding composite local model
segments, as illustrated by Fig. 7. The sensor model is then
rotated around the position of the IMP by this average error in

38 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-1, NO. 1, MARCH 1985

- Local Model Segment

Sensor Model Segment -

;1.1
\

Fig. 8. Position error given by average difference in position between
connected vertices in sensor model and corresponding connected vertices
in the local model.

angle, as illustrated by Fig. 8, and the average error is
subtracted from the estimated orientation.

Next, the average error in position is computed by
computing the average x and y errors between connected
vertices in the rotated sensor model and the corresponding
vertices in the composite local model. This average error in
position is then subtracted from the estimated position and
from the position of the line segments in the sensor model. The
segments in the composite local model are then updated to
include the results of matching to the sensor model.

VU. GLOBAL PATH PLANNING AND NAVIGATION
Global path planning is based on the network of places,

whereas local path planning and execution are based on the
information in the composite local model. The global path
planning process uses the network of places to determine the
shortest sequence of straight line paths that will take the IMP
to a specified goal point. Global paths are planned based on a
network of “Adit” points which are connected by straight line
paths. The path is then executed as a sequence of straight line
movements.

A . Navigation Modes
There are three modes in which the IMP may travel.

Learn Mode: Limited exploratory movements in an unfa-
miliar environment, with the purpose of learning the environ-
ment.

Manual Mode: User specified motion executed by local
navigation.

Automatic Mode: Autonomous movement to a named
goal point in response to a command of the form “go to
(place) ’ ’ .

Learn mode permits the IMP to learn the global model from
which it constructs the network of places. Automatic mode is
designed to permit the IMP to execute navigation tasks in the
learned environment. Manual mode is a default mode in which
the IMP may travel to a visible point using only local straight
line navigation.

B. The Network of Places and the Global Model
The learned domain of the IMP is represented in two related

data structures: the “global model” and the “network of
places.” The global model is the collection of line segments
observed by the composite local model while making a tour of

ini
Fig. 9. Global model produced for typical floor plan used in simulator.

I ti-,
Fig. 10. Network of places composed of adits and legal highways. Adits

shown as boxes.

the house in learn mode. The global model permits the IMP to
recall the surfaces that it should observe at any location in the
known world. An example of a global model constructed by
the automatic learning process running on the simulator is
shown in Fig. 9. The network of places is the structure which
serves as a basis for global path planning. The network of
places is obtained by dividing the free space in the global
model into convex regions. A convex region has the property
that any two points within the region may be connected by a
straight line that remains entirely within the region. Thus a
mobile robot may travel between any two points within a
convex region by a single straight line motion. An example of
the convex regions for the global model shown in Fig. 9 is
shown in Fig. 10.

Convex regions are constructed with an algorithm which is
designed to maximize the area of the largest convex region [4].
A pair of navigation landmarks, called “adits” (an adit is the
opposite of an exit), are created for each cut that is made to
partition free space to create the convex regions. The adits are
displaced to the sides of the cut so that the robot will pass
through the cut at a roughly perpendicular angle. This protects
the robot from grazing the edges of door ways and tight
spaces.

Convex regions are shrunk by the diameter of the robot to

CROWLEY: NAVIGATION FOR AN INTELLIGENT ROBOT 39

represent the free space in which the robot may travel. The
space inside a doorway after shrinking forms a special region
called a “doorway region.” Doorway regions are not guaran-
teed to be convex. Each adit is connected to the adit on the
other side of the doorway and to all other adits within its
convex region, as shown in Fig. 10. In this figure, the adits to
the convex regions are illustrated with boxes.

The network of places is a three level structure. At the top
level are a list of user-defined “named places.” At the middle
is a list of convex regions. Each named place points to a
convex region, and each convex region contains a list of
named places. Each convex region also contains a list of adits.
The adits serve as landmarks to global path planning and
execution. The convex regions serve as “legal highways” for
planning paths to any named place.

C. Global Path Planning
A global path is planned as a sequence of adits which will

take the robot from its current convex region to the convex
region which contains a specified goal point. A command of
the form “go to (place)” provides a pointer to a convex region
that in turn provides a list of possible goal adits. The adit
closest to the named place is chosen as a goal for path
planning. Knowledge of the current convex region gives a list
of adits from which to start the path. The nearest adit is
selected as a starting adit. The shortest path through the
network of adits is determined using a version of Dijkstra’s
algorithm [11 which halts when a path to the desired goal place
has been found. If the start (or the end) of this path leads
through two adits in the same region, the first (or last) adit is
dropped from the path. Global path execution is then reduced
to a three step process in which the IMP 1) moves to the first
adit in the path, 2) moves from each adit on the path to the
next, and 3) then moves from the last adit to the goal place.

VIII. .LOCAL NAVIGATION
A local straight line path is executed by a finite state process

which monitors the position of the robot to assure that it
remains on the desired straight line within a tolerance. This
process also monitors the local model to assure that no
unexpected obstacle blocks the path. A recursive obstacle
avoidance algorithm is used to plan a path around unexpected
obstacles.

A . Local Path Execution
Straight line movement to a goal point is monitored by a

relatively simple finite state process. The states of this process
are the set {HOLD, DECIDE, TURN, MOVE, WAIT, BLOCKED). The
state transition diagram for this process is shown in Fig. 11.
The process waits in the HOLD state for a goal from the global
path execution process. When a goal is received, the IMP
enters the DECIDE state. In the DECIDE state it first tests the
distance to the goal. If this distance is less than a tolerance, it
returns to HOLD. If the distance is above the tolerance, the
difference in angle between the current heading and the goal is
tested. If this angle is above the minimum resolution for
turning, the IMP enters the TURN state; otherwise it enters the
MOVE S b b .

Fig. 11. State transition diagram for local navigation.

IMP Goal

Fig. 12. Legal highway for path execution.

In the TURN state, the IMP turns toward the goal point until
the difference between the estimated orientation and the
direction to the goal point falls below the minimum turning
resolution. The IMP then enters the WAIT state to make a
complete sonar scan and verify the current estimated position.
The sonar scan \results in an update in the estimated position
and orientation, even if there is no change in the estimated
position or orientation. The call to the function “Set-
Estimated-Position” signals the completion of the scan and
causes a transition back to the DECIDE state. If the IMP is not at
the goal, and is turned toward the goal, control will pass from

Upon entering the MOVE state, the IMP computes the
equation of the line (the path equation) from the current
location to the goal point. A cyclic process is then initiated in
which the system moves forward while performing the
following tests as rapidly as possible.

1) Verify that the distance to the goal point is decreasing.
When the distance to the goal stops decreasing, the system
returns to HOLD to wait for the next goal. If the distance is ever
increasing and is larger than the goal tolerance, then the
system will go into the WAIT state to take a clean view of the
world.

2) Verify that the perpendicular distance from the current
estimated position to the path line segment is below a
tolerance. This test is illustrated by Fig. 12. It is performed by
evaluating the path equation using the current estimated
position, yielding the perpendicular distance to the path
equation. If this distance exceeds the tolerance, then the IMP
will go to WAIT.

3) Verify that there is a free path to the goal. This is done
by projecting parallel line segments in the composite l o c a l
model. If the path becomes blocked, the IMP will go into
blocked state and signal for local path planning to avoid the
obstacle.

If the IMP is in the MOVE or TURN States and its contact
sensor is triggered, it immediately halts and enters the BLOCKED

state. Entering BLOCKED triggers the local path planning
procedures to plan a path around an obstacle. A low-
confidence line segment is also placed into the composite local
model to represent the obstacle.

DECIDE t0 MOVE.

40 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-I, NO. 1, MARCH 1985

B. Local Obstacle Avoidance
The purpose of local obstacle avoidance is to plan a

sequence of straight line paths which will take the IMP around
an unexpected obstacle. A very simple recursive process is
used, based on the segments in the composite local model.
This process plans two paths, one to the left of the obstacle and
one to the right. Tests are then made to see if a free path exists
in the composite local model from this point to the goal and
from this point to the current position. If either path is
blocked, the procedure is called recursively to see if it is
possible to get around the blockage. The recursion is not
continued beyond three levels.

IX. LEARNING THE GLOBAL MODEL
The global model is learned by a process which detects and

follows segments in the composite local model using a set of
pseudo-sensors which we have come to call “whiskers.”
These pseudo-sensors are implemented in the composite local
model using the VISIBLE function. That is, a test is made to see
if any line segments in the local model block a pair of points to
the right of the IMP at a distance of 3 ft.

Learning begins by loading the current contents of the
global model into the composite local model. The composite
local model is then searched for the nearest potential starting
point. A potential starting point must be a point to the left of
line segment which meets the following conditions.

1) The line perpendicular to line equation and passing
through the IMP’s position (and the starting point)
intersects with the composite local model line segment.

2) The function FREEPATH to the starting point from the
IMP’s position must return the value true.

The IMP moves directly to the nearest starting point and
then begins tracking the wall. The IMP moves in 2 foot steps,
calculating each move based on the current segment. After
each move a sonar scan is made and then the composite local
model is updated.

There are two conditions which can cause the IMP to stop
tracking the current segment. The first is where a call to
FREEPATH detects a segment blocking the next goal point. In
this case the blocking segment becomes the new current
segment. The other condition is that where the current
segment is no longer visible to the right. In this case the human
supervisor is asked if it is OK to turn right. If the answer is
yes, the IMP proceeds in search mode, making a sequence of 1
ft moves and 30” turns to the right, while searching for a new
segment to the right with its whiskers. If the answer is no, the
IMP proceeds forward in moves of 2 ft, searching to the right
with its whiskers for a new segment.

Learning terminates automatically when the system comes
within 3 ft of the first goal while tracking a segment which
corresponds to the first segment. Learning may be terminated
by the supervisor at any time. On termination, the composite
local model is loaded into the global model and the network of
places is computed by convex decomposition.

An example of a learned global model and the path followed
during the learning procedure is shown in Fig. 14. The line
segments are a global model produced by the learning

Fig. 13. Learning global model. Left frame illustrates whiskers used in
detecting presence of current segment and FREEPATH calculation used to
verify next move. Boxes show ends of whiskers and next goal point.
Center frame shows new segment detected by FREEPATH function. Right
frame shows IMP turning right in search of new segment to track.

Fig. 14. Trace of IMP during simulated active learning. Line segments
represent global model. “ + ” ’s represent actual position of IMP as it
traveled. “X” ’s represent estimated position. Errors in position of
segments in sensor model were only source of error in experiment.

algorithm. The “ + ” ’s represent the actual position of the
IMP as it traveled. The “X” ’s represent the estimated
position. Errors in the position of segments produced by the
sensor model were the source of error in the estimated
position.

X. SUMMARY AND CONCLUSION
This work describes a navigation system for an intelligent

mobile robot. This system is based on maintaining a dynamic
model of the external world (the composite local model) using
a rotating depth sensor. A side effect of maintaining .this
dynamic model is an error vector which is used to maintain an
estimate of the robot’s position as it moves. The dynamically
maintained composite local model also supports the functions
of local obstacle avoidance, local planning, and learning.

A path planning technique has been described that is based
on a pre-learned “network of places.” The robot’s domain is
represented as a network of maximum-area convex regions.
These convex regions serve as “legal highways” in which the
robot may travel. The cuts which form these convex regions
provide “adits” which serve as key points for planning paths
through the known environment. Each straight line motion is
executed by a finite state process which monitors motion using
the composite local model.

These techniques yield an inexpensive navigation system
that is suitable for indoor environments. This system plans and
executes paths as a sequence of straight line motions. Such

CROWLEY: NAVIGATION FOR AN INTELLIGENT ROBOT

paths are not necessarily optimal in the sense of being shortest;
they are, however, a reasonable trade-off between efficiency
and safety.

REFERENCES
A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and
Algorithms. Reading, MA: Addison-Wesley, 1983.
R. A. Brooks, “Solving the find-path problem by good representation
of free space,” in Proc. Nat. Conf. Artificial Zntelligence, AAAZ-

R. Chatila, “Path planning and environmental learning in a mobile
robot system,” in Proc. ECAZ, Orsay, France, Aug. 1982.
J . L. Crowley and R. J. Redpath, “An algorithm for maximum area
convex decomposition,” Robotics Institute, Carnegie-Mellon Univ.,
Pittsburgh, PA, Tech. Rep. in preparation, 1984.
R. 0. Duda and P. E. Hart, Pattern Classification and Scene
Analysis. New York: Wiley, 1973.
J. P. Laumond, “Model structuring and concept recognition: Two
aspects of learning for a mobile robot,” in Proc. Eighth ZJCAZ-83,

T. Lozano-Pe‘rez, “Automatic planning of manipulator transfer move-
ments,’’ ZEEE Trans. Syst., Man, Cybern., vol. SMC-11, pp. 681-
698, Aug. 1981.
H. P. Moravec, “Obstacle avoidance and navigation in the real world

82, pp. 381-386, AUg. 1982.

pp. 839-841, Aug. 1983.

41

by a seeing robot rover,” Carnegie-Mellon Robotics Institute, Pitts-
burgh, PA, Tech. Rep. CMU-RI-TR-3, Sept. 1980.

[9] H. P. Moravec, “The CMU rover,” in Proc. Nat. Conf. Artificial
Intelligence, AAAZ-82, pp. 377-380, Aug. 1982.

[lo] Y. Kanayama, “Concurrent programming of intelligent robots,” in
Proc. Eighth ZJCAI-83, pp. 834-838, Aug. 1983.

