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Abstract

This paper presents a new technique for the perception
of activities using statistical description of spatio-temporal
properties. With this approach, the probability of an ac-
tivityin a spatio-temporal image sequence is computed by
applying Bayes rule to the joint statistics of the responses
of motion energy receptive fields.

A set of motion energy receptive fields are designed in
order to sample the power spectrum of a moving texture.
Their structure relates to the spatio-temporal energy mod-
els of Adelson and Bergen where measures of local visual
motion information are extracted comparing the outputs of
triad of Gabor energy filters. Then the probability density
function required for Bayes rule is estimated for each class
of activity by computing multi-dimensionalhistograms from
the outputs from the set of receptive fields. The perception
of activities is achieved according to Bayes rule. The result
at a given time is the map of the conditional probabilities
that each pixel belongs to an activity of the training set.

The approach is validated with experiments in the per-
ception of activities of walking persons in a visual surveil-
lance scenario. Results are robust to changes in illumina-
tion conditions, to occlusions and to changes in texture.

1. Introduction

This paper presents a a technique in which the joint
statistics of spatio-temporal filters are used for the percep-
tion of classes of activities. This paper presents the design
of a family of motion energy receptive fields based on Ga-
bor filters. It shows how triads of such filters can be used
to capture motion independent of the texture of the mov-
ing object. It then describes the design of a probabilistic
classification system for charcterising activity patterns us-
ing multi-dimensional histograms of the receptive field re-
sponses. The technique is illustrated with results from ex-

periments in detecting the movements of a person in an of-
fice environment.

2. The plenoptic function

Adelson and Bergen [2] define the appearance space of
images for a given scene as a 7 dimensional local func-
tionI (x; y; �; t; Vx; Vy; Vz), whose dimensions are viewing
position(Vx; Vy; Vz), time instant(t), position(x; y), and
wavelength(�). They have given this function the name
“plenoptic function” from the Latin rootsplenus, full, and
opticus, to see. The analysis of the plenoptic function comes
within a recognition framework. The use of description
techniques and the use of representation models of descrip-
tors responses allow this analysis. Adelson and Bergen pro-
pose to detect local changes along one or more plenoptic
dimensions and to represent the structure of the visual in-
formation in a table of the detectors responses, comparing
them two by two. The two dimensions of the table are sim-
ple visual detectors such as thresholded derivatives and the
table contents are possible visual elements. Adelson and
Bergen use detectors based on low order derivatives as 2-D
receptive fields to analyze the plenoptic function. However,
the technique which they describe was restricted to deriva-
tives of order one and two, and does not include measure-
ments involving derivatives along three or more dimensions
of the plenoptic function. It appears that the authors did
not follow up on their idea and that little or no experimen-
tal work was published on this approach. Nevertheless the
plenopic function provides a powerful framework for the
measurement of specific local structures, including spatio-
temporal patterns.

This paper concerns the characterization of activity pat-
terns by describing their local visual motion information
and modeling the descriptor responses. The result is a soft-
ware sensor able to discriminate different patterns of activ-
ities.



3. Describing spatio-temporal structures

Consider the plenoptic functionI (x; y; t) constrained to
a gray channel and a fixed view position. The description of
I (x; y; t) using spatio-temporal receptive fields enables its
analysis. The vector of receptive fields responses describes
a subspace in which each dimension is a receptive field. The
main problem is to design a minimum number of receptive
fields, and to determine an optimal description of appear-
ance for a particular problem. Note that the approach could
be extended to more plenoptic dimensions.

3.1. Local signal description

The notion of receptive field in vision is inspired from
studies on the description of mammalian visual cortex [6].
Biological systems are observed to discribed visual infor-
mation in terms of the response of sets of receptive fields.
For example Young [11] has shown that biological receptive
fields can be described as Gaussian derivatives and Gabor
filters.

