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ABSTRACT

This paper describes techniques for dynamically modeling the 2-D appearance and 3-D geometry of a
scene by integrating information from a moving camera. These techniques are illustrated by the design
of a system which constructs a geometric description of a scene from the motion of a camera

mounted on a robot arm.

A framework for dynamic world modeling is described. The framework presents the fusion of
perceptual information as a cyclic process composed of three phases: Predict, Match and Update. A set
of mathematical tools are presented for each of these phases. The use of these tools is illustrated by the
design of a system for tracking edge lines in image coordinates and inferring the 3-D position from a

known camera motion.

The movement of edge-lines in a sequence of images is measured by tracking to maintain an image-
plane description of movement. This description is composed of a list of edge-segments represented as
a parametric primitive. Each parameter is composed of an estimated value, a temporal derivative, and a
covariance matrix. Line segment parameters are updated using a Kalman filter. The correspondence
between observed and predicted segments is determined by a nearest-neighbor matching algorithm
using distance between parameters normalized by covariance. It is observed that constraining the
acceleration of edge-lines between frames permits the use of a very simple matching algorithm, thus

yielding a very short cycle time.

Three dimensional structure is computed using the correspondence provided by the 2-D segment
tracking process. Fusion of 3-D data from different view points provides an accurate representation of
the geometry of objects in the scene. An extended Kalman filter is applied to the inference of the 3-D
position and orientation parameters of 2-D segments. This process demonstrates that 2-D tracking

provides the information for an inexpensive technique for estimating 3-D shape from motion.

Results from several image sequences taken from a camera mounted on a robot arm are presented to

illustrate the reliability and precision of the technique.
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1. Introduction

This paper presents a framework for incrementally modeling the contents of a scene by integrating
successive observations. This framework has been developed through a sequence of projects during
the last decade, including several systems for dynamically modeling the free-space around a mobile
robot ultrasonic range sensors [Crowley 85], and a system for mobile robot perception using vertical
line stereo matching [Crowley et. al. 90]. Through-out these projects we have developed a
methodology for constructing perceptual systems and refined a set of mathematical tools for such
systems. This paper presents the resulting framework, reviews the tools for such systems and
illustrates these tools with the design of a system for tracking edge lines in a sequence of images and

constructing a 3-D model from the image-plane displacement of these edge lines.

Early versions of the 2-D and 3-D modeling systems have been reported in conference papers. The
design of the system for 2-D tracking and experimental measures of its reliability were described in
[Crowley et al. 88]. The system for incrementally modeling the 3-D structure of objects was described
in [Skordas 89] as well as in [Crowley-Stelmaszyk 90]. This paper includes a number of

improvements to these systems since their earlier description.

The 2-D and 3-D modeling systems described below permit us to make several conclusions about the

role of prediction and estimation in perception:

1) Real time tracking can be based on a very simple "nearest-neighbor" matching
algorithm. A first-order predictive system makes possible a very simple matching
algorithm.

2) Tracking preserves correspondence. The correspondence between image features
established by tracking can be preserved and propagated throughout a system, thus
avoiding a more costly matching between 3-D structures. This is particularly useful in
real time stereo systems.

3) Once an estimate has been established for a 3-D structure, the position and properties of
the structure may be recursively estimated from successive observations without explicit
computation of depth, using an extended Kalman filter.

4) A perceptual system can be designed using a layered architecture of predict-match-
update cycles (described below). The model maintained within each cycle serves as an
observation for cycles in a more abstract coordinate space.

These conclusions were observed as a result of building systems for dynamic modeling applying tools
from estimation theory within a framework described in the next section. The work described in this

paper is an example of the role of estimation theory in computer vision.



In the following section we review the theoretical foundations and mathematical tools for our work in
dynamic world modeling. We present world modeling as a continuously operating cyclic process
composed of the phases: predict, match and update. We also describe techniques from estimation
theory for each of these processes. In section 3 we apply this framework to the problem of tracking
edge segments in an image sequence. In section 4 we show how the tracking process can be exploited
to provide the 3-D position of segments by a process of motion stereo. In section 5 we extend the
tracking process to 3-D, and show how such 3-D tracking can take the form of an extended Kalman
filter. Section 6 provides the results of experimental evaluation, followed by discussions and

conclusions in section 7.

2. Theoretical and Mathematical Foundations

The section begins with description of dynamic world modeling as an iterative process of integrating
observations into an internal description. Techniques are then presented for each of the phases of the

cyclic process.

2.1 A framework for Perception: The Predict, Match and Update Cycle

Dynamic world modeling is a cyclic process in which a model of a scene is elaborated by integrating
(or fusing) successive observations. This sequence of observations may come from multiple sensors

as well as from a-priori descriptions of the scene.

eeo Transformation ©00
— —-J— — — — — Common Vocabulary
Match <
Update
Predict

Figure 2.1 A General Framework for Dynamic World Modeling.

A general framework for dynamic world modeling is illustrated in figure 2.1. In this framework,

independent observations are "transformed" into a common coordinate space and vocabulary. These
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observations are then integrated (fused) into a model (or internal description) by a cyclic process

composed of three phases: Predict, Match and Update.

Predict: The current state of the model is used to predict the state of the external world at the
time that the next observation is taken.

Match: The transformed observation is brought into correspondence with the predictions.
Such matching requires the predictions and observations be transformed to the same
coordinate space.

Update: ~ The update phase integrates the observed information with the predicted state of the
model to create an updated description of the environment composed of hypotheses.

The update phase serves both to add new information to the model as well as to remove "old"
information. During the update phase, information which is no longer within the "focus of attention"
of the system, as well as information which has been found transient or erroneous, is removed from the
model. This process of "intelligent forgetting" is necessary to prevent the internal model from growing

without limits.

This framework can be applied at every level of abstraction within a perceptual system. In particular,
such a process may be used in the 2D description of images, in the 3D scene modeling system, and in

the symbolic scene description process.

2.2 The Use of Estimation Theory for Fusion and Tracking in Vision

Recent advances in sensor fusion within the vision community have largely entailed the rediscovery
and adaptation of techniques from estimation theory. Our work on 2-D tracking was partly inspired by
Gennerey, who has shown that the measurement of the motion of points in an image sequence could
be based on a Kalman filter [Gennerey 82]. We adopted a similar approach for incremental
construction of world model of a mobile robot using a rotating ultrasonic sensor [Crowley 85]. That
work was generalized [Crowley 84] to present fusion as a cyclic process of combining information
from logical sensors. The importance of an explicit model of uncertainty was recognized, but the
techniques were for the most part "ad-hoc". In the same period, Herman and Kanade [Herman-Kanade
86] combined passive stereo imagery from an aerial sensor to design a system for "incremental
modeling". Driven by the needs of perception for mobile robotics, Brooks [Brooks 85] and Chatila

[Chatila 85] also published ad-hoc techniques for manipulation of uncertainty.

In 1986, a pre-publication of a paper by Smith and Cheeseman was very widely circulated [Smith-
Cheeseman 87]. In this paper, the authors argue for the use of Bayesian estimation theory in vision
and robotics. An optimal combination function was derived and shown to be equivalent to a simple
form of Kalman filter. At the same period, Durrant Whyte completed a thesis [Durrant-Whyte 87] on

the manipulation of uncertainty in robotics and perception. This thesis presents derivations of
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techniques for manipulating and integrating sensor information which are extensions from estimation
theory. Faugeras and Ayache [Faugeras et. al. 86] contributed an adaptation of this theory to stereo
and calibration. Matthies et. al. [Matthies et. al. 87] have demonstrated recovery of depth from lateral
displacement of points in a dense image sequence using a Kalman filter by tracking gray level values.
From 1987, a paradigm shift occurred in the vision community, with techniques from estimation theory

being increasingly adapted.

While most researchers applying estimation theory to perception can cite one of the references [Smith
Cheeseman 87], [Durrant Whyte 87] or [Faugeras et. al. 86] for their inspiration, the actual techniques
were well known to some other scientific communities, in particular the community of control theory.
The starting point for estimation theory is commonly thought to be the independent developments of
Kolmogorov [Kolmogorov 40] and Weiner [Weiner 49]. (Weiner's work during the 1940's concerned
the estimation of flight paths and could only be published after the war.) Bucy [Bucy 59] showed that
the method of calculating the optimal filter parameters by differential equation could also be applied to
non-stationary processes. Kalman [Kalman 60] published a recursive algorithm in the form of
difference equations for recursive optimal estimation of linear systems. With time, it has been shown
that these optimal estimation methods are closely related to Bayesian estimation, maximum likelihood
methods, and least squares methods. These relationships are developed in textbooks by Bucy and
Joseph [Bucy-Joseph 68], Jazwinski [Jazwinski 70], and Melsa and Sage [Melsa-Sage 71]. These
relations are reviewed in a recent paper by Brown [Brown et al. 89], as well as in a book by Brammer
and Siffling [Brammer-Siffling 89].

In the remaining sections of this chapter we show how techniques from estimation theory may be
applied to the predict-match-update cycle, in the case where the model is composed of parametric

primitives.

2.3 Representation: Parametric Primitives

A dynamic world model, M(t), is a list of primitives which describe the "state" of a part of the world at

an instant in time t.
Model: M(t) = { P1(t), Px(0), ..., Pp(D)}

A model may also include "grouping" primitives which assert relations between lower level primitives.
Examples of such groupings include connectivity, co-parallelism, junctions and symmetries [Horaud et

al. 90]. Such groupings constitute symbolic properties and are not addressed in this paper.

Each primitive P(t) in the world model, describes a local part of the world as a conjunction of estimated

properties, X (t), plus a unique ID and a confidence factor, CF(t).



Primitive :  P(t) = {ID, X (t), CF(t)}

The ID of a primitive acts as a name by which the primitive may be referred. The confidence factor,
CF(t), permits the system to control the contents of the model. Newly observed segments enter the
model with a low confidence. Successive observations permit the confidence to increase, where as if
the segment is not observed in the succeeding cycles, it is considered as noise and removed from the
model. Once the system has become confident in a segment, the confidence factor permits a segment
to remain in existence for several cycles, even if it is obscured from observations. Experiments have
lead us to use a simple set of confidence "states" represented by integers. The number of confidence

states depends on the application of the system.

The properties, X (t), may be either a numeric value or a symbolic label from a finite class of symbols.
In this paper we confine our discussion to numeric properties, for which we may employ the

mathematical techniques from estimation theory.

A primitive represents the local state of a part of the world as an association of a set of N properties,
represented by a vector , X(t).

X() = {x1(), x2(D) ... Xn(D)}.

The actual state of the external world, X(t), is estimated by an observation process which is assumed to
be corrupted by random noise, N(t). The world state, X(t), is not directly knowable, and so our

estimate is taken to be an expected value.
X (® =E{X® +N©O}

At each cycle, the modeling system produces an estimate X (t) by combining a prediction, Y*(t), with
an observation Y(t). The difference between the predicted vector Y*(t) and the observed vector Y(t)

provides the basis for updating the estimate X (t), as described below.

In order for the modeling process to operate, both the primitive, X (t) and the observation, Y(t) must be
accompanied by an estimate of their uncertainty. This uncertainty may be seen as an expected deviation
between the estimated vector, X (t), and the true vector, X(t). Such an expected deviation is
approximated as a covariance matrix c (t)! which represents the expected difference between the
estimate and the actual world state.

IIn the control theory literature, it is traditional to use P(t) for this covariance. Unfortunately, this
conflicts with our use of P(t) as a point in the image or scene, as well as for a primitive in the world
model.



¢ (1) = E{X(0) - X 0] [X@®) - X ()}] T}

Modeling this precision as a covariance makes available a number of mathematical tools for matching
and integrating observations. The uncertainty estimate is based on a model of the errors which corrupt
the prediction and observation processes. Estimating these errors is both difficult and essential to the

function of our system.

The uncertainty estimate provides two crucial roles in our system:

1) It provides the tolerance bounds for matching observations to predictions, and

2) It provides the relative strength of prediction and observation when calculating a new
estimate.

Because C' (t) determines the tolerance for matching, system performance will degrade rapidly if we
under-estimate C (t). On the other hand, overestimating ¢ (t) merely increases the computing time for

finding a match.

2.4 Prediction: Discrete State Transition Equations

The prediction phase of the modeling process projects the estimated vector X (t) forward in time to a
predicted value, X*(t+AT). This phase also projects the estimated uncertainty c’ (t) forward to a
predicted uncertainty C*(t+AT). Such projection requires estimates of the temporal derivatives for the
properties in XA(t), as well as estimates of the covariances between the properties and their derivatives.

A
These estimated derivatives can be included as properties in the vector X (t).

In the following, we will describe the case of a first order prediction; that is, only the first temporal
derivative is estimated. Higher order predictions follow directly by estimating additional derivatives.
We will illustrate the techniques for a primitive composed of two properties, x1(t) and x(t). We
employ a continuous time variable t to mark the fact that the prediction and estimation may be

computed for a time interval, AT, which is not necessarily constant.

Temporal derivatives of a property are represented as additional components of the vector X(t). Thus, if
a system estimates N properties, the vector X(t) is composed of 2N components: the N properties and
N first temporal derivatives. It is not necessary that the observation vector, Y(t), contain the derivatives
of the properties to be estimated. One of the surprising aspects of the Kalman filter is that we can
iteratively estimate the derivatives of a property using only observations of its value. Furthermore,
because these estimates are developed by integration, they are more immune to noise than

instantaneous derivatives calculated by a simple difference.

Consider a property, X' (t), of the vector X (t), having variance 0" Xz. A first order prediction of the value

A



x*(t+AT) requires an estimate of the first temporal derivatives, X"'(t).

0k (t
) =

The evolution of X(t) can be predicted by a Taylor series expansion. To apply a first order prediction,
all of the higher order terms are grouped into an unknown random vector V(t), approximated by an
estimate, VA (t). The term VA (t) models the effects of both higher order derivatives and other unpredicted

phenomena. V(t) is defined to have a variance (or energy) of Q(t).

QM =E{V(®) V(H'T}

When V(t) is unknown, it is assumed to have a



expected value of zero. However, in some situations it is possible to estimate the perturbation from
knowledge of commands by an associated control system. In this case, an estimated perturbation

A A
vector V (t) and its uncertainty, Q (t) may be included in the prediction equations.

Thus each term is predicted by:

X (t+AT) = () + a%t(t) AT +V\(t)

Let us consider a vector, XA (t), composed of the properties X (t) and X' »(t) and their derivatives.

&(t)
A

A Xi'(t)

XO=1 %0
%'(1)

The time increment AT is included in the transition matrix, (P.

1 AT O O
0100

®= 1|00 1AT
0 001

This gives the prediction equation in algebraic form as:
XH(t+AT) := @ X (1) + V (1) 2.1)

k
Predicting the uncertainty of X (t+AT) requires an estimate of the covariance between each property, x*

(t) and its derivative.

. ) ) A ) .
An estimate of this uncertainty, Q x(t), permits us to account for the effects of unmodeled derivatives

when determining matching tolerances. This gives the second prediction equation:

Cx" (+AT) := @ C 10 PT + Q x(1) (2.2)

2.5 Matching Observation to Prediction: The Mahalanobis Distance

The predict-match-update cycle presented in this paper simplifies the matching problem by applying

the constraint of temporal continuity. That is, it is assumed that during the period AT between

observations, the deviation between the predicted values and the observed values of the estimated

primitives is small enough to permit a trivial "nearest neighbor" matching.

Let us define a matrix YHy which transforms the coordinate space of the estimated state, X(t), to the
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coordinate space of the observation.
Y (t) = YHy X(t).

The matrix YHy constitutes a "model" of the sensing process! which predicts an observation, Y(t)
given knowledge of the properties X(t). Estimating YHy is a crucial aspect of designing a world
modeling system. The model of the observation process, YHy, should not be assumed to be perfect. In
machine vision, the observation process is typically perturbed by photo-optical, optical and electronic

effects. Let us define this perturbation as W(t). In most cases, W(t) is unknown, leading us to estimate
W (1) = E{W()} =0

and
Cy() = E{ W) W T}

To illustrate this process, suppose that we can observe the current value of the parameters but not their

derivatives. In this case YHy, can be used to yield a vector removing the derivatives from the predicted

properties. The two-property, first order vector used in the example from the previous section would
give a prediction YHy of:

x1%(t)
lm*(t)l ~ [1 00 o] x1™'(t)
ol T 0010 x2*(t)
x2"(t)

Of course YHy may represent any linear transformation. In the case where the estimated state and the
observation are related by a transformation, F(X), which is not linear, YHy is approximated by the first

derivative, or Jacobian, of the transformation, YJx.

IF(X
k= T

Let us assume a predicted model M*(t) composed of a list of primitives, P*(t), each containing a
parameter vector, X*(t), and an observed model O(t) composed of a list of observed primitives, Py (t),
each containing the parameters Y(t). The match phase determines the most likely association of
observed and predicted primitives based on the similarity between the predicted and observed

properties. The mathematical measure for such similarity is to determine the difference of the

I YHy is sometimes known as the "Sensor Model". This use of the word "model" by the estimation

theory community creates an unfortunate conflict of terms with the vision community.



properties, normalized by their covariance. This distance, normalized by covariance, is a quadratic form

known as the squared Mahalanobis distance.
The predicted parameter vector is given by:
Y, = YHy X,"
with covariance
Cyn = YHy Cyp YH,T

The observed properties are Y, with covariance Cyp,. The squared Mahalanobis distance between the

predicted and observed properties is given by:

2 1 * T * -1 *
Dim = 7 {(Yn -Ym)" (Cyn +Cym)™ Yn = Ym)}

For the case where a single scalar property is compared, this quadratic form simplifies to:

In the predict-match-update cycles described below, matching involves minimizing the normalized
distance between predicted and observed properties or verifying that the distance falls within a certain
number of standard deviations.

2.6 Updating: The Kalman Filter Update Equations

Having determined that an observation corresponds to a prediction, the properties of the model can be
updated. The extended Kalman filter permits us to estimate a set of properties and their derivatives, X
An(t), from the association of a predicted set of properties, Y,"(t), with an observed set of properties,
Ym(t). It equally provides an estimate for the precision of the properties and their derivatives. This
estimate is equivalent to a recursive least squares estimate for X,(t). The estimate and its precision will

converge to a false value if the observation and the estimate are not independent.

The crucial element of the Kalman filter is a weighting matrix known as the Kalman Gain, K(t). The
Kalman Gain may be defined using the prediction uncertainty C;f" (©).

K@) = Ci () YHT[C§ 0+ Cy(0)] ! 23)
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The Kalman gain provides a relative waiting between the prediction and observation, based on their
relative uncertainties. The Kalman gain permits us to update the estimated set of properties and their

derivatives from the difference between the predicted and observed properties:

X = X¥) + KO [Y() = Y] (2.4)
The precision of the estimate is determined by:

(1) := C* (1) - K(t) YH, C* (1) (2.5)

Equations (2.1) through (2.5) constitute the 5 equations of the Kalman Filter. In the following three
sections, we apply these techniques to the predict-match-update cycles for tracking edge lines in the
image plane and for inferring the 3-D scene coordinates for image features from the image plane

motion.

3. Measuring Image Structure by Tracking Edge Segments

Correspondence of edges in a dense temporal sequence of images can be maintained by a very simple
tracking process based on the predict-match-update cycle. Such a process has been described in
[Crowley et. al. 88]. This tracking process is well debugged and has been used in a number of our
projects. Real time hardware, capable of tracking up to 256 segments at 10 cycles per second, has

recently been constructed using this algorithm [Chehikian 90].

In this section we describe the tracking process. We present a representation which permits line
segment motions to be modeled as an independent set of four parameters. This is followed by sections
which describe the processes for prediction of the model state, for matching observed segments to

model segments, and for updating the flow model.

Observed Edges

i

S Match

Predict Update

i
Image Flow Model

Figure 3.1. The Image Flow Modeling Process.

11



3.1 A Dynamic Model for Image Structure

The edge segment tracking process is illustrated by figure 3.1. For each time, t, that an image is
observed, the state for an image flow model is predicted. The edge segments which are observed in the
image are then matched to the predicted flow model. Matches between observed edge segments and the

predicted flow model are used to update the flow model.

Newly observed edge-line segments are extracted from each image comprise the "observation" which
is used to update the image flow model. As the observed edge segments for each new image are made
available, the segments in the flow model "find their match" among the observed edge lines. The
dynamic and geometric attributes of each model segment are updated using the corresponding
observed segment. The simplicity of the matching and updating process is made possible by a
parametric representation for edge lines which separates position information into its perpendicular
and tangential components. This representation permits tracking to be performed as a set of four 1-D

Kalman filters.

3.2 A Parametric Representation for Line Segments

A minimal representation for a line segment requires four parameters. The classic representation is the
Cartesian coordinates of the two end-points. An alternative representation is to express a line segment
in terms of a center point, half-length and orientation. This second representation provides advantages
for matching and for flow estimation. None-the-less, the uncertainty of the x and y components of the
center point are strongly correlated, and a proper estimation system requires a coupling these
parameters, yielding a 4 by 4 covariance matrix which must be inverted for both matching and

updating.

If we consider the effect of image noise on the process of extracting edge lines we can make a number

of observations. In particular:

1) The length of a line segment is often unreliable, due to random effects which break edge
lines into smaller segments. Thus, along the line direction, the position of a segment is
unreliable and has a large uncertainty.

2) The perpendicular position of a line segment may be measured with precision. This
value is often a parameter of the segment extraction process, and is usually on the order
of a pixel.

3) The orientation of a line segment has a precision which is proportional to the ratio of the

perpendicular precision and the length. Longer segments have a more precise
orientation.

12



These observations show that the error statistics on the midpoint are strongly correlated with the edge-
segment orientation, suggesting the use of a representation in which perpendicular position and
tangential position of a line segment are made explicit and separate. Such a suggestion is reinforced by
the well know "aperture effect" [Hildreth 82] in measuring motion. That is, for edges, it is generally
only possible to directly measure perpendicular displacement. Tangential displacement is ambiguous
because of the one-dimensional nature of edge lines. These considerations suggested a representation
for edge lines in which the Cartesian expression of the midpoint, (X, y) is augmented by an expression
in terms of the parameters (c, d) which represent the perpendicular and tangential distance from the

origin.

d= xCos(0) - y Sin(0)
c¢= xSin(0) + y Cos(0)

The advantage of this representation is that it allows us to represent each parameter and its time
derivative as a scalar estimate and a scalar variance. The disadvantage is a "lever-arm" effect. For

segments which are not near the origin, a small error in 0 can provoke a large variation ¢ and d. The

result can be a considerable number of correspondences incorrectly rejected during matching.

After considerable experimentation with a 4 parameter segment represented by (c, d, 0, h) we ultimately
settled on a redundant representation composed of the 5 independently estimated parameters: (Xc, Yc, O,
h, ¢). The extra parameter, ¢, provides the perpendicular tolerance for matching, as well as a direct

estimated of the perpendicular velocity of the segment.

Thus the representation for segments is composed of the following parameters:
Xc  The horizontal position of the center point.

ye  The vertical position of the center point.
The orientation of the segment.
The half-length of the segment.

c The perpendicular distance of the segment from the origin.

In addition, the segment end-points P1 and P, and the line equation coefficients, a and b, are

maintained for each segment. The line coefficients are computed from the orientation using the

formulas:
a = sin(0)
b =—cos(0).

3.3 Representation for Line Segments in the 2-D Model

In the flow model it is necessary to estimate the time derivative of each parameter along with its
precision. A direct approach would lead us to a Kalman filter which estimates each line segment with

an 8 dimensional vector (4 parameters and 4 derivatives) and an an 8 by 8 covariance matrix. We have
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greatly simplified the computational load by separating the estimation into 5 independent estimations,
for each of the properties in the vector S.

S= {Xc Yo 0, h,c}

. ) . A
For each parameter x € S we maintain a first order estimate vector X (t).

X (= [fr(?)]

In addition, for each property x €S, it is necessary to represent its variance, the variance of the

temporal derivative, and a covariance between the estimate and its temporal derivative

2 b
CAX(t) - [ 2:)(' 2‘21

In addition to the attribute vector, S, each line segment contains a set of redundant parameters
composed of its center point expressed in image coordinates, P, as well as its end points, P; and P».
These redundant parameters are recomputed from the parameters in S during each cycle. Each segment
also contains a confidence factor, CF, which expresses the confidence in the existence of a token in
the model, and a unique identity, ID.

The confidence factor is expressed as an integer state, from the set {1, 2, 3, 4, 5}. CF = 1 represents a
model segment which is very uncertain. CF = 5 represents a segment which has been reliably tracked
for at least 3 frames. When the token for a segment is first created, it is added to the model with a
confidence factor of CF = 3. During each update cycle, if a correspondence is found for a token, the
CF is incremented by 1, up to a maximum value of 5. If no correspondence is found, the CF is
decremented by 1, to a minimum value of 0. If the CF passes to 0, the token is removed from the
model. The use of a confidence factor gives the flow model a degree of immunity to the temporary loss

of edge lines in as many as four successive observation images.

The ID is a unique index which makes it possible to identify a segment at different times. In the
following section, we describe a technique based on periodic "snapshots" of the flow model. The
correspondence of segments in these "snapshots" is directly available from the segment ID. From the
difference in position of a segment in two snapshots, we can calculate a 3D segment. The 3D segment
conserves this ID, which makes it possible to directly associate a reconstructed 3D segment with a

segment in the 3D model, without 3-D correspondence matching.

In summary, a line segment is represented in the model with the following parameters:

Horizontal Position:  { X¢, X\, Oxz, Oxx's Ox'z }
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Tangential Position: {vye Ychs Oyz, Oyy', y'2 ¥

Perpendicular Position: {c,c, Ocz, Occ's Ocv2 }
Orientation: {6,0, 0g2, 0y, 0p2 }
Half Length: {h, 1", 02, Oy, O2 ¥
Confidence Factor: CF

Identity: ID

Line coefficients: (a = sin(0), b=—cos(0)).
End-points {x1,yD), (x2,y2)}

3.4 Predicting the State of Line Segments

Given an estimate set of parameters, s (t), the prediction follows directly from the prediction equations
(1) and (2) developed above. For each x € S = {x, y¢, 0, h, c}:

XH(+AT) == @ X (1) + V (1)

and
Cy* (+AT) = @ Cx(H) QT + Q x(t) AT
where
¢= Lo

A
When the camera velocity is constant, the term V (t) is set to zero for the five parameters. When the
camera undergoes an acceleration, a compensation term is added based on the movement and the
estimated depth to the 3-D structure which corresponds to the structure in the 3-D model described

below.

This prediction assumes that there is no unmodeled acceleration between update cycles. Indeed,

accelerations exists and are a real source of uncertainty. To account for the possibility of accelerations,
the uncertainty of each attribute is increased by a constant term, Gaccz, multiplied by the time interval

A
to the fourth power. For each of the parameters, this term is included in the term Q x(t) :

Gy = | % O]

3.5 Matching Predictions to Observations

When a flow model is matched to observations with sufficiently small time delay, matching can be
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based on a nearest neighbor association between the predicted and observed tokens. This approach is
self-reinforcing, in that if matching is based only on difference between attributes, it can be done with
a very simple, and fast process. The simplicity of the matching is of fundamental importance, precisely

because the cost of matching dominates the tracking process.

At the beginning of the matching process, the state of each token in the flow model is predicted based
on the time delay, At, since the last model update. Each model token then scans the observed segment
to find a best match. The state vector of each token is then updated with its match, as described in this

section.

Because of the uncertainty of the mid-point position is strongly correlated with 0, matching can not be
based on a simple comparison of attributes. We have developed a matching test in which each model
token searches the list of observed tokens for its best match by testing for similar orientation,
alignment, and overlap. If any test is failed, matching proceeds to the next observed token. The tests
for orientation and co-linearity are made by testing to see if the difference in attributes is less than a
threshold number of standard deviations. For overlap, the half length of the segments is used as a

tolerance region.

2

Observed
s
Mode—— Not Similar Orientation
—— Observed —
Modet Not Aligned
Model —— Observed — No Overlap

Figure 3.2 To match an observation, a predicted model segment must have a similar orientation, be co-

linear and must overlap the observed segment. These figures illustrate these three criteria.

For model segment Y,* = { Xm> Yme €me Ome> hms @m» bmJ)» and observation segment Yo = {Xq, Yo Co»

0o, hg, ag, by}, the test for similarity of orientation is:
(O - 00)2 = 2 ( Ogm2 + Ogo?).

If the test is true, then the observed segment is tested for co-linearity with the model token by

comparing the distance from the midpoint of each segment to the line of the other segment:
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(am Xo + bm Yo + Cm)2 < Ocmz) AND
(ao Xm + boyl‘n + C0)2 < OCOZ)) THEN

If the observed segment passes this test then the segments are tested to see if they overlap. The test for
overlap is made using the half length of the segments as an uncertainty along the line segment. Thus

the test compares the sum of the half lengths to the difference between mid-points.
(Xm—X0)? + (Ym —Y0)? = (hym + hp)?

If an observed segment passes all three tests, then a similarity to the model segment is calculated,

using the sum of the differences normalized by the standard deviations for orientation and length.

Si £y (0o - Om)? (Xm —X0)? + (Ym — Yo)?
imi Yo = +
(Ym 0) 0602+ 08m2 (hm + hO)Z
(amXo + bmyo + cm)? (a0Xm + boym + €o)?
+ +
Ocm? Oco?

This similarity measure is a form of Mahalanobis distance, that is distance, normalized by variance.
The observed token with the smallest value of the similarity measure is selected as matching the model

token, and is used to update the token state vector and uncertainties.

3.6 Updating a Model Segment with an Observation

The flow model is updated by updating the attributes and confidence factor of each token for which a
match was found, and reducing the confidence factor for tokens for which no match was found. This
process is described in this section.

Given an observed edge line which matches a model token, the update process is based on equations

(2.3), (2.4) and (2.5) above. Foreach x €S = {x¢, y¢, 0, h, ¢} the transformation from the predicted

vector and its derivative to the coordinates of the observation vector is the row vector
YH, = [1 0]
For each x € S = {x(, y¢, 0, h, c} we compute a Kalman Gain vector as:

K = CX* () YH,T [ YHy C¥* (1) YHT + C§ (p] -
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For each parameter x € S = {c, d, 0, h}, a new estimated vector is obtained by
X(t) = X*(t) +K() [ Y(t) - YHx X*(t) ]

A new estimated uncertainty is obtained from
(1) := C* (1) - K(t) YHy C*(0)

If a match is found for a model segment, the confidence factor is incremented, to a maximum value of
5. If no match is found for a segment, the estimated parameters are set as the predicted parameters, and
the confidence factor is decremented by 1 to a minimum of 0. If the value of CF descends to 0, then

the token is removed from the model.

3.7 Adding New Observations to the Model

When an observed segment is determined to be the best match for a token, it is marked as matched.
After all of the model tokens have been updated, and the model tokens with CF = 0 removed from the

model, each unmatched observed segment is added to the model using default parameters.

New tokens are created using the observed value for the parameter estimates, and a temporal derivative
of zero. The parameter covariances are set to large default values. The token confidence factor is set to
1. Thus in the next cycle, a new token has a significant possibility of finding a false match. False
matches are rapidly eliminated, however, as they lead to incorrect predictions for subsequent cycles and
a subsequent lack of matches. Because an observed token can be used to update more than one model
token, such temporary spurious model tokens do not damage the parameters of other tokens in the

flow model.

4. Estimating the 3-D Structure from 2-D Tracking

Tracking edge lines from a moving camera provides a number of useful capabilities. One property is
that tracking suppresses image noise. A second property is that tracking preserves correspondence.
Because the segment ID is furnished by 2-D tracking, this correspondence matching is reduced to a
simple verification. Tracking removes the necessity for 3-D matching thus simplifying the composite

modeling process.

In the following two sections we show how multiple observations of a scene, kept in correspondence
by tracking, can be used to reconstruct and maintain a 3-D composite model from the motion of a
camera mounted in the gripper of a robot manipulator. In this section we present the boot-strap phase,

in which newly observed segments are projected to 3-D scene coordinates using standard stereo
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equations. In the next section we describe how the Kalman Filter is used to refine the estimated
position of such 3-D segments. By this form of motion stereo we are able to recover three dimensional

edge-line segments which are integrated in a composite local model.

The system is illustrated in figure 4.1. The 3-D composite model is updated whenever the accumulated
camera motion exceeds a threshold distance (approximately 5 cm in our experiments). The update
phase for 2-D modeling is considerably faster than that of 3-D modeling. Two forms of 3-D
inference are used in this system: boot-strap initialization and steady state maintenance. Segments
from the 2-D flow model are treated as an observation and compared to the 2-D projection (prediction)
of segments from the 3-D model. Correspondence is determined directly from the segment IDs and is

verified by comparison of the orientation, alignment and overlap, as described above.

Observed Edges

 E— Match

Update

Predict

T— 2-D Edge Model

—— |  Verification I

Stereo
Projection

Update a |

L ( 3-D Composite Model

Figure 4.1 System for maintaining a 3-D Composite model of a scene from the motion of a camera on

a robot arm.

Initialization: Observed segments for which no segment exists in the 3-D model, are passed to the
initialization phase to be used to create a new 3-D segment for the model. The 3-D position of edge
segments is initialized using a classical stereo solution. "Snapshots" of the flow model are saved a
each update of the 3-D Model. Knowledge of the camera location at the time of each update permits
us to compute the three dimensional locations for corresponding edge lines. These observed 3-D edge
lines are then used to update the 3-D composite model. This process is described in section 4.3

below.

Maintenance: When a 3-D model segment exists for an observed segment, the parameters of the
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observed segment are refined using an extended Kalman filter. This process is described in section 5

below.

The 3-D composite model uses a 3-D edge line primitive described in [Crowley 86]. These 3-D edge-
line primitives contain an explicit estimate of the uncertainty of the 3-D positions. As with the flow
model, a Kalman filter update equation is used to refine the estimated position and uncertainty. The
resulting 3-D edge line segments are more reliable and more precise than individual observations of 3-

D segments obtained from pairs of "snapshots" of the flow model.

In the following section we described the notation and set of coordinate systems that are required to
reconstruct the three dimensional form of the scene from a camera mounted on a robot arm. This is
followed by a description of the representation which is used to represent 3-D edge line segments. We
then present the techniques for inferring the 3-D position of segments. Finally we describe the update
process for the 3-D composite model.

4.1 Coordinate Systems and Notation

The derivation of the equations for recovery of 3-D structure from the movement of a camera on a
robot arm requires that we define a set of coordinate systems, as well as homogeneous coordinate

transformations between these coordinate systems.

(Calibration Grid)

Robot Scene

Figure 4.2 Coordinate Systems and Transformations
The transformations with which we are concerned are illustrated in figure 4.2. They are:

°R, The transformation from robot to effector coordinates

°C. The transformation from effector to camera coordinates
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“E; The transformation from scene to camera coordinates
"M, The transformation from camera to image coordinates

'N, The transformation from scene to image coordinates

Notice that the transformations iMC and iNS include the projective transformation and thus have no

nverse.

Constructing an estimate of the position and uncertainty of 3-D contours in scene coordinates requires
a model of the image formation process. Such a model is expressed as a composition of the intrinsic
and extrinsic parameters of the camera. For the intrinsic camera parameters we employ a standard
"central projection" model of image formation. The intrinsic parameters form a transformation, iMC,
which describes the projection of the point P_ in coordinates centered on the camera to a point in the

image, wP;, where w is the homogeneous variable.

WX

wP, = |Wyi| = M_P,
W

To obtain the image coordinates for w xj, wy; it is necessary to divide by w.

The extrinsic parameters describe a projection, “E, of a point from scene coordinates, P¢ to camera

center coordinates, P..
P.= CES Py

Together the intrinsic and extrinsic parameters describe a projection, 'N, from scene coordinates to

image coordinates,
INg = M, °E,
so that a point in the scene Py is projected to a point in the image wP; by
wP, = IN; P.. (4.1)

The extrinsic camera parameters may be estimated as a composition of the position and orientation of
the robot arm "tool" coordinates and the transformation from the tool coordinates to the camera. An
estimate of the position and orientation of the robot arm tool coordinates is provided to us by the arm
controller. The estimate of the position and orientation with respect to tools coordinates is a rigid
transformation which can be calibrated when the system is initialized using a technique developed by
Tsai and Lenz [Tsai et al. 87].
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Modeling the scene from multiple view points requires that the recovered 3-D structure be expressed
in a common coordinate system. For convenience, we have chosen to use the calibrated scene
coordinate system, defined by the calibration grid. Let "R represent the robot position at the time of

the calibration of the first image, and let "R represent the robot position at the time at which the flow

model was updated from the kth image. The extrinsic camera transformation for the kth image may be

computed from the robot effector position by:
CEsk = eCC_l rRek_l rRe() eCc CEs-

so that the projection of a point in the scene to a point in the image for camera position k is given by:
iNsk = iMc eC(:_1 rRek_l rRe() eCc CEsO

This computation requires only one matrix inversion and two matrix multiplications. The terms eCC'1

and "Ry °C. “E are computed at the time of calibration.

4.2 Initializing the 3-D Model

2-D Flow Model
after image k

2-D Flow Model
after image k-n

Camera Position k-n —>»
Stereo Reconstruction

'

Observed 3-D Segments

Figure 4.3 The 3-D Reconstruction Process.

Camera Position k —>

The extrinsic camera parameters for arbitrary viewing positions permit us to use standard stereo
reconstruction equations. This process is illustrated in figure 4.3. The composition of intrinsic and
extrinsic camera parameters describes the projection of a scene point to an image point. Using

homogeneous coordinates, this relation has the form:

. Xs
WXj

wyi| = INg |2

W ls
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Because we can not invert iNS, we are obliged to deal algebraically with the individual relations. Let
Nk 2N, and 3N, represent the first, second third rows of the kth transformation from scene to

image, N sk-

For two observations (1 and 2) of a scene point we obtain the image points P;; = (X, yj;) and Pj =
(Xj2, Yi2). By algebra we can deduce the relations [Toscani-Faugeras 86] for (xj;, y;;) and

transformations 'Ng; and 'N»:

o aNg o Py ~ 2Nsi o By A
Xll_ 3Nsl L4 PS YII— 3Nsl [ ) PS ( . )
1Ng2 * Py oNg * Ps
Xi2 = 3N, * Py Yi2 = 3N,, * Py (4.2)
or equivalently
Xi1 (3Ng; * Ps) = ({Ng; * Pg) =0 yi1 (3Ng; * Ps) —(oNg1 * P5) =0
Xi2 (3Ngp * Ps) = ({Ngr * Pg) =0 yi2 (3Ngp * Ps) —(bNgr * P5) =0

Each equation describes a plane in scene coordinates that passes through a column or row of the
image. This provides us with a set of four equations for recovering the three unknowns of Ps.

A common problem with edge line segments is the phenomena of "breaking". Although the token
tracking process reduces this phenomena, we must still assure that the end-points of the segments
correspond to the same physical point. To do this, we project the epipolar line from each end point into
the other image, to determine the part of the two segments which is common to the two segments, as

illustrated in figure 4.4.

Epipolar lines

/| \

/

Ry

.
\ y

Common part of segment

Figure 4.4 Determination of the common part of the two line segments. The epipolar lines from each
end points are projected onto the other image. The part which is common to the two line segments is

illustrated as a dark line.
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The stereo reconstruction equations are applied to the end points of the common part of the segment to
recover an observed 3-D edge segment which is represented as a pair of 3-D points and their
uncertainty. These 3-D points are used to initialize the 3-D composite model. To describe the

projection of the uncertainty we must describe the representation for 3-D segments.

5. Refining the 3-D Model with Multiple Observations

Once a 3-D segment has been entered in the composite model, its parameters and uncertainty can be
refined by additional observations using the Kalman filter equations developed in section 2. Since our
system involves a static scene, there is no estimation of the temporal derivatives. The prediction phase
projects the parameters of the 3-D segment into the current image coordinates using a Jacobian
transformation based on the perspective transformation iNsk. Correspondence is furnished directly
by the segment ID's, and is verified by the 2-D matching tests for similar orientation, co-linearity and
overlap described above. The 3-D segment parameters are then updated using the Kalman filter
equations (2.3), (2.4) and (2.5).

5.1 Representation for 3-D Lines Segments.

A line segment in the 2-D flow model corresponds to a line segment in the 3-D scene. In order to
apply Kalman filter estimation techniques to 3-D reconstruction we require a representation which
expresses a segment in terms of a minimum of parameters. However there are many minimal
representations for 3-D line segments. In [Ayache 89] a 3-D line is represented in terms of the
intersection of two planes. In [Crowley-Ramparany 87] a direct analog of the 2-D segment used above
above is introduced; 3-D segments are represented as a midpoint, a direction, a half length, the 3-D

uncertainty of the midpoint (perpendicular to the segment) and a 3-D uncertainty of the direction.

Figure 5.1 Representation for a 3-D segment and its Uncertainties.

In the 3-D model, segments are represented by the following parameters.
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P The center point of the segment (x, y, z).
The 3x3 covariance of the center point .

APg  An un-normalized direction vector.

CF The confidence of segment.
ID: The Identity of the segment (from the 2-D Model).

Based on these parameters, several redundant parameters can be computed.

D The normalized direction (expressed as Ax, Ay, and Az, normalized to unit length.)
Cp The 3x3 covariance of the direction

H  The half length of the segment.

These parameters are initially calculated from the 3-D end-points Py, P, and their covariances, C;,
C,, by:

(P; + Py)
Py =—77%
(C1 +Cy)
Co= —7

1
APg = 5 (Py-Pyp)

From which we can calculate the half length and unit direction vector and its covariance as:

H = Il AP Il
AP

D = TAP T
(CL +CH)

Cp= Il AP II 2

The covariance of the direction, Cpy, is an approximation of the uncertainty angle with respect to each

of the axes.

5.2 Predicting 2-D from 3-D

The prediction phase projects the mid-points of the 3-D segment into the current image coordinates
using the current transformation 'N.
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w P] = 1Nsk PS

To project the half-length, direction and covariances, we need a linear transformation from scene to
image coordinates. Such a transformation is provided by writing the projections equations for xj, yj,

and computing their derivative with respect to each of the scene coordinates, as shown in equations 4.1
and 4.2. That is, for the three lines of 'Ng represented by 1N, N, and 3N

1Ngk ® Ps
Xj = Fx;(Xs, ¥s,25) = 3N * P

2Nk * Ps
Yi= Fyi(XSaySaZS) = 3Ngk ® Ps

from which we can define an observation function:
Yi

The Jacobian of this transformation YJx gives an approximate linear transformation from scene to

FXi(X89 Ys»Zs) }

= F(Xs, Y5, Zs) = [ Fy.(Xs, Ys» Zs)

image coordinates for a particular value of scene coordinates.

ani(Xs, Ys»Zs) ani(Xs, Ys»Zs) ani(Xs, Ys»Zs)

_ 0Xg dys 0z s
Ix= aFyi(xs, Yss Zs) aFyi(Xs, Vs Zs) aFyi(XS7 Ys» Zs) G.D
aXS ays aZS

This approximation lets us project the direction vector to image coordinates by:

AP* _ [AX1*:| . YJ AP
1 = Ayi* .= X S

from which we can compute:

hi* =l APi>l< Il
and
Ay;*
0" = Tan-I( AX;* )

The covariance of the center point can then be projected to image coordinates by:
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Ci* :=YJx Cs" YI T
The uncertainty perpendicular to the segment may be computed using the coefficient vector as

where the line equation coefficients define a vector perpendicular to the segment
[ a ] [ Sin(6%) }
D= 1v)= [ _cose?

The uncertainty of the orientation is predicted by

%

op" :Tan-1<hii )

The correspondence is verified by comparing the predicted parameters to the 2-D model parameters

using the tests described in section 3.5.

5.3 Updating the Parameters of a 3-D Segment
Updating the parameters in the 3-D composite model follows directly from the Kalman filter equations

developed in section 2 using the Jacobian transformation developed in equation (5.1). The midpoint
positions uncertainty, C;(t), is formed from the variance of the midpoint.

Ci(t =

o2 0 l
0 0Oy2

This covariance permits us to compute a Kalman gain vector using equation 2.3.
K@®:= Cs® YITIC" O+ Ci] -1

and then to update the midpoint, direction, and covariance using equations 2.4 and 2.5.
Pyt) = Pg* (0 + K() [Pi(t) - Pi*(1)]
Alﬁ\s(t) := APg" (1) + K(t) [AP;j(t) — AP;*(1)]

and
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() := Cs™ (1) + K(t) YJy Cs™ ().

5.4 Managing the Confidence of Composite Model Segments

The confidence factor in the 3-D composite model is maintained in a manner which is similar to that in
the 2-D model, with one important difference. This difference concerns the elimination of segments
which are occluded. Segments which reach a confidence value of CFax (a value of 5 in our current
implementation) do not have their CF reduced when they are no longer observed. In this way, the
system can construct a model of a 3-D object which contains faces which are not simultaneously

visible.

At the end of the update phase for a set of observed segments, any segment for which no
correspondence was observed, and for which the CF has a value of less than CF4x has its confidence
reduced by 1. If the CF of a segment drops below 1, the segment is removed from the composite
model. Thus a segment must be present in at least 5 observations in order to be considered reliable

enough to be preserved in the model.

6. Experimental Evaluation

We have performed a number of experiments in 3-D scene modeling with our system, using a camera
mounted on a robot arm. The results of some of these experiments are described in this section. We
first present some results from an early experiment which illustrated the function of the entire system.
We then describe some more recent experiments designed to determine the limits to the precision of

the system.

6.1 Experimental Set-up

Our experiments used a CCD camera equipped with a 12.5 mm lens and mounted in the gripper of the
arm. Video signals from the camera are digitized using a frame buffer/digitizer board mounted in the
bus of a work-station. A six axis robot arm is linked with a robot controller capable of providing the
location of the robot gripper simultaneously with the acquisition of each image. This information

allows us to reconstruct the 3-D geometry of the scene.

The object used for each experiment is located at a distance of about 30 cm from the camera. The
camera follows a roughly circular trajectory which passes over the object. Camera displacements are
less than 1 cm per image, with rotations under 5° per image. The camera is moved to each image
position, and then an image is acquired (stop-and-go motion). Each sequence is composed of between

90 and 130 images, taken in 3 or 4 trajectories. The trajectories are determined automatically so as to
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assure a nearly perpendicular movement for each of the major 3-D edge segments on the object.

Edge points were detected by a version of the Canny operator designed and programmed by R.
Deriche [Canny 86], [Deriche 87]. Edge points were chained and segmented by a chaining program
realized by G. Giraudon. The 3-D model is updated after every fifth update of the 2-D model.

6.2 An Example of the Complete Process

One of the image sequences with which we have debugged the system is composed of 90 images of an
electrical switch box. Figure 6.1 shows an example of a raw image from this sequence. Figure 6.2
shows the edge segment description from every 5th image from image 15 to 90. Figure 6.3 shows the
2-D line segments that have been tracked for every 5th image for images 30 through 55. Segments are
displayed with their ID number. Figure 6.4 shows the evolution of the 3-D model. On the left are the
3-D segments obtained after image 15. The middle shows the result after integrating image 40. The

right shows the result after integration of all 90 images.

To evaluate the accuracy of these results we have built a software tool which permits us to easily
compare the measurements of physical structures on the object to the same structures in the estimated
model. Among other measures, this tool displays the difference in orientation (A8) and the
perpendicular distance (dist) between two segments. Table 6.1 shows the evolution of these
measurements for pairs of segments after the observation of images 40, 65, and 90. These values are

compared to the values measured on the physical object ("exact Values").

Segments Exact Values Image 40 Image 65 Image 90
dist A8 dist A0 dist A0 dist A0
55 26 0.0 90.0 0.4 99.7 0.2 93.1 0.2 918
126 27 38.0 90.0 23.9 98.3 35.2 92.7 36.8 89.8
137 26 76.0  90.0 73.7 87.5 68.5 87.9 71.2  90.1
137 126 22.0 0.0 19.0 3.0 214 0.5 21.0 03
27 40 38.0 0.0 379 33 382 0.5 384 09
55 40 50.0 0.0 469 2.8 479 0.5 48.6 0.5

Table 6.1 Perpendicular distance (dist) in mm and difference in orientation (A0) in degrees between

pairs of segments after updating the 3-D model with images 40, 65, and 90.

6.3 Second Example: A Cubic-like Object

Figure 6.5 shows images 80 and 130 from a sequence of 130 images of a cube-like object. Figure 6.6

shows the edge segments extracted from every fifth image from image 15 to 130. Three trajectories

20



were used in this sequence. The first trajectory is images 1 to 70. The second trajectory for images 71
to 100 and the third trajectory for images 101 to 130. Figure 6.7 shows all the 2-D edge segments

which were tracked from images 45 through 70. The ID is superimposed over each segment.

Figure 6.8 demonstrates the evolution of the 3-D model during reconstruction. The left side shows the
reconstruction after the 70th image. The middle shows the reconstruction after the 100th image and the
right side shows the reconstruction after the 130th image. The accuracy of the reconstruction is
illustrated in the table 6.2.

Segments | Exact Values Image 30 Image 60 Image 100 Image 130
dist A6 dist A6 dist A0 dist A8 dist AB

35 53 [50.0 0.0 - - - - 46.0 3.6 485 05
30 35 [50.0 0.0 - - - - 51.7 0.1 317 0.1

7 22 1500 0.0 - - 505 1.9 50.7 1.1 307 1.1

3 221500 0.0 - - 49.7 1.5 496 09 496 09

2 7 [50.0 0.0 506 1.2 50.0 04 50.1 0.2 301 0.2

3 53100 900 - - - - 1.1 92.1 |2.4 90.9

Table 6.2 Perpendicular distance (dist) in mm and difference in orientation (A0) in degrees between
pairs of segments after updating the 3-D model with images 30, 60, 100 and 130. A "-" indicates that

one of the segments had not yet been integrated into the model because of occlusion.

Segments | Exact Values Image 30 Image 75 Image 100 Image 130
dist A6 dist A6 dist A0 dist A8 dist AB

11 12 1200 0.0 204 04 20.5 0.3 20.5 03 30.50.3

11 13 | 0.0 90.0 0.1 85.0 0.3 88.7 0.3 88.7 [0.388.7

46 58 [20.0 0.0 - - 21.0 48 20.6 29 19.30.1

4 13 [60.0 0.0 64.3 4.5 644 14 644 14 04414

12 67 1170 0.0 - - - - - - 114.71.0

13 31 132.0 90.0 - - 133.2 899  133.2 89.9 133.089.7

Table 6.3 Perpendicular distance (dist) in mm and difference in orientation (A0) in degrees between

pairs of segments after updating the 3-D model with images 30, 75, 100 and 130 for the third object.

6.4 Third Test Object: A Metal Part

A thirds sequence of images illustrates the reconstruction of a metal part from 130 images. Figure 6.9
shows an image of the part from this sequence. Figure 6.10 shows the edge segments from every 5th

image. As with the second example, the sequence is composed of three trajectories. Figure 6.11 shows
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the 2-D model after every fifth update phase from images 5 through 30. Figure 6.12 shows the
evolution of the 3-D model after the 30th, 75th and 130th image. Table 6.3 shows the accuracy of

reconstruction of selected segments during the sequence.

7. Discussion

The problem of dynamically maintaining a description of the local environment is fundamental to
perception. A necessary aspect of a system is the ability to integrate perceptual information either from
different sources, or from the sequential observations with the same source. Construction of such
systems has led us to propose a framework for perceptual integration, and to develop a set of
techniques for building such systems. We have constructed dynamic world modeling systems using

ultrasonic range sensors [Crowley 89a] and vertical line stereo [Crowley 90a] using these techniques.

Dynamic world modeling can be seen as a cyclic process composed of the phases: predict, match and
update. We began the paper by describing how techniques from estimation theory can be adapted to
this process in the case of dynamic modeling of numeric properties. Direct application of the Kalman
filter and the Mahalanobis distance to even such simple problems as edge line tracking can lead to the
need to invert large numbers of 8 by 8 matrices for each cycle of the predict-match-update process. In
order to build systems that function in real time, we have shown how edge segment tracking can be
simplified by approximating a single large first order estimator with four small estimators by using a
clever line segment representation. The line segment representation based on mid-point, direction,
length has made it possible for us to construct a co-processor "token-tracking" card which operates at
near video rates. The token-tracking process has become a standard building block for real time vision

systems at our two laboratories.

The Kalman Filter equations permit observations of a small number of properties to serve as
constraints for a vector composed of a larger number of properties. This fact is counter-intuitive and
easily mis-understood. We illustrated this principle in both the 2-D and 3-D modeling systems. In the
2-D token tracking system, observations of the value of position, length and orientation permitted us to
estimate the first temporal derivatives of these values. In the 3-D modeling system, observations of
edge segments in the 2-D model served as constraints to refine estimates of the 3-D position and

orientation of segments.

Tracking preserves correspondence. This simple fact alone justifies the use of 2-D tracking in a vision
system. Avoiding the problem of searching for 3-D correspondence has made it possible for us to add
a 3-D tracking process which infers and maintains a 3-D image description from the positions of the
2-D edge segments. The 3-D system exploits the estimates from the 2-D tracking system as
observations. This architecture shows that it is possible to compose perceptual systems with multiple
independent predict-match-update loops operating in different perceptual coordinates and at different

levels of abstraction.
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The reliable function of the system depends on accurate calibration of the camera, and the robot arm,
and the position of the camera on the robot. The implementation and debugging of this system have
led us to invest several man years in a sequence of calibration techniques [Puget-Skordas 90]. The
development of stable and reliable calibration has proven to be much harder than anyone connected

with this project had expected.

As seen in section 6, when these components are well calibrated, the 3-D form which is recovered
quickly converges to precisions on the order of a millimeter. When the system is not properly
calibrated, the result is an increased error in the projection from 3-D to 2-D for matching. If the
uncertainty associated with observations is sufficiently large, the system will continue to function, but
will converge much less rapidly. If the uncertainties associated with observations are too small, then

matching will fail and the geometric model will contain a smaller number of segments.

A major cause of failure is unmodeled accelerations. Such accelerations are due to abrupt motions of
the camera or of objects in the scene, for which the acceleration is beyond the acceleration uncertainty
aqc. For motions which are induced by the robot arm, such accelerations may be inferred from the arm
motion, and entered into the tracking process via the term V(t) in equation 2.1. When such terms are
due to the acceleration of objects, then can only be handled by proper initialization of the observation

uncertainty.

These critical "observation" uncertainties are crucial to the function of the system. At the current time,
the uncertainties for the segment tracking process are "tuned" by hand. That is, when the uncertainties
are large, the number of tracked segments remains stable, but the precision for tracking is decreased.
When the uncertainties are too small, the number of tracked segments decreases rapidly. This provides
a method to "tune" the uncertainties for a particular situation. The process is made to run, and the
number of segments with a confidence factor greater than 3 are displayed. The uncertainties are then

systematically reduced until the number of segments in the model begins to decrease.

The techniques for incremental 3-D modeling presented above are not clearly superior to a stereo
system for 3-D vision. They should be considered as complementary. Indeed, we are currently refining
a vision system which uses the 2-D tracking and incremental 3-D modeling systems described above
in conjunction with a 3-D inference from stereo cameras. The results described above demonstrate the
power of the use of the predict-match-update cycle for dynamic world modeling, as well as the
generality of the Kalman filter equations and the Mahalanobis distance for constructing perceptual

systems which use numerical properties.
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Figure 6.1 An example of a raw image from this sequence.



Figure 6.2 shows the edge segment description from every 5th image from image 15 to 90.



Figure 6.3 shows the 2-D line segments that have been tracked for every 5th image for images 30
through 55.



Figure 6.4 shows the evolution of the 3-D model. On the left are the 3-D segments obtained after
image 15. The middle shows the result after integrating image 40. The right shows the result after

integration of all 90 images.



Figure 6.5 Images 80 and 130 from a sequence of 130 images of a cube-like object.



Figure 6.6 The edge segments extracted from every fifth image from image 15 to 130.



Figure 6.7 All the 2-D edge segments which were tracked from images 45 through 70.



Figure 6.8 The evolution of the 3-D model during reconstruction. The left side shows the
reconstruction after the 70th image. The middle shows the reconstruction after the 100th image and the

right side shows the reconstruction after the 130th image.



Figure 6.9 An image of the part from this sequence.



Figure 6.10 The edge segments from every 5th image.



Figure 6.11 The 2-D model after every fifth update phase from images 5 through 30.



Figure 6.12 shows the evolution of the 3-D model after the 30th, 75th and 130th image.



