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Research	  Challenges	  and	  Data	  Sets	  
For	  research	  on	  Mul3modal	  Percep3on	  with	  Transformers	  

•  EGO4D:	  Ego-‐Centric	  4D	  Percep3on	  
•  Ego-‐Centric	  Percep3on:	  Kitchen	  ac3vi3es	  

•  EPIC-‐Kitchens	  55	  (2018)	  

•  EPIC-‐Kitchens	  100	  	  (2021)	  

•  Visual	  Ques3on	  and	  Answering	  (VQA)	  
•  Vision	  and	  Language	  Naviga3on	  (VLN)	  
•  Social-‐IQ	  
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Egocentric	  4D	  Percep3on	  (Ego4D)	  
(hYps://ego4d-‐data.org/docs/)	  

•  A	  mul3modal	  egocentric	  dataset	  and	  benchmark	  suite,	  with	  3,600	  
hrs	  of	  densely	  narrated	  video	  and	  a	  wide	  range	  of	  annota3ons	  
across	  five	  new	  benchmark	  tasks	  

•  Scenarios	  of	  daily	  life	  captured	  in-‐the-‐wild	  by	  926	  camera	  wearers	  
from	  74	  worldwide	  loca3ons	  and	  9	  different	  countries	  

•  Includes	  audio,	  3D	  meshes	  of	  the	  environment,	  eye	  gaze,	  stereo,	  
and	  	  synchronized	  videos	  from	  mul3ple	  egocentric	  cameras.	  	  
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Figure 1. Ego4D is a massive-scale egocentric video dataset of daily life activity spanning 74 locations worldwide. Here we see a snapshot of
the dataset (5% of the clips, randomly sampled) highlighting its diversity in geographic location, activities, and modalities. The data includes
social videos where participants consented to remain unblurred. See https://ego4d-data.org/fig1.html for interactive figure.

First, today’s influential Internet datasets capture brief, iso-
lated moments in time from a third-person “spectactor” view.
However, in both robotics and augmented reality, the input
is a long, fluid video stream from the first-person or “ego-
centric” point of view—where we see the world through
the eyes of an agent actively engaged with its environment.
Second, whereas Internet photos are intentionally captured
by a human photographer, images from an always-on wear-
able egocentric camera lack this active curation. Finally,
first-person perception requires a persistent 3D understand-
ing of the camera wearer’s physical surroundings, and must
interpret objects and actions in a human context—attentive
to human-object interactions and high-level social behaviors.

Motivated by these critical contrasts, we present the
Ego4D dataset and benchmark suite. Ego4D aims to cat-
alyze the next era of research in first-person visual percep-
tion. Ego is for egocentric, and 4D is for 3D spatial plus
temporal information.

Our first contribution is the dataset: a massive ego-video
collection of unprecedented scale and diversity that captures
daily life activity around the world. See Figure 1. It consists
of 3,670 hours of video collected by 931 unique participants
from 74 worldwide locations in 9 different countries. The
vast majority of the footage is unscripted and “in the wild”,
representing the natural interactions of the camera wearers as

they go about daily activities in the home, workplace, leisure,
social settings, and commuting. Based on self-identified
characteristics, the camera wearers are of varying back-
grounds, occupations, gender, and ages—not solely graduate
students! The video’s rich geographic diversity supports the
inclusion of objects, activities, and people frequently absent
from existing datasets. Since each participant wore a camera
for 1 to 10 hours at at time, the dataset offers long-form video
content that displays the full arc of a person’s complex inter-
actions with the environment, objects, and other people. In
addition to RGB video, portions of the dataset also provide
audio, 3D meshes, gaze, stereo, and/or synchronized multi-
camera views that allow seeing one event from multiple
perspectives. Our dataset draws inspiration from prior ego-
centric video data efforts [43,44,129,138,179,201,205,210],
but makes significant advances in terms of scale, diversity,
and realism.