Classically the description of a signal is obtained by its
projection onto a set of basis functions. The two most
widely used approaches for signal decomposition are the
Taylor expansion (equation 1) and the Fourier transform
(equation 2). These two approaches correspond respectively
to the projection of the signal onto a basis of function with
amplitude modulation and onto a basis of function which
are frequency modulated:
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These two decomposition methods give an example of
local signal description in the spatial domain for the Taylor
expansion, and in the frequency domain for the Fourier se-
ries. Other local decomposition bases are also possible. A
decomposition basis is generally chosen in response to the
problem to be solved. For example a frequency-based anal-
ysis is more suitable for texture analysis, or a fractal-based
description for natural scene analysis. But independently
from the basis choice, the description is done over an esti-
mation support relative to the locality of the analysis. The
next section formulates the derivative operator of the Taylor
expansion and the spectral operator of the Fourier transform
as generic operators.

3.2. Generic neighborhood operators

The concept of linear neighborhood operators was re-
defined by Koenderink and Doorn [7] as generic neighbor-

hood operators. Typically operators are required at different
scales corresponding to different sizes of estimation sup-
port. Koenderink and Doorn have motivated their method
by rewriting neighborhood operators as the product of an
aperture functionA (~p; �) and a scale equivariant function
� (~p=�):

G (~p) = A (~p; �)� (~p=�) (3)

The aperture function takes a local estimation at location~p
of the plenoptic function which is a weighted average over
a support proportional to its scale parameter�. An aperture
function is the Gaussian kernel as it satisfies the diffusion
equation:
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The function� (~p=�) is a specific point operator relative to
the decomposition basis. In the case of the Taylor expansion
� (~p=�) is thenth Hermite polynomials:

� (~p=�) = (�1)nHen (~p=�) (5)

and in the case of the Fourier series� (~p=�) are the complex
frequency modulation functions tuned to selected frequen-
cies~�:

� (~p=�) = e2�j~��~p=� (6)

Within the context of spatial, respectively spectral, signal
decomposition the generic neighborhood operators are scale
normalized Gaussian derivatives [8], and respectively scale
normalized Gabor filters.

3.3. Motion energy receptive fields

The construction of a framework for the perception of
activities involves extraction of local visual motion infor-
mation. Techniques which reconstruct explicitly the optical
flow are often complex and specific to the analyzed scene
all the more so since that there are not well suited for de-
scribing the motion of moving deformable objects [3]. The
extraction of low level motion information involves the use
of a decomposition basis sensitive to motion such as a signal
decomposition using Gaussian derivatives or Gabor filters.

A measure of motion information rich enough to de-
scribe activities is easily obtained in the spectral domain
since at a given spatio-temporal frequency an energy mea-
sure depends on both the velocity and the contrast of the
input signal. In the spatial domain such energy model is
hard to design.

A set of Gabor based motion energy receptive fields are
used to sample the power spectrum of the moving texture.
Their structure relates to the spatio-temporal energy models
of Adelson and Bergen [2], and Heeger [5]. Motion en-
ergy measures are computed from the sum of the square of
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Figure 1. The responses for rightward (R), left-
ward (L) and static (S) units are shown for a
given spatial band in the frequency domain
(u;w) where u are the spatial frequencies and
w the temporal ones.

Figure 2. Map of the spatial bandwidths of a
set of 12 motion energy receptive fields in the
spatial frequency domain (u; v). There is 4
different orientations and 3 different scales.

even(Geven) and odd-symmetric(Godd) oriented spatio-
temporal Gabor filters tuned for the same orientation in or-
der to be phase independent:

H (~p) = (I (~p) �Geven)
2 + (I (~p) �Godd)

2 (7)

Adelson and Bergen [1] suggest that these energy outputs
should be combined in opponent fashion, subtracting the
output of a mechanism tuned for leftward motion from one
tuned for rightward motion. The output of such filters de-
pends on both the velocity and the local spatial-content of
the input signalI (~p). The extraction of velocity informa-
tion within a spatial frequency band involves normalizing
the energy of the filter outputs according to the response of
a static energy filter tuned to the same spatial orientation
and null temporal orientation:

w (~p) =
HRight (~p) �HLeft (~p)

HStatic (~p)
(8)

A triad of rightward, leftward and static Gabor energy fil-
ters is shown in figure 1. Such a spatio-temporal energy
model allows the measurement of low level visual motion
information. A set of 12 motion energy receptive fields are
used, corresponding to 4 spatial orientations and 3 ranges of
motions. Figure 2 shows a map of the receptive fields’ spa-
tial bandwidths. This set of motion energy receptive fields
allows the description of the spatio-temporal appearance of
activity.

Whereas Gabor filters are not separable, the implemen-
tation of Gabor energy filters (which response isH (~p)) can

be done recursively [9]. Consider the complex notation rel-
ative to equation 3 of the response of a 1D Gabor filter:

F (x) = I (x) � [A (x; �)� (x=�)] (9)

The function� (x=�) is a complex exponential involving:

F (x) = f[I (x)� (�x=�)] �A (x; �)g� (x=�) (10)

There are three steps in this computation: the first step is
the modulation of the signalI (x) by the point operator
� (�x=�), the second step is a low-pass filter convolution
by the kernelA (x; �), and the third step is a demodulation
operation by� (x=�). In the case of Gabor energy filters,
the demodulation step is not necessary since:

H (x) = fRe [F (x)]g2 + fIm [F (x)]g2 (11)

= fI (x)Re [�] �Ag2 + fI (x) Im [�] �Ag2 (12)

For the odd and even Gabor filter only a modulation fol-
lowed by a low-pass filter convolution are necessary. Since
the low-pass filter is a Gaussian kernel, it is separable and
can be recursively implemented [10].

4. Probabilistic Analysis of feature space

The outputs from the set of spatio-temporal filters pro-
vide a vector of measurements at each pixel. The joint
statistics of these vectors allow the probabilistic percep-
tion of activity. A multi-dimensional histogram is computed
from the outputs of the filter bank for each class of activity.
These histograms can be seen as a form of activity signature
and provide an estimate of the probability density function
for use with Bayes rule.

4.1. Measurements probability density

For each class of activity, a multi-dimensional histogram
of vectors of measurements is computed. The subspace
of receptive fields presents a large number of dimensions
which is 12D considering the basis of motion energy re-
ceptive fields defined previously. The main problem is the
computation of an histogram over such a large space.

An extension of the quad-tree technique is used to repre-
sent the histograms. Let beN the number of dimensions
(e.g. number of motion energy receptive fields). A di-
chotomy tree is designed where eachnode expects2N po-
tential branches corresponding to filled cells. Only filled
cells are encoded. A node is a cell of the space of which
each dimension is a receptive field. Cells are sub-divided
by 2 along each dimension. Among the2N resulting new
cells, the filled cells are sub-divided themselves until the
final resolution.
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Such an algorithm allows de computation of high dimen-
sional histograms which are quite sparse. Also Gaussian
mixture density models may be used for more dense his-
tograms, but there suffer from the fact that the number of
modes must be a priori known or estimated.

4.2. Probabilistic perception of activities

Probabilistic perception of actionak is achieved consid-
ering the vector of local measures~w (~p), which elementsi
are motion energy measureswi (~p) tuned for different sub-
bands.

The probabilityp (akj~w) according to~w (~p) is computed
using the Bayes rule:

p (akj~w) = p (~wjak) p (ak)
p (~w)

=
p (~wjak) p (ak)P
l p (~wjal) p (al)

(13)

wherep (ak) is the a priori probability of actionak, p (~w)
is the a priori probability of the vector of local measures
~w, andp (~wjak) the probability density of actionak. The
probabilityp (ak) of actionak is estimated according to the
context. But without a priori knowledge, it is fixed to the
maximum.

The probabilityp (akj~w) allows only a local decision at
location~p = (x; y; t). The final result at a given time(t)
is the map of the conditional probabilities thateach pixel
belongs to an activity of the training set based on its space-
time neighborhood.

5. Perception of human activities

The vast amount of raw data generated by digital video
units and their poor capacities to filter out useless informa-
tion lead us to develop a framework for highlighting spe-
cific relevant events according to scene activities. Applica-
tions are assisted video-surveillance helping users concen-
trate their attention, or intelligent office environments un-
derstanding and reacting to the configuration of the scene.
In this context the probabilistic framework was trained for
the perception of human activities of an office fitted out with
a camera for visual surveillance.

The large visual angle of the camera allows the surveil-
lance of the whole office. The analysed activities are“com-
ing in” , “going out” , “sit down” , “wake up” (as stand up),
“dead” (as somebody fall down),“first left” , “first right” ,
“second left”, “second right” and“turn left” , “turn right” .
Those actions are assumed to take place anywhere in the
scene. A view of the scene and an example of the consid-
ered activities is shown in figure 3.

Figure 3. A view of the large visual angle cam-
era. Examples of the analyzed activities are
shown.

5.1. Assumptions and parameters

The framework for the perception of activities is de-
signed under the assumptions that the camera is fixed, so
there are no global motion compensation.

Moreover since there are not a multi-scale strategy to ex-
tract motion informations, activities are asumed to be done
in the same way for training and for perception. The sub-
filters are tuned for the same temporal frequencyw0 = 1

4
cycles per frame and the same temporal scale�t = 1:49.
All of the results presented in this paper were produced
with a spatial frequency tuning of each Gabor filter asp
u20 + v20 = 1

4 cycles per pixel and a standard spatial de-
viation of �x = �y = 1:49 corresponding to a bandwidth
of 0:25. The 4 spatial orientations are0, �

4 , �
2 and 3��

4 . Ad-
ditional scales are obtained using families of filters spaced
one octave apart in spatial frequency and with a standard de-
viation which is twice largest. Those filters are quite large
band and are robust to speed changes considering the same
activity.

The histograms are computed quantifying the receptive
fields responses over 4 bits. Each activity is done 5 times
corresponding to 5 people acting anywhere in the scene.
The acquisition rate is 10 Hz and the frame size is192�144
pixels. Each sequence of an activity is between 20 to 35
frames long.

The perception of activitiesaccording to Bayes rule
(equation 13) is weighted by the a priori probabilityp (ak)
of actionak. So without a priori knowledge the probability
p (ak) is fixed to the maximum.

5.2. Results

Because the framework presented in this paper is a sen-
sor sensitive to a set of trained class of activities, it is diffi-
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Figure 4. Examples of resulting maps of the
local probabilities p (akj~w).

cult to qualify its sensitivity and its robustness to variations.
Regardless of this difficulty, an example of a probabilistic
perception of the activity“second left” is shown in figure 4.
The framework output is a map of the local probabilities
p (akj~w) that each pixel belongs to one of the trained class
of activities.

A recognition rule based on the spatial average of
p (akj~w) is used to estimate the robustness of the perception
framework. The largest probability average is the decisive
one. The figure 5 is an example of the recognition rate of
the activities“coming in” , “wake up”, and“second right”.
Evolution of the recognition rate is plotted in function of the
quantification step (in bits) of the multi-dimensional his-
tograms. Two conclusion emerge from this experiments.
Firstly, more the quantification step is little (8 bits for ex-
ample) and more the histograms are sparse since histograms
cells converge to one occurrence. So any probability can be
extracted form such measure. It is the case of the activ-
ity “second right” which recognition rate fall down for a
quantification step higher than 5 bits. Secondly the recep-
tive fields are not selective enough to allow the perception
of activities like“coming in” corresponding to low motion
energies.

In the next experiment the training set is reduced to the
two simple activities“sit down” and“ wake up”. The sen-
sor robustness to point of view changes and illumination
variations is studied. An extract of testing sequences is
shown in figure 6. The recognition rates obtained in func-
tion of point of view changes and illuminationvariations are
shown in the next table.

% view 1 view 2 view 3 view 4
intensity 1 97.9 73.2 59.5 56.3
intensity 2 99.1 73.5 55.8 53.1
intensity 3 91.4 73.3 58.6 53.2

The robustness to variation of illumination is effective and
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wake
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Figure 5. Recognition rate of activities “com-
ing in” , “wake up”, and “second right” in func-
tion of the quantification step of the multi-
dimensional histograms.

Figure 6. Extracts of “sit down” and “ wake
up” sequences under point of view changes
and illumination variations.
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foreseeable since the framework is sensitive to motion in-
formation. On the other hand the perception of activities is
quite sensitive to to point of view changes in spite of that
the training step was done with activities anywhere in the
scene. This loss of robustness is effective for the point of
views where the activity takes place far away from the cam-
era, corresponding to low motion energies. In this case the
receptive fields need to be more selective.

The main difficulties still in the definition of a recogni-
tion framework allowing the evaluation of the robustness of
the activity sensor, and to evaluate its sensivity to the his-
tograms computation and to the receptive fields selectivity
The probability average is not rich enough to do that, and a
more complex global decision scheme like Hidden Markov
Models could be more efficient.

6. Conclusion and perspectives

The visual recognition of human action has many poten-
tial applications in man-machine interaction, inter-personal
communication and visual surveillance [4]. A new ap-
proach for activity recognition has been presented. Recog-
nition is processed statisticallyaccording to the conditional
probability that a measure of the local spatio-temporal ap-
pearance is occurring for a given action.

The outputs of spatio-temporal Gabor energy filters give
measures of spatio-temporal structures. The normalization
according to the local static energy leads to a measure of
motion information. Multi-dimensional histograms of these
measures are used to estimate the probability density of an
action. The main advantage of Gabor energy filters is that
they can be built from separable and recursive components
increasing the efficiency of the computation : the proba-
bilistic framework for the perception of activities run at 10
Hz on a standard Pentium II 300 Mhz PC. On the other
hand Gabor filters are not causal and it may be important
for some applications to eliminate delay using filters with a
causal temporal response.

This paper describes work in progress and experimen-
tal results are limited but encouraging. Further experiments
will attempt to quantify the limits of the technique. Also
several technical details must be resolved to provide im-
proved results. On one hand the vector of receptive fields re-
sponses is sensitive simultaneously to three motion ranges.
The space and time scales have been selected to ensure
large bandwidth. Heeger [5] and Spinei [9] use a multi-
scale strategy with more selective filters in space corre-
sponding to optimal ratio between space and time scales of
�x;y = 4�t. Since multi-scale strategies are redundant, a
solution will be to select automatically local scale param-
eters according to the maxima over scales of normalized
derivatives (see [8]). On the other hand the framework pre-
sented in this paper is sensor able to perceive activities pre-

viously learned. To evaluate its sensitivity and its robustness
we need to design a recognition scheme taking the map of
local probabilities as input. The global decision scheme for
recognition is relatively simplistic, corresponding to the av-
erage of local probabilities over a frame. A more complex
global decision scheme such as a Hidden Markov Model
should be more efficient.

Nevertheless, adding a sensor for perception of activities
can be an important component of an intelligent environ-
ment. If the intelligent environment knows where people
are in the scene, the a priori probability ofeach class of
activities could be estimatedaccording to the spatial con-
text. Introducing this a priori knowledge into the Bayes rule
will improve the sensitivity of activities. For example if the
tracked person comes in front of the computer the proba-
bility that the action“sit down” occurs is higher than the
“going out” one. We are currently exploring such a system.
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