



# The AI CoPilot A Research Roadmap

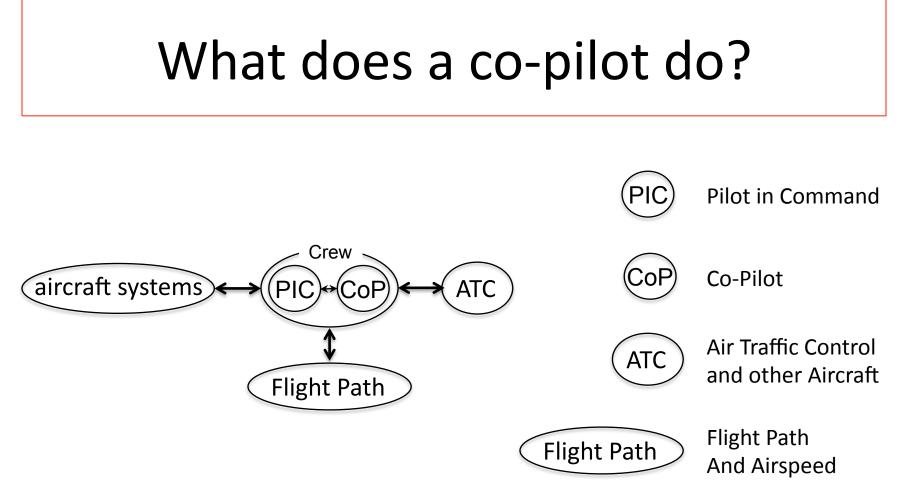
Professor James L. Crowley Chair on Collaborative Intelligent Systems MIAI AI Institute , Univ. Grenoble Alpes

# What does a co-pilot do?

Commercial air transport operations requires 2 pilots:

- 1) A captain (PIC) who has full authority over all systems and operations.
- 2) A co-pilot who is fully qualified and authorized for all operations with the aircraft.

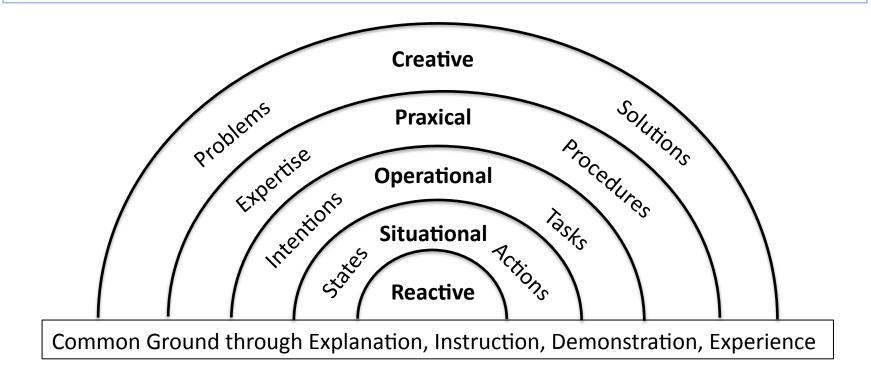
#### WHY?


1) **Flight Safety**: The captain and co-pilot monitor each others actions and procedures. The co-pilot is authorized to question any unsafe operations using a protocol of "assertive support".

2) **Work Load management**: In times of high workload, the captain can delegate tasks to the co-pilot.

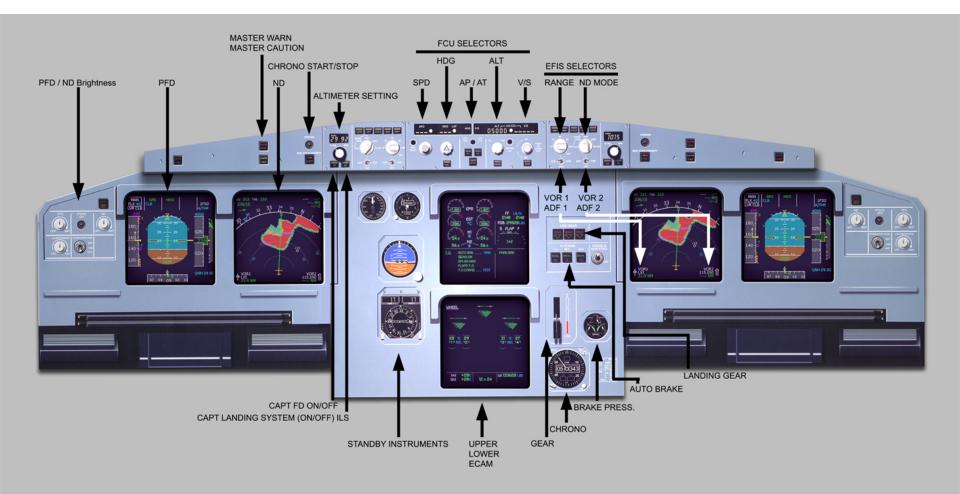
3) **Backup:** If the PIC is incapacitated, the co-pilot is authorised to take responsability for completing the flight.

Private aviation generally relies on single pilot operations, with much higher accident rates.


#### Can we automate the co-pilot using generative AI?



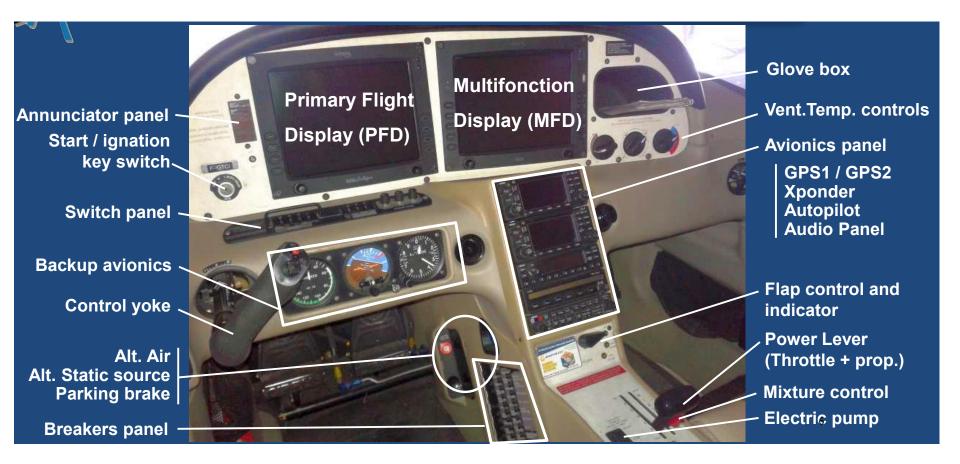
The Pilot and Co-pilot form a **collaborative crew** to assure the safe and successful outcome of the flight.


They interact with Aircraft Systems to control the flight path and airspeed in collaboration with ATC.

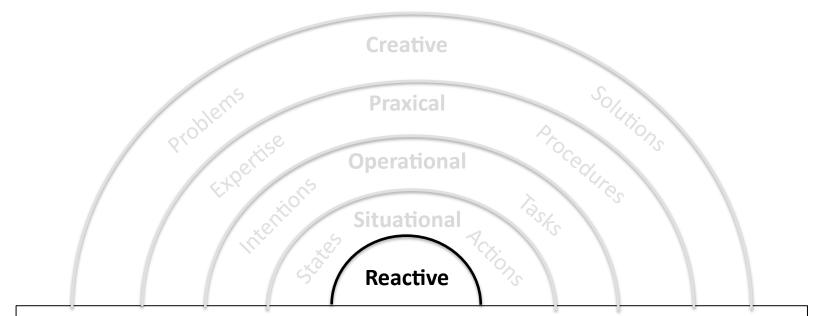
### The Humane AI Net Hierarchical Framework for Collaborative AI



- Collaboration is a process where two or more agents work together as partners to achieve a shared goal.
- The Humane AI net Research Roadmap formulates collaboration as a hierarchy of perception-action cycles.


## The A320 Avionics Panel




## Cirrus SR20 – F-GTCI

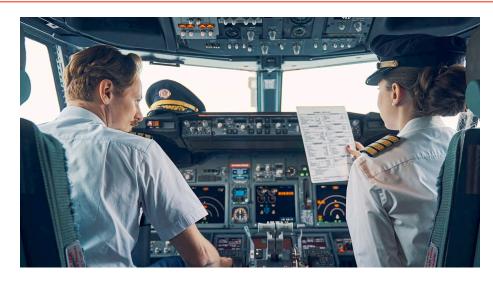


### The Cirrus / Avidyne Integra Glass-Cockpit for General Aviation



### **Reactive Collaboration**

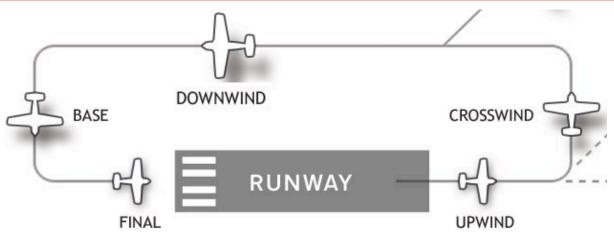



Common Ground through Explanation, Instruction, Demonstration, Experience

8

Reactive Interaction:Tightly coupled perception-action involving two or<br/>more agents.Descrive Calleboration:A forms of interaction unbergetion action of the second second

**Reactive Collaboration**: A form of interaction where two or more agents act to achieve a shared goal.


### Collaborative interactions are mediated by spoken language interactions

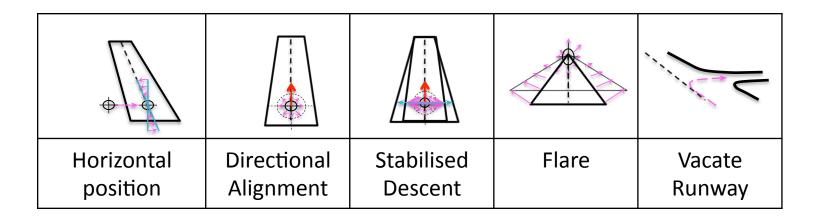


In aviation, collaborative interactions are mediated by spoken language dialogue using formal protocols.

Protocols simplify interactions by providing a script that prescribes a limited set of messages that a participant should expect to receive, and a limited number of responses that should be communicated in response.

### Reactive Collaboration: Aviation Scenario



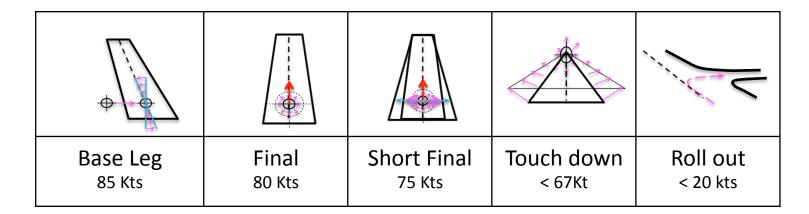

- **Pilot**: Cirrus F-CI Downwind Runway 04 for a Landing. full-stop.
- **Tower**: F-CI, Number 2, Report Final
- Pilot: Number 2, will report Final, F-CI

•••

- Pilot: Cirrus F-CI. Final Runway 04
- **Tower**: F-CI, Cleared to land Runway 04.
- **Pilot**: Cleared to land Runway 04. F-Cl.

Dialogue with ATC follows a well defined formal protocol with a restricted vocabulary, Protocol has been designed to minimize errors in a noisy, highly distractive environment.

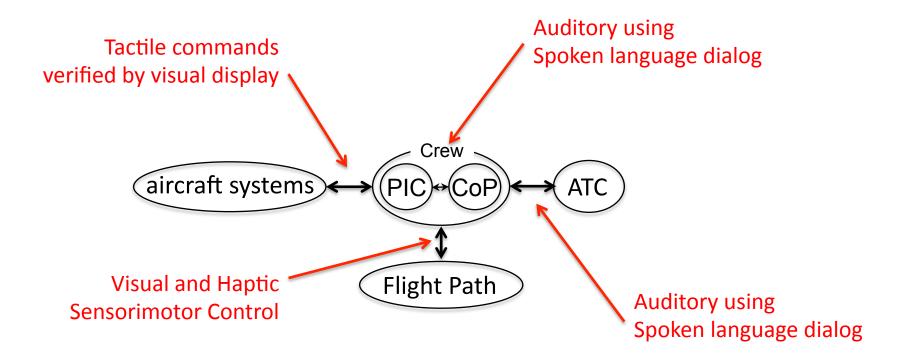
### Landing an Aircraft: Visual Sensorimotor Reactive Control




Each phase involves sensorimotor control based on visual motion In parallel: Spoken language interaction with tower

- **Pilot**: F-CI, on Final Runway 04.
- **Tower**: F-CI, Cleared to land Runway 04.
- **Pilot**: Cleared to land Runway 04. F-CI.

During Landing the sensorimotor channels for vision and motor control are near saturation. Only auditory channel is available for collaborative dialogue.


## The co-pilot monitors the actions of the pilot

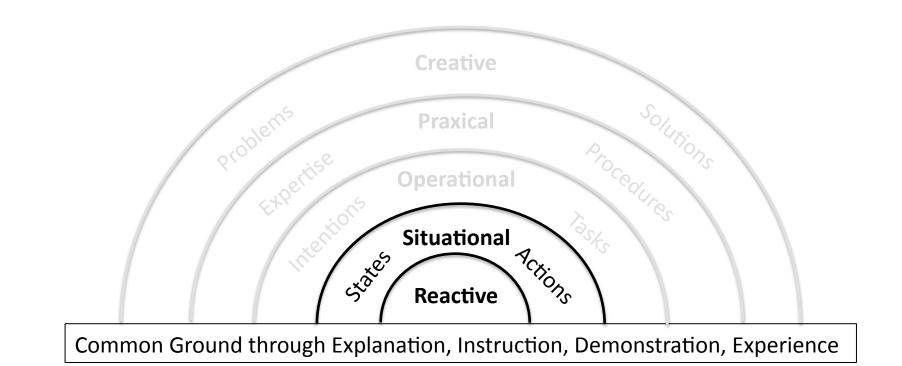


When landing Pilots can become fixated on trajectory and neglect airspeed.

- **Pilot**: F-CI on Final Runway 04.
- **Tower**: F-CI, Cleared to land Runway 04.
- ... (airspeed > 100 Kts)
- **Co-pilot to Pilot:** Sir. Airspeed is too high. Go-around.
- **Pilot:** F-CI. Going-around.
- **Tower**: Roger. Report Downwind Runway 04.
- Pilot: Report Downwind Runway 04, F-CI

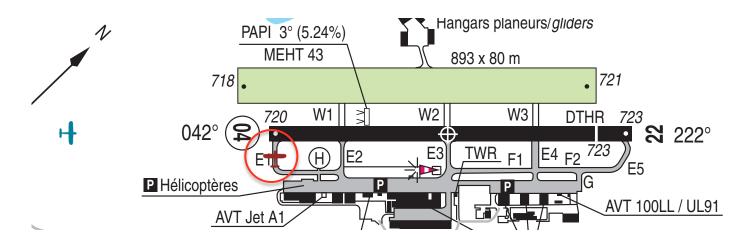
#### Sensori-motor channels for Collaborative Interaction




#### Reactive Abilities Required for Landing an Aircraft

Visual control of lateral, vertical and forward motion using pitch, roll, and power
 Spoken language interaction with Tower and/or other aircraft.

3) Context-aware situation modeling


| Function       | Human Pilot                             | Today's Avionics                                                                                                 |
|----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Communications | Spoken language interaction with ATC    | Mode S Transponder, ADSB                                                                                         |
| Pilotage       | Visual Control of Pitch, Roll and Power | Gyroscopic control of pitch, roll, heading<br>Pressure based measurement of<br>airspeed, altitude and variations |
| Navigation     | Situation-aware maneuvering             | GNSS based waypoint navigation,<br>Terminal procedures (ARINC Segments)                                          |
| Operation      | context-aware systems management        | Digital control of power plant (FADEC)<br>Sensor based engine monitoring                                         |

### Situational Collaboration



# Situational Collaboration: Perception and action are mediated by shared awareness of situation

## Situation Aware Interaction

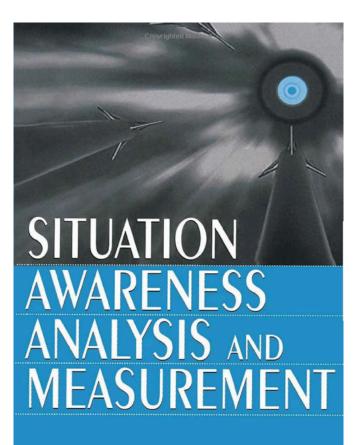


Pilot: Cirrus F-CI. Holding point E1. Ready for departure runway 04
Tower: F-CI, after the aircraft landing on final, line up and wait runway 04, after.
Pilot: After the aircraft landing on final, line up and wait runway 04, after. F-CI

#### The Pilot and ATC share a Situation Aware Interaction: Perception, action and interaction mediated by shared awareness of situation.

## Awareness in Human Factors

Models of awareness have been studied and applied for human factors in aviation since at least 1914.


Awareness (Endsley 00)

- Vigilance against danger or difficulty.
- Having knowledge of something.
- The ability to perceive, to feel, or to be conscious of events, objects or sensory patterns.
- Conscious of stimulation, arising from within or from outside the person

#### Situation Models: a theory of human mental models



Mica Endsley, Ph.D., P.E. PhD USC 1990 editor-in-chief of the Journal of Cognitive Engineering and Decision Making President: SA Technologies Specialty: Cognitive Engineering Application Domain: Aviation and critical systems.



EDITED BY MICA R. ENDSLEY • DANIEL J. GARLAND

### Situation Models: a theory of human mental models

Situation Awareness : The Perception of [relevant] elements of the environment in a volume of space and time, the comprehension of their meaning and the projection of their status in the near future. (Endsley 2000)

Levels in Situation Awareness

- 1: Detection: Sensing of entities relevant to task
- 2: Assimilation: Associating perception with models that predict and explain.
- 3: Projection: Forecast events and dynamics of entities

M. Endsley, D. Garland, Situation Analysis and Awareness, Lawrence Erlbaum, 2000)

### Situation Models: a theory of human mental models

Situation Models are widely used in Cognitive Psychology to describe human abilities for

- 1) Providing context.
- 2) Interpreting <u>ambiguous</u> or <u>misleading perceptions</u>.
- 3) <u>Reasoning with default information</u>
- 4) <u>Focusing attention for problem solving</u>

Situation Models provide a conceptual framework for intelligent systems that collaborate with humans

### **Context Aware Situation Modeling**

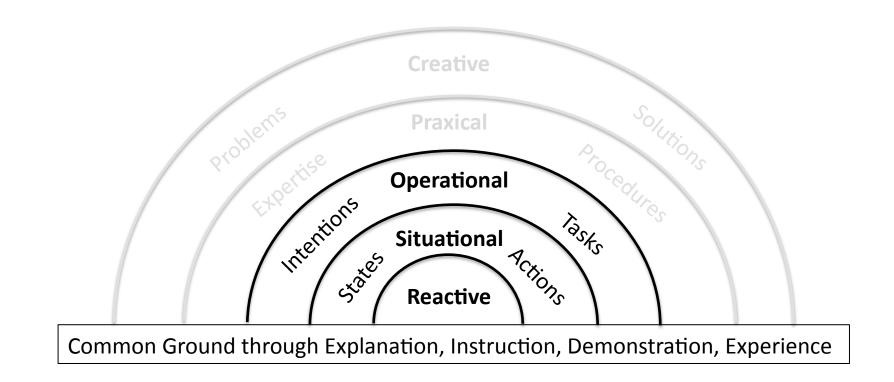
- Situation: (a state) a set of relations between entities with associated behaviors. (Human working memory is limited to 7±2 entities.)
- Context: A state-graph of situations, with associated behaviors needed for task.

Context specifies the entities, relations, behaviors and state transitions relevant to as task domain.

### **Context Aware Situation Modeling**

Modern Flight management systems (FMS) operate in fixed set of pre-programmed contexts:

(Example G430: Departure, En-route, Arrival and Approach)


The Air Crew (PIC and Co-pilot) must operate in an open-ended set of aviation contexts that include all possible threat (TEM) and unsafe emergency situations. Technology for Situation-Aware Collaboration

Can we create technologies to permit humans and intelligent systems to share understanding of a situation in open domains ?

Yes! transformers trained with self-supervised learning provide the enabling technology for Situation aware collaboration.

- Entities and relations are represented by latent variables in a transformer.
- Perceptions are provided by stacked encoders.
- Behaviors are generated by stacked decoders.
- Linguistic symbols (words) and dialogue are easily attached during learning

### **Operational Collaboration**



**Operational Collaboration**: Collaboration is mediated by shared authority over tasks and activities.



### **Operational Collaboration**

**Operational Collaboration:** Collaboration is mediated by shared authority over tasks and activities.

Shared Authority is mediated by protocols and roles

#### Examples of human operational collaboration.

- Team sports
- Corporate structures
- Air Crew

# **Roles and Protocols**



Authority: Liberty to take actions.

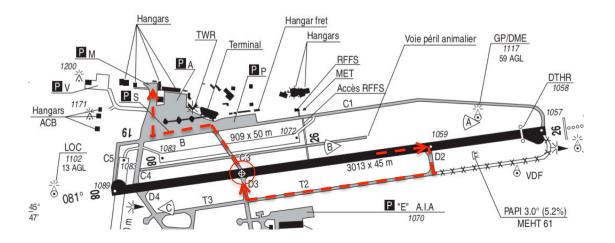
**Roles**: A set of behaviors (actions and reactions) expected of an individual who occupies a given social position.

**Protocols**: Rules that govern interactions between agents performing roles

### **Operational Collaboration**

Shared authority over initiating or performing operations.

#### **Examples:**


ATC and the PIC (in controlled airspace)

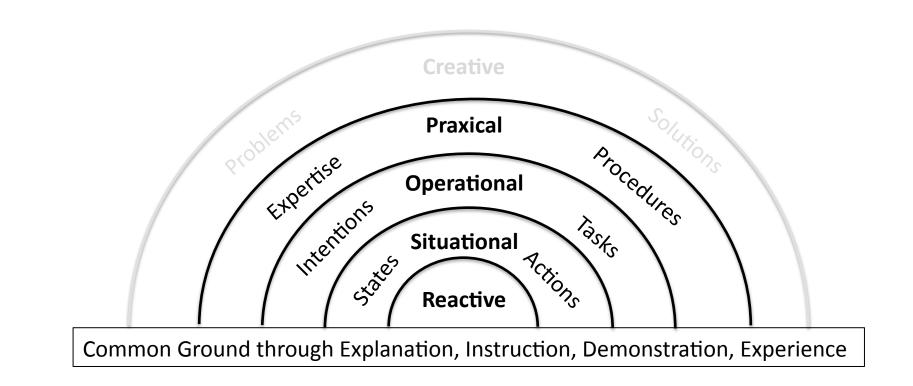
- ATC has authority over all operations in controlled airspace.
- ATC delegates authority to the PIC with clearances
- The PIC has the responsibility to act without a clearance when threatened with an unsafe situation.

PIC and co-pilot:

- The PIC has authority over all systems.
- The PIC can delegate authority to the co-pilot
- The co-pilot has responsibility to call attention to unsafe operations.

### **Operational Collaboration**




- Pilot: Clermont Tower, Cirrus F-GTCI. Runway 08 vacated at D2. Request taxi to parking Mike.
- Tower: F-CI taxi to mike via T2, D3, C3, B and S.
- Pilot: F-CI taxi to mike via T2, D3, C3, B and S.
- ... at D3
- Co-pilot: Sir. Stop now. You are entering an active runway. (Pilot to Co-pilot: oops. Stopping now.)
- Pilot: Clermont Tower F-CI, at D3 Request Cross runway 08.
- Tower: F-CI, maintain position. Aircraft on final.

#### Required Operational Abilities for an AI co-pilot

Operation Abilities required for pilot and copilot

- 1) Spoken language interaction
- 2) Context aware situation modeling
- 3) Interaction using roles and protocols of PIC, co-pilot and ATC

| Function                         | Human Pilot                                          | Today's Avionics                              |
|----------------------------------|------------------------------------------------------|-----------------------------------------------|
| Communications                   | Spoken language interaction<br>with ATC and co-pilot | Mode S Transponder, ADSB, Graphics<br>display |
| Context aware situation modeling | Abilities based on Training and experience           | GNSS based navigation (position and charts)   |
| Roles and protocols              | Abilities based on training and experience           | Interactive graphics                          |
| Operations                       | Context-aware systems management                     | Electronic checklists                         |



**Praxical Collaboration**: Sharing of knowledge about how to act based on experience or training.



#### **Praxical Collaboration:**

Exchange of knowledge about how to attain goals and maximize value based on experience.

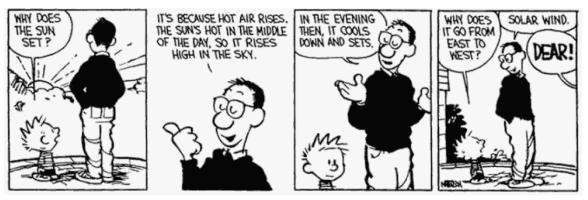
#### **Examples:**

- Sharing strategies for how to navigate in complex situations
- Explaining how to land an aircraft in a crosswind.



#### Praxical techniques for landing taught by instructors to student pilots:

**How to land an airplane**: Glide down the runway, cut the power and keep the wheels off the runway as long as you can.


**How to land in a cross wind**: Point the stick in the wind, apply opposite rudder and keep the nose on the end of the runway.

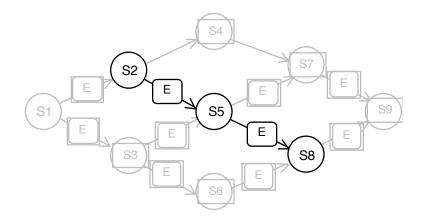


An AI copilot should act as an instructor:

- Monitoring pilots actions to guard against errors
- Offering practical advice on technique and procedures.

## Explanations take the form of Narratives

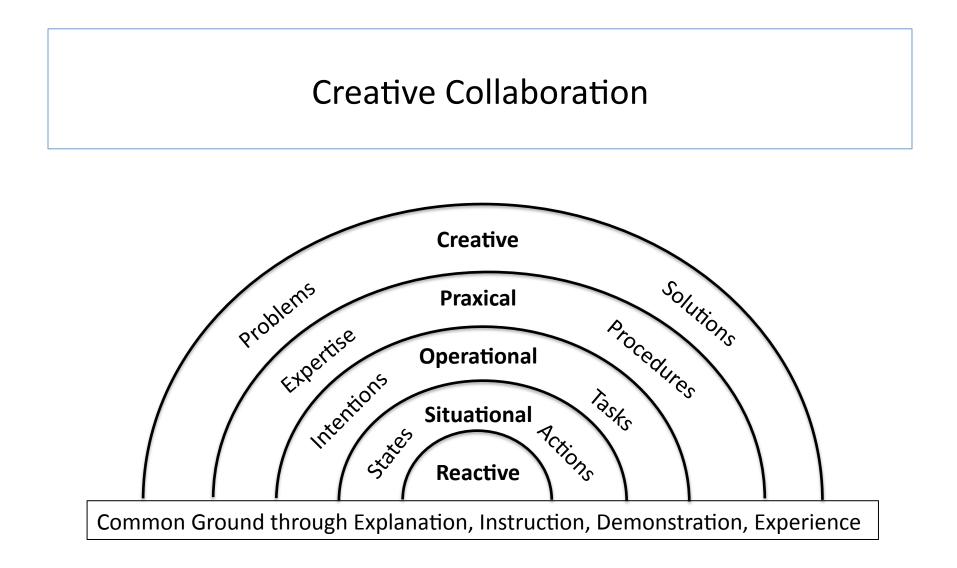



Calvin and Hobbs: Dad explains science

Narratives are a temporally ordered sequence of situations, possibly with branches and causal relations.

Example: Scientific Theories

- Narratives enable humans to provide descriptions for situations that are not directly observable, including hypothetical or abstract situations and situations that occurred in the past.
- Narratives enable humans to make predictions for situation that may occur in the future.


### Praxical Collaboration: Narratives



Stick in the wind with opposite rudder slides the aircraft sideways into the wind. Sliding sideways is called a "slip". Control the slip by keeping the nose on the end of the runway.

A narrative represents possible paths through a situation graph. Narratives describe the effects of actions and events on the path.

Modern generative AI can be used to provide explanations in the form of narratives.



**Creative Collaboration**: Two or more partners work together to solve a problem or create an original artifact

## Aviation Scenario: Engine Failure

- Pilot: Lyon Approach. Mayday Mayday Mayday. F-GTCI engine failure. 35 miles South-east of Clermont Ferrand. altitude 7000 feet. 2 persons on board. Attempting an emergency landing. Mayday Mayday Mayday.
- Co-pilot: Sir. Ambert has a 2500 ft runway and is 7 miles north west.
- Pilot: Lyon Approach. F-GTCI attempting emergency landing at Ambert.
- Copilot to Pilot: I have the emergency procedures for engine failure

Pilot to Copilot: Read me procedures

Co-pilot: Mix full rich. Switch Tanks. Boost on. Alternate Air open. Check ignition. Engage Starter.

(engine starts after switching tanks).

Pilot to copilot: It appears the fuel line from the left tank was blocked.

Pilot: Lyon Approach: F-GTCI. Cancel mayday. Engine restarted. Proceeding to Grenoble as filed.

## Conclusions

- Pilot and CoPilot collaborate to achieve safe operations of a flight.
- During critical phases of flight, the visual and haptic sensori-motor systems of the pilot are near saturation. Only the auditory channel remains open for collaborative communications with the copilot or ATC.
- An intelligent CoPilot requires open-ended context-aware situation modeling.
- Operational safety requires pilot copilot to use with formal protocols for collaboration and changes in role.
- An AI co-pilot should act as flight instructor, offering practical advice in the form of narratives.
- The Humane AI Hierarchical Framework for Collaborative AI provides a research roadmap to developing an AI copilot.
- Multimodal Generative AI provides a key enabling technology for an AI CoPilot.





# The AI CoPilot A Research Roadmap

Professor James L. Crowley Chair on Collaborative Intelligent Systems MIAI AI Institute , Univ. Grenoble Alpes