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Transformers as (Conditional) Language Models Basic n-gram models

Language models: probabilistic models for sequences

The simplest model for sequences over a finite alphabet: n-gram
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(1) is always true. (2) makes a Markovian assumption: given short term history
h = w

i−n+1 . . .w

i−1, words further away do not matter.
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(1) is always true. (2) makes a Markovian assumption: given short term history
h = w

i−n+1 . . .w

i−1, words further away do not matter.

n-gram text generation with [ancestral] sampling

w1 ∼ Unif(W1);w2 ∼ P(W2 �w1);w3 ∼ P(W3 �w2w1) . . .
No length model: make sure to know when to stop
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(1) is always true. (2) makes a Markovian assumption: given short term history
h = w

i−n+1 . . .w

i−1, words further away do not matter.

n-gram language Id with Bayes rule
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Transformers as (Conditional) Language Models Basic n-gram models

n-gram models are so simple, yet so difficult
Learning with cheap / free supervision

Parameter estimation just needs data

Maximum likelihood estimates (with 2-word histories: trigrams)

P(w � uv) = c(uvw)
∑

w

′ c(uvw

′) (4)

c() is the count function, h = uv is the history

The art of language modeling

with 100, 000 words, 100, 0003 3-gram counts, most of them 0

build history classes (uv→ h(uw)) to keep models small

building history classes ? the science of count smoothing [1992-2012]
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Transformers as (Conditional) Language Models Neural language models

Feed-forward language models [Bengio et al., 2003]

wi-1

wi-2

wi-3

R

R

R

W Wih ho

prediction space

output layer
(softmax)

 shared projection space

i =[wT

i−1R,w

T

i−2R,w

T

i−3R]
h =iT

W

ih

+ b
ih

o = tanh(h)T W

ho

+ b
ho

P(w
i

�w
i−3,w

i−2,w

i−1) = exp o[w
i

]
∑

w

exp o[w]
encodes context as �(w

i−3,w

i−2,w

i−1)
compares �(w

i−3,w

i−2,w

i−1) and R(w
i

)

M. Evrard, C. Guinaudeau, F. Yvon (LISN) Transformers in HLT 2020-2021 5 / 23



Transformers as (Conditional) Language Models Neural language models

Feed-forward language models [Bengio et al., 2003]

Training FFLMs - maximize log-likelihood [aka cross-entropy]
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exp o[w])
jointly learns representations / word embeddings (R) and decision rule

optimize through stochastic gradient and back propagation (chain rule)

softmax(x) = exp x∑
k

expx[k] computes dense distributions

also influencial log-bilinear model [Mnih and Hinton, 2007]: history words are summed,
no hidden layer

computationally demanding (softmax layer)

superior to discrete (n-gram) LMs across the board [Schwenk, 2007, Le et al., 2012]
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Transformers as (Conditional) Language Models Neural language models

Feed-forward language models [Bengio et al., 2003]

FFLMs induce similarities between histories and between words (from [Le et al., 2010])

word (freq.) model 5 nearest neighbors

is standard was are were been remains
900, 350 1 vector init. was are be were been
conducted standard undertaken launched $270,900 Mufamadi 6.44-km-long
18, 388 1 vector init. pursued conducts commissioned initiated executed
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1 vector init: share parameters R and W
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during init.
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Transformers as (Conditional) Language Models Neural language models

Computational complexity of FFLM
Speeding up the softmax computation

Training objective computes a large sum

` = argmax

✓
�

i

o[w
i

] − log(�
w

′
exp o[w])

Shortlist-based models [Schwenk, 2007] combine discrete and continuous LMs

P(w � h) = � P

NN

(w � h) if w ∈ shorlist
↵(h)P

KN

(w � h) if w ∈ otherwise

↵(h) rescales P
KN

( � ) for normalization
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Computational complexity of FFLM
Speeding up the softmax computation

Training objective computes a large sum

` = argmax
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Hierarchical models [Mnih and Teh, 2012, Le et al., 2013] compute a hierarchical softmax
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Transformers as (Conditional) Language Models Neural language models

Recurrent Neural Networks as LMs [Mikolov et al., 2010]
From finite to infinite contexts P(w
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depends on all past time steps t
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Transformers as (Conditional) Language Models Neural language models

Recurrent Neural Networks as LMs [Mikolov et al., 2010]
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train with word prediction objective and cross-entropy loss

generate through ancestral sampling, one word at a time

more complex cells ((w
t

,h
t

)→ h
t+1): GRUs, LSTMs

same issues with softmax; same solutions apply

stack several hidden layers hk

t

= f (hk

t−1,hk−1
t

): biRNNs, etc.

backwards processing computes h̄−1
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, h̄−1] a better representation: text classification, etc.
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Transformers as (Conditional) Language Models Neural language models

Memory cells in RNNs
Mitigating vanishing / exploding gradient

Vanilla RNNs update hidden cells with:
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used multiple times;

Information squashing through tanh()
⇒ Unstable results, hardly better than very long range FFLMs
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Transformers as (Conditional) Language Models Neural language models

Memory cells in RNNs
Mitigating vanishing / exploding gradient

The Gated Recurrent Unit of [Cho et al., 2014b] learn to manipulate hidden states [vectors]:
which part should be copied forward? which part should be forgotten?

u
t

=�(W
iu

i
t

+W

hu

h
t−1) ∈ [0; 1]d

r
t

=�(W
ir

i
t

+W

hr

h
t−1) ∈ [0; 1]d

h̃
t

= tanh(iT

t

W

ih

+ (h
t−1 ⊙ rt)T W

hh

+ b
ih

)
h

t+1 =(1 − u
t

)⊙ h
t

+ u
t

⊙ h̃
t

u

rh h~ x

�() : sigmoid function, acts as a soft gate:
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resets components of previous state;

ut selects new or past hidden state without squashing.
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Transformers as (Conditional) Language Models Neural language models

Memory cells in RNNs
Mitigating vanishing / exploding gradient

LSTMs cells [Hochreiter and Schmidhuber, 1997] implement a richer update mechanism as:
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represents the hidden state;

c is the memory cell, part of which is copied forward (no squashing)
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Transformers as (Conditional) Language Models Neural language models

Memory cells in RNNs
Mitigating vanishing / exploding gradient

Some lessons learned

Gated units much better than Vanilla RNN

GRUs simpler (and faster) than LSTMs

GRUs and LSTMs equivalent (performance-wise)

Multiple layers help

Good implementations are tricky [Merity et al., 2018]: require dropout, improved
optimizer, parameter sharing, etc.

Hyper-parameter search is essential [Melis et al., 2018]
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Transformers as (Conditional) Language Models Neural language models

RNNs encode words, RNNs also encode sentences

Solving sentence classification

h
T

= RNN(w1 . . .w

T

) encodes a variable-length sentence in a fixed-length vector.
Decision rule for sentiment analysis, mapping sentences to polarity value (positive, negative,
neutral): w1 . . .w

T

→ y

P(y = 1 �w1 . . .w
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;✓) = �(WT h
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+ b) sigmoid, again
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(i)
T

(i))
improves classification results with multiple layers,

works for all sentence-level classification (textual entailment, stance classification, etc)

even better: use [h
T

, h̄−1]

How about Machine Translation?
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Encoder-Decoder approaches for Machine Translation

Recurrent Neural Networks for Machine Translation
A simple bilingual conditional Langage Model [Cho et al., 2014a]
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Encoder-Decoder approaches for Machine Translation

Recurrent Neural Networks for Machine Translation
Attentional NMT: better know what to translate [Bahdanau et al., 2015]
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Encoder-Decoder approaches for Machine Translation

Recurrent Neural Networks for Machine Translation
Equations of the RNN + attention

source: f[1...I] ∈ {0, 1}�V� f 0 . . . f
t

f
t+1 . . . f

I

embeddings: i[1...I] ∈ Rd i0 . . . i
t

i
t+1 . . . i

I

encoder states: h[1...I] ∈ Rp h0 . . . h
t

h
t+1 . . . h

I

decoder states: s[1...J] ∈ Rp s0 . . . s
t

s
t+1 . . . s

J

output: o[1...J] ∈ R�V� . . . o
t

o
t+1 . . . o

J

target: e[1...J] ∈ {0, 1}�V� . . . e
t

e
t+1 . . . e

J

h

i

=�(f
i

, h

i−1) ∀i ∈ [1 . . . I]
↵

ti

= softmax(hT

s

t−1) ∀t ∈ [1 . . . J], i ∈ [1 . . . I]
c

t

=�
t

↵
ti

h

i

∀t ∈ [1 . . . J]
P(e

t

= k�e<t

, f; ✓
NMT

) =[softmax(o
t

= W

so

s

t

+W

co

c

t

+W

eo

e

t−1 + b

o)]
k

s

t+1 =�(ct

, s

t

) ∀t ∈ [1 . . . J]
�() = LSTM or GRU or ...
training (including attention) remains end-to-end
RNN recursions make training slow
attention ≈ ? word alignment
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Encoder-Decoder approaches for Machine Translation

Faster, Better Encoder-Decoder + Attention : Transformer
Images (C) [Vaswani et al., 2017]
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Encoder-Decoder approaches for Machine Translation

Faster, Better Encoder-Decoder + Attention : Transformer

Heads in Multi-Head Attention

The query: H
q

∈ Rl ×Rd

The key: H
k

∈ Rl ×Rd

The value: H
v

∈ Ro ×Rd

Heads linearly transform matrices I ∈ Rd ×RT into matrices O in Ro ×RT

transform input matrix for words: Q = H
q

× I ∈ Rl ×RT

transform input matrix for contexts: K = H
k

× I ∈ Rl ×RT

transform input matrix for outputs: V = H
v

× I ∈ Ro ×RT

compute similarities words/context: D =Q ×KT ∈ RT ×RT

compute linear weights: ˜D = softmax( D√
d

) ∈ RT ×RT columnwise

linear combination of cols: O = ˜D ×V ∈ RT ×Ro

Each output column is a linear combination of all the input columns.M. Evrard, C. Guinaudeau, F. Yvon (LISN) Transformers in HLT 2020-2021 12 / 23



Encoder-Decoder approaches for Machine Translation

Faster, Better Encoder-Decoder + Attention : Transformer

The head computation, columnwise
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Encoder-Decoder approaches for Machine Translation

Faster, Better Encoder-Decoder + Attention : Transformer

Using multiple heads

one Head : I(d × T)→O(o × T)
k Heads : I(d × T)→ [O1, . . . ,Ok

](ko × T)
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Encoder-Decoder approaches for Machine Translation

Faster, Better Encoder-Decoder + Attention : Transformer

Using multiple heads

one Head : I(d × T)→O(o × T)
k Heads : I(d × T)→ [O1, . . . ,Ok

](ko × T)
Using multiple layers of multiple heads

compute with k Heads : I(d × T)→O = [O1 . . .Ok

](ko × T)
enable: residual (direct) connections O’ =O + I
pass O’ through a “linear” layer O” =O’ +W′ ×RELU(WO), with O” ∈ R(d×T)
stack multiple layers I1 → I2 → I3 → I4...

enable: residual (direct) connections O
k

=O
k

+ I
k

make layers and sublayers comparable through layer normalization (substract mean,
divide by stddev)

Typical values: 8 Heads of output dimension o = 64, 6 − 12 layers of heads of dimension 512.
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Encoder-Decoder approaches for Machine Translation

Faster, Better Encoder-Decoder + Attention : Transformer

The initial layer: words and positions

Assuming input w1 . . .w

T

each column in I1 combines (sums) word embeddings and
positional encodings in P ∈ Rd ×RT .

� P[2i, t] = sin(t�100002i�d)
P[2i + 1, t] = cos(t�100002i�d)

Z https://medium.com/swlh/elegant-intuitions-behind-positional-encodings-dc48b4a4a5d1
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Encoder-Decoder approaches for Machine Translation

Faster, Better Encoder-Decoder + Attention : Transformer

The encoder side, a complete view
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Encoder-Decoder approaches for Machine Translation

Faster, Better Encoder-Decoder + Attention : Transformer

In the decoder: masked, causal, self-attention
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Encoder-Decoder approaches for Machine Translation

Faster, Better Encoder-Decoder + Attention : Transformer

In the decoder: cross-attention with respect to the last encoder layer
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Encoder-Decoder approaches for Machine Translation

Faster, Better Encoder-Decoder + Attention : Transformer

Output layer and prediction

project output of K

th layer into RV to get logits: g(W
os

S
K

[t] + b
o

)
use softmax to predict next target word e

t

collect gradients for training

Also:
trainable positional encodings
parameter sharing in the decoder
variants of the FF layer
better layer normalisation
computational speed ups for the attention computation
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Encoder-Decoder approaches for Machine Translation

Faster, Better Encoder-Decoder + Attention : Transformer

Image from [Popel et al., 2020]
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Encoder-Decoder approaches for Machine Translation

Transformers as pure LMs: improving the past context

Also: relax causality, recompute past representations after each new word
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Encoder-Decoder approaches for Machine Translation

Transformers as pure LMs: improving the past context
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Encoder-Decoder approaches for Machine Translation

Computational issues with transformers

Attention is quadratic

∀i, j ∈ [1 . . .T],↵
i,j = softmax(QT

i

K

j√
d

)
The X-former family

Compress: Memory-compressed Transformer

Approximate dot product with LSH: Reformer

Use hierararchical attention binary-Tree Transformer

Use local attention + global (random) states: Sparse Transformer, Longformer, Big Bird

Approximate dot product with low-rank matrices: Linformer

Contexts up to hundreds of past tokens
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Transformers for representation learning & pretraining

Pre-training representations for multi-task learning
The overwhelming majority of these state-of-the-art systems address a benchmark task by

applying linear statistical models to adhoc features. In other words, there researchers themselves
discover intermediate representations by engineering task-specific features. (...) Although such
performance improvements can be very useful in practice, they teach us little about the means to
progress toward the broader goals of natural language understanding and the elusive goals of
Artificial Intelligence. In this contribution, we try to excel on multiple benchmarks while
avoiding task-specific enginering. Instead we use a single learning system able to discover

adequate internal representations. [Collobert et al., 2011]

Z Image from http://sesamestreet.org
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Transformers for representation learning & pretraining

Pre-training representations for multi-task learning
(...) to excel on multiple benchmarks while avoiding task-specific enginering. (...) a single

learning system able to discover adequate internal representations. [Collobert et al., 2011]

A recipe for pre-training

1 train context-free or context-dependent word embeddings on large “general domain”
corpus in an unsupervised way.

2 plug-in embeddings into (domain) specific task
3 resume training with a task-dependent loss

Popular implementations:

ELMO [Peters et al., 2018] uses biRNNs at step1, BERT [Devlin et al., 2019] and
GPT-2/3 [Radford et al., 2019] use Transformer

ELMO and GPT-2/3 use half-contexts and a LM objective, BERT uses full context and
two objectives: mask-LM and next sentence prediction
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Transformers for representation learning & pretraining

Pre-training representations for multi-task learning
(...) to excel on multiple benchmarks while avoiding task-specific enginering. (...) a single

learning system able to discover adequate internal representations. [Collobert et al., 2011]

Bottom layer is char n-gram conv. layers + 2 highway layers + linear projection; top layers are bidirectional
LSTMs, training objective predicts next word. All layers linearly combined to yield final representation.

Z Image from https://www.mihaileric.com/posts/deep-contextualized-word-representations-elmo/
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Transformers for representation learning & pretraining

Pre-training representations for multi-task learning
(...) to excel on multiple benchmarks while avoiding task-specific enginering. (...) a single

learning system able to discover adequate internal representations. [Collobert et al., 2011]

BERT uses a Transformer architecture - Base implementation has 12-24 layers each with 12-16 heads.

Z Image from https://jalammar.github.io/illustrated-bert/
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Transformers for representation learning & pretraining

Pre-training representations for multi-task learning
(...) to excel on multiple benchmarks while avoiding task-specific enginering. (...) a single

learning system able to discover adequate internal representations. [Collobert et al., 2011]

Local and global representations
Z Image from https://jalammar.github.io/illustrated-bert/
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Transformers for representation learning & pretraining

Pre-training representations for multi-task learning
(...) to excel on multiple benchmarks while avoiding task-specific enginering. (...) a single

learning system able to discover adequate internal representations. [Collobert et al., 2011]

GPT, a Transformer with “causal” self-attention, trained with next word prediction
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Transformers for representation learning & pretraining

Pre-training representations for multi-task learning
(...) to excel on multiple benchmarks while avoiding task-specific enginering. (...) a single

learning system able to discover adequate internal representations. [Collobert et al., 2011]

The many benefits of LM pre-training

almost unsupervised learning - leverage huge monolingual corpora

solve rare “word” issue

mitigate annotation scarcity

knowledge transfer between domains or tasks with prompting / priming⇒ uses LM as text generator with appropriate initialization

Improve lexical / phrasal / sentential representations accross the board
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Transformers for representation learning & pretraining

Pre-training representations for multi-task learning
(...) to excel on multiple benchmarks while avoiding task-specific enginering. (...) a single

learning system able to discover adequate internal representations. [Collobert et al., 2011]

Prompt (ANLI) The Gold Coast Hotel & Casino is a hotel and casino located in Paradise,
Nevada. This locals’ casino is owned and operated by Boyd Gaming.
The Gold Coast is located one mile west of the Las Vegas Strip on West
Flamingo Road. It is located across the street from the Palms Casino Resort
and the Rio All Suite Hotel and Casino. Question: The Gold Coast is a
budget-friendly casino. True, False, or Neither?

Answer (OK) Neither
Answer (KO) True
Answer (KO) False
Prompt (PIQA) How to apply sealant to wood.
Answer (OK) Using a brush, brush on sealant onto wood until it is fully saturated with the

sealant.
Answer (KO) Using a brush, drip on sealant onto wood until it is fully saturated with the

sealant.
Prompt (COPA) My body cast a shadow over the grass because
Answer (OK) the sun was rising.
Answer (KO) the grass was cut.

Z exemples from Radford et al. [2019]
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Transformers for representation learning & pretraining

Towards multilingual –language agnostic – representations
Computing embeddings such that mutual translations are nearest neighbours

Leaning multilingal contextual embeddings - XLM [Lample and Conneau, 2019]

Train with continuous stream of sentences

Do not use “next sentence prediction” objective

Train with language agnostic units and multiple languages

Z Images © A. Conneau & G. Lample (2018)
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Transformers for representation learning & pretraining

Towards multilingual –language agnostic – representations
Computing embeddings such that mutual translations are nearest neighbours

Leaning contextual multilingal embeddings - TLM

Learn a shared subword vocabulary

Train a single Transformer on MLM+TLM using parallel data (supervision)

Z Images © A. Conneau & G. Lample (2018)
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Transformers for representation learning & pretraining

Towards multilingual –language agnostic – representations
Computing embeddings such that mutual translations are nearest neighbours

X-lingual embeddings boost MT and yield unsupervised alignments

Z Images © A. Conneau (2019)
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Transformers for representation learning & pretraining

Towards multilingual –language agnostic – representations
Computing embeddings such that mutual translations are nearest neighbours

“Zero-shot” X-lingual transfer

Pretrain with multilingual representations

Train with annotated texts in English or high resource languages

Make predictions for texts in under resource languages
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Transformers for representation learning & pretraining

Towards multilingual –language agnostic – representations
Computing embeddings such that mutual translations are nearest neighbours

Variants:

BART & mBART: multi-lingual (mono-lingual translation with denoising Transformer)

smaller models with distillation

model specialization / adaptation

etc etc

M. Evrard, C. Guinaudeau, F. Yvon (LISN) Transformers in HLT 2020-2021 16 / 23



Unknown words in language models

The infamous < unk >nown word

Closed world assumption

The support of LM: a fixed vocab V . Sentences with unknowns have 0 probability.

The support of LM: a fixed vocab V ∪ { < unk >}.
Estimation: all words �∈ V are unked [makes < unk > very likely].

Variant: consider classes of < unk > (proper names, numbers, etc).

Subword units: morphemes, char ngrams, etc

morph-based LM: require morphogical analysis, < unk >still possible

letters: no more unknown words - unknown symbols instead ?

a mixture of words and letters

Shorter units require longer histories [estimation problems], imply longer sentences
[computational problems].
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Unknown words in language models

Subword units in language models: BPEs, wordpieces, etc

Byte pair encoding: N deterministic merge operations

1 Make symbol map (greedy)
Repeat till done: merge most frequent bigram into a

compound symbol

2 Encode (greedy)
split each word into compound symbols

Example from [Sennrich et al., 2016]

L = { lower , lowest , newer , wider , wide }
e r# 3 [er#] [lo] w 2 [low]
l o 2 [lo] w i 2 [wi]

Segmentations: [low]+ [er#], [low]+ e+ s+ [t#], n+ e+ w+ [er#], [wid]+ [er#], [wid]+ [e#]
Z https://github.com/rsennrich/subword-nmt

Computing P(w � h) requires marginalising (summing) over all segmentations of w
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