Equally important to having the right data is to have the
right research problems. Our second contribution is a suite
of five benchmark tasks spanning the essential components
of egocentric perception—indexing past experiences, ana-
lyzing present interactions, and anticipating future activity.
To enable research on these fronts, we provide millions of
rich annotations that resulted from over 250,000 hours of
annotator effort and range from temporal, spatial, and seman-
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The	  Ego4D	  Consor3um	  
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hYps://arxiv.org/abs/2110.07058	  
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Research	  Challenges:	  Episodic	  Memory	  
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Research	  Challenges:	  Episodic	  Memory	  

•  Visual	  queries	  with	  2D	  localiza$on	  and	  VQ	  3D	  localiza$on:	  Given	  an	  
egocentric	  video	  clip	  and	  an	  image	  crop	  depic3ng	  the	  query	  object,	  return	  
the	  last	  3me	  the	  object	  was	  seen	  in	  the	  input	  video,	  in	  terms	  of	  the	  tracked	  
bounding	  box	  (2D	  +	  temporal	  localiza3on)	  or	  the	  3D	  displacement	  vector	  
from	  the	  camera	  to	  the	  object	  in	  the	  environment.	  

•  Natural	  language	  queries:	  Given	  a	  video	  clip	  and	  a	  query	  expressed	  in	  
natural	  language,	  localize	  the	  temporal	  window	  within	  all	  the	  video	  history	  
where	  the	  answer	  to	  the	  ques3on	  is	  evident.	  

	  
•  	  Moments	  queries:	  Given	  an	  egocentric	  video	  and	  an	  ac3vity	  name	  (e.g.,	  a	  

“moment”),	  localize	  all	  instances	  of	  that	  ac3vity	  in	  the	  past	  video	  	  
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Research	  Challenges:	  Hand	  +	  Object	  interac3on	  
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Research	  Challenges:	  Hand	  +	  Object	  interac3on	  

•  Temporal	  localiza$on	  and	  classifica$on:	  Given	  an	  egocentric	  
video	  clip,	  localize	  temporally	  the	  key	  frames	  that	  indicate	  an	  
object	  state	  change	  and	  iden3fy	  what	  kind	  of	  state	  change	  it	  
is.	  

•  State	  change	  object	  detec$on:	  Given	  an	  egocentric	  video	  
clip,	  iden3fy	  the	  objects	  whose	  states	  are	  changing	  and	  
outline	  them	  with	  bounding	  boxes.	  	  
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Research	  Challenges:	  Audio-‐Visual	  Diariza3on	  
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Research	  Challenges:	  Social	  Interac3on	  
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Audio-‐Visual	  Diariza3on	  and	  Social	  Interac3on	  

•  Audio-‐visual	  localiza$on:	  Given	  an	  egocentric	  video	  clip,	  
localize	  the	  speakers	  in	  the	  visual	  field	  of	  view.	  

•  Audio-‐visual	  speaker	  diariza$on:	  Given	  an	  egocentric	  video	  
clip,	  iden3fy	  which	  person	  spoke	  and	  when	  they	  spoke.	  

•  Audio-‐only	  Diariza$on	  Challenges	  
•  Speech	  transcrip$on:	  Given	  an	  egocentric	  video	  clip,	  

transcribe	  the	  speech	  of	  each	  person.	  
•  Talking	  to	  me:	  Given	  an	  egocentric	  video	  clip,	  iden3fy	  

whether	  someone	  in	  the	  scene	  is	  talking	  to	  the	  camera	  
wearer.	  

•  Looking	  at	  me:	  Given	  an	  egocentric	  video	  clip,	  iden3fy	  
whether	  someone	  in	  the	  scene	  is	  looking	  at	  the	  camera	  
wearer.	   13	  



Research	  Challenges:	  Forecas3ng	  
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Research	  Challenges:	  Forecas3ng	  

•  Locomo$on	  forecas$ng:	  Given	  a	  video	  frame	  and	  the	  past	  trajectory,	  predict	  
the	  future	  ego	  posi3ons	  of	  the	  camera	  wearer	  (in	  the	  form	  of	  a	  3D	  
trajectory).	  

•  Hand	  forecas$ng:	  Given	  a	  short	  preceding	  video	  clip,	  predict	  where	  the	  
hand	  will	  be	  visible	  in	  the	  future,	  in	  terms	  of	  a	  bounding	  box	  center	  in	  
keyframes.	  

•  Short-‐term	  hand	  object	  predic$on:	  Given	  a	  video	  clip,	  predict	  the	  next	  
ac3ve	  objects,	  the	  next	  ac3on,	  and	  the	  3me	  to	  contact.	  

•  Long-‐term	  ac$vity	  predic$on:	  Given	  a	  video	  clip,	  the	  goal	  is	  to	  predict	  what	  
sequence	  of	  ac3vi3es	  will	  happen	  in	  the	  future?	  For	  example,	  ajer	  kneading	  
dough,	  what	  will	  the	  baker	  do	  next?	  	  
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Egocentric	  Percep3on	  of	  Non-‐scripted	  Daily	  ac3vity	  

Egocentric	  Percep3on	  of	  Non-‐scripted	  Daily	  ac3vity	  
Data	  Sets:	  Epic	  Kitchens	  hYps://epic-‐kitchens.github.io/2021	  
	  
Key	  References	  
Damen,	  D.,	  et	  al.	  (2018).	  Scaling	  egocentric	  vision:	  The	  epic-‐kitchens	  dataset.	  In	  
Proceedings	  of	  the	  European	  Conference	  on	  Computer	  Vision	  (ECCV)	  (pp.	  720-‐736).	  
(Also	  appeared	  in	  PAMI	  2020.	  
Damen,	  D.,	  et	  al	  .,	  EPIC-‐KITCHENS-‐55	  -‐	  2020	  Challenges	  Report,	  CVPR	  2019.	  
Damen,	  D.,	  et	  al	  .,	  	  EPIC-‐KITCHENS-‐200	  -‐	  Rescaling	  Egocentric	  Vision,	  2021	  
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EPIC:	  Egocentric	  Percep3on	  of	  Non-‐scripted	  Daily	  ac3vity	  

EPIC	   Kitchens-‐55:	   a	   large-‐scale	   egocentric	   video	   benchmark	   recorded	   by	   32	  
par3cipants	   in	   their	   na3ve	   kitchen	   environments.	   Videos	   depict	   nonscripted	   daily	  
ac3vi3es	  accompanied	  by	  Audio	  Narra3on.	  55	  hours	  of	  video	  (11.5M	  frames).	  Ground	  
truth	  labeling	  for	  39.6K	  ac3on	  segments	  and	  454.2K	  object	  bounding	  boxes.	  Narra3ons	  
(speech	  and	  text)	  added	  post-‐recording	  	  by	  par3cipants	  
	  

Damen,	   D.,	   et	   al.	   (2018).	   Scaling	   egocentric	   vision:	   The	   epic-‐kitchens	   dataset.	   In	  
Proceedings	  of	  the	  European	  Conference	  on	  Computer	  Vision	  (ECCV)	  (pp.	  720-‐736)	  
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EPIC-‐55	  	  Research	  Challenges:	  Object	  Detec3on	  Challenge	  

Object	  Detec$on:	  125	  Visual	   object	   classes	   and	   331	  Noun	   classes,	   grouped	  
into	  grouped	  into	  19	  super	  categories	  	  

Evalua$on	  Metrics:	   	  mean	  average	  precision	  (mAP)	  metric	  from	  PASCAL	  VOC,	  
using	  IoU	  thresholds	  of	  0.05,	  0.5	  and	  0.75	  similar	  to	  MS-‐COCO	  

18	  
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TABLE 5: Baseline results for the Object Detection challenge

15 Most Frequent Object Classes Totals
mAP pan plate bowl onion tap pot knife spoon meat food potato cup pasta cupboard lid few-shot many-shot all

S1
IoU > 0.05 74.00 72.61 71.50 60.72 84.44 69.97 44.03 40.93 29.65 58.52 62.82 53.30 78.39 51.95 62.77 9.71 49.80 38.23
IoU > 0.5 67.60 66.21 65.98 39.96 73.80 64.71 28.80 23.89 20.75 49.85 55.48 42.99 69.75 29.20 58.48 6.98 36.50 28.06
IoU > 0.75 21.94 44.60 39.48 3.52 25.83 19.67 3.42 2.59 5.27 15.78 13.18 8.00 24.53 4.05 26.51 0.36 8.73 6.50

S2

IoU > 0.05 75.94 87.36 72.72 47.61 78.14 75.92 55.51 41.28 71.59 38.61 N/A 44.62 80.58 53.88 58.40 6.00 51.71 40.61
IoU > 0.5 62.88 84.86 68.61 32.18 59.75 62.86 39.60 27.52 53.54 35.47 N/A 39.19 76.27 32.54 49.36 5.32 36.27 28.57
IoU > 0.75 14.56 62.82 38.44 2.25 4.89 14.91 3.85 1.51 9.56 8.10 N/A 7.60 43.30 5.61 25.48 0.18 9.05 7.04

Fig. 10: Qualitative results for the object detection challenge

[42] with a base architecture of ResNet-101 [1] pretrained on MS-
COCO [8].
Implementation Details: Learning rate is initalised to 0.0003
decaying by a factor of 10 after 30000 and 40000 iterations.
We use a minibatch size of 4 on 8 Nvidia P100 GPUs on a
single compute node (Nvidia DGX-1) with distributed training
and parameter synchronisation – i.e. overall minibatch size of 32.
As in [2], images are rescaled such that their shortest side is 600
pixels and the aspect ratio is maintained. We use a stride of 16 on
the last convolution layer for feature extraction and for anchors we
use 4 scales of 0.25, 0.5, 1.0 and 2.0; and aspect ratios of 1:1, 1:2
and 2:1. To reduce redundancy, NMS is used with an IoU threshold
of 0.7. In training and testing we use 300 RPN proposals.
Evaluation Metrics: We use the mean average precision (mAP)
metric from PASCAL VOC [6], using IoU thresholds of 0.05, 0.5
and 0.75 similar to MS-COCO [8]. For each class, we only report
results on Icn2C

N , these are all images where class c
n

has been
annotated.
Results: We report results in Table 5 for many-shot classes (those
with � 100 bounding boxes in training) and few shot classes
(with � 10 and < 100 bounding boxes in training), alongside AP
for the 15 most frequent classes. There are a total of 202 many-
shot classes and 78 are few-shot. One can see that our objects
are generally harder to detect than in most existing datasets,
with performance at the standard IoU> 0.5 below 30%. Even
at a very small IoU threshold, the performance is relatively low.
The more challenging classes are “meat”, “knife”, and “spoon”,
despite being some of the most frequent ones. Notice that the
performance for the low-shot regime is substantially lower than
in the many-shot regime, falling short of 10%. This points to

interesting challenges for the future. However, performances for
the Seen and Unseen splits in object detection are comparable,
thus showing generalization capability across environments.

Figure 10 shows qualitative results with detections shown in
color and ground truth shown in black. The examples in the right-
hand column are failure cases.

4.2 Action Recognition Benchmark
Challenge: Given an action segment A
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], we aim to
classify the segment into its action class, where classes are defined
as C
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= {(c
v

2 C
V

, c
n

2 C
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)}, and c
n

is the first noun in the
narration when multiple nouns are present. Note that our dataset
supports more complex action-level challenges, such as action
localization in the videos of full duration. We decided to focus
on the classification challenge first (the segment is provided) since
most existing works tackle this challenge. In the future, we aim to
provide challenges on action localization, as well as video parsing.
Network Architecture: We train the Temporal Segment Network
(TSN) [43] as a state-of-the-art architecture in action recognition,
but adjust the output layer to predict both verb and noun classes
jointly, with independent losses, as in [44]. We use the PyTorch
implementation [45] with the Inception architecture [46], batch
normalization [47] and pre-trained on ImageNet [7]. We set the
number of temporal segments to 3 in our experiments.
Implementation Details: We train both spatial and temporal
streams, the latter on dense optical flow at 30fps extracted
using the TV-L1 algorithm [48] between RGB frames using the
formulation TV-L1(I2t, I2t+3) to eliminate optical flicker. We
will release the computed flow as part of the dataset. We do not
perform stratification or weighted sampling, allowing the dataset
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[42] with a base architecture of ResNet-101 [1] pretrained on MS-
COCO [8].
Implementation Details: Learning rate is initalised to 0.0003
decaying by a factor of 10 after 30000 and 40000 iterations.
We use a minibatch size of 4 on 8 Nvidia P100 GPUs on a
single compute node (Nvidia DGX-1) with distributed training
and parameter synchronisation – i.e. overall minibatch size of 32.
As in [2], images are rescaled such that their shortest side is 600
pixels and the aspect ratio is maintained. We use a stride of 16 on
the last convolution layer for feature extraction and for anchors we
use 4 scales of 0.25, 0.5, 1.0 and 2.0; and aspect ratios of 1:1, 1:2
and 2:1. To reduce redundancy, NMS is used with an IoU threshold
of 0.7. In training and testing we use 300 RPN proposals.
Evaluation Metrics: We use the mean average precision (mAP)
metric from PASCAL VOC [6], using IoU thresholds of 0.05, 0.5
and 0.75 similar to MS-COCO [8]. For each class, we only report
results on Icn2C
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has been
annotated.
Results: We report results in Table 5 for many-shot classes (those
with � 100 bounding boxes in training) and few shot classes
(with � 10 and < 100 bounding boxes in training), alongside AP
for the 15 most frequent classes. There are a total of 202 many-
shot classes and 78 are few-shot. One can see that our objects
are generally harder to detect than in most existing datasets,
with performance at the standard IoU> 0.5 below 30%. Even
at a very small IoU threshold, the performance is relatively low.
The more challenging classes are “meat”, “knife”, and “spoon”,
despite being some of the most frequent ones. Notice that the
performance for the low-shot regime is substantially lower than
in the many-shot regime, falling short of 10%. This points to

interesting challenges for the future. However, performances for
the Seen and Unseen splits in object detection are comparable,
thus showing generalization capability across environments.
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supports more complex action-level challenges, such as action
localization in the videos of full duration. We decided to focus
on the classification challenge first (the segment is provided) since
most existing works tackle this challenge. In the future, we aim to
provide challenges on action localization, as well as video parsing.
Network Architecture: We train the Temporal Segment Network
(TSN) [43] as a state-of-the-art architecture in action recognition,
but adjust the output layer to predict both verb and noun classes
jointly, with independent losses, as in [44]. We use the PyTorch
implementation [45] with the Inception architecture [46], batch
normalization [47] and pre-trained on ImageNet [7]. We set the
number of temporal segments to 3 in our experiments.
Implementation Details: We train both spatial and temporal
streams, the latter on dense optical flow at 30fps extracted
using the TV-L1 algorithm [48] between RGB frames using the
formulation TV-L1(I2t, I2t+3) to eliminate optical flicker. We
will release the computed flow as part of the dataset. We do not
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Ac$on	  Recogni$on	  Challenge:	  Given	  an	  ac3on	  segment,	  classify	  the	  segment	  
into	  its	  ac3on	  class,	  where	  classes	  are	  defined	  (verb,	  noun),	  with	  26	  verbs	  and	  
70	  noun	  classes.	  	  

Evalua$on	  Metrics:	  	  
(1)  Aggregate	  metrics:	  	  	  top-‐	  1	  and	  top-‐5	  accuracy	  for	  cv,	  cn	  and	  	  (cv,cn)	  –	  we	  

refer	  to	  these	  as	  ‘verb’,	  ‘noun’	  and	  ‘ac3on’.	  

(2)  Per-‐class	  metric:	  	  precision	  and	  recall	  for	  classes	  with	  more	  than	  100	  
samples	  in	  training	  	  	  
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TABLE 6: Baseline results for the action recognition challenge

Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall
VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S1

RGB 45.25 35.78 18.91 86.07 62.80 39.39 54.94 40.41 07.01 23.31 30.03 05.29
FLOW 43.27 17.92 09.10 79.89 39.63 21.91 64.58 24.51 01.52 15.35 09.72 01.28
FUSION 47.36 36.05 19.44 84.27 61.05 35.45 63.12 44.24 07.33 21.95 29.25 05.22

S2

RGB 35.96 21.74 09.96 74.70 44.95 24.59 45.40 22.14 02.06 11.79 16.75 01.91
FLOW 40.56 14.91 07.28 73.66 33.87 18.29 44.83 22.99 00.92 14.16 08.79 00.94
FUSION 39.67 22.33 10.84 74.53 45.23 23.52 59.60 23.65 02.09 13.37 16.84 01.84

TABLE 7: Sample baseline action recognition per-class metrics (using fusion)

15 Most Frequent Verb Classes
put take wash open close cut mix pour move turn-on remove turn-off throw dry peel

S1
RECALL 65.32 51.01 80.45 60.98 27.13 74.27 52.63 24.87 00.00 05.63 01.58 03.67 10.11 29.73 26.09
PRECISION 35.62 41.24 63.17 72.67 72.46 69.38 69.52 66.20 - 53.33 66.67 50.00 56.25 88.00 54.55

S2

RECALL 64.16 48.03 87.76 42.06 15.10 45.69 35.85 06.06 00.00 00.00 00.81 00.00 00.00 00.00 00.00
PRECISION 30.19 30.46 67.79 57.31 61.54 85.48 65.52 40.00 - 00.00 100.0 - - - 00.00

Fig. 11: Qualitative results for the action recognition challenge

class imbalance to propagate into the minibatch. We train each
model on 8 Nvidia P100 GPUs on a single compute node (Nvidia
DGX-1) for 80 epochs with a minibatch size of 512. We set
learning rate to 0.01 for spatial and 0.001 for temporal streams
decreasing it by a factor of 10 after epochs 20 and 40. After
averaging the 25 samples within the action segment each with
10 spatial croppings as in [43], we fuse both streams by averaging
class predictions with equal weights. All unspecified parameters
use the same values as [43].
Evaluation Metrics: We report two sets of metrics: aggregate and
per-class, which are equivalent to the class-agnostic and class-
aware metrics in [12]. For aggregate metrics, we compute top-
1 and top-5 accuracy for correct predictions of c

v

, c
n

and their
combination (c

v

, c
n

) – we refer to these as ‘verb’, ‘noun’ and
‘action’. Accuracy is reported on the full test set. For per-class
metrics, we compute precision and recall, for classes with more
than 100 samples in training, then average the metrics across
classes - these are 26 verb classes, 70 noun classes. We also report
per-class metrics for the valid combinations of these classes - 820
action classes. Per-class metrics for smaller classes are ⇡ 0 as
TSN is better suited for classes with sufficient training data.
Results: We report results in Table 6 for aggregate metrics and
per-class metrics. Fused results perform best or are comparable
to the best stream (spatial/temporal). The challenge of getting
both verb and noun labels correct remains significant for both
seen (top-1 accuracy 19.4%) and unseen (top-1 accuracy 10.8%)
environments. This implies that for many examples, we only get

one of the two labels (verb/noun) right. Results also show that
generalizing to unseen environments is a harder challenge for
actions than it is for objects. We give a breakdown per-class
metrics for the 15 largest verb classes in Table 7.

Fig. 11 reports qualitative results, with success highlighted
in green, and failures in red. In the first two columns, both the
verb and the noun are correctly predicted, in the third column one
of them is correctly predicted, while in the last column both are
incorrect. Challenging cases like distinguishing ‘adjust heat’ from
turning it on, or pouring soy sauce vs oil are shown.

4.3 Action Anticipation Benchmark
Challenge: Anticipating the next action is a well-mastered skill
by humans, and automating it has direct implications in assistive
living. Given any of the upcoming wearable system (e.g. Microsoft
Hololens or Google Glass), anticipating the wearer’s next action,
from a first-person view, could trigger smart home appliances,
providing a seamless achievement of the wearer’s goals. Previ-
ous works have investigated different anticipation tasks from an
egocentric perspective, e.g. predicting future localization [49] or
next-active object [50]. We here consider the task of forecasting
an action before it happens. Let ⌧

a

be the ‘anticipation time’, how
far in advance to recognize the action, and ⌧

o

be the ‘observation
time’, the length of the observed video segment preceding the
action. Given an action segment A
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Ac$on	  An$cipa$on	  Challenge:	  Given	  an	  ac3on	  segment,	  	  predict	  the	  ac3on	  
class	  by	  observing	  the	  video	  segment	  preceding	  the	  ac3on.	  	  

	  
Evalua$on	  Metrics:	  	  

(1)  Aggregate	  metrics:	  	  	  top-‐	  1	  and	  top-‐5	  accuracy	  for	  cv,	  cn	  and	  	  (cv,cn)	  –	  we	  
refer	  to	  these	  as	  ‘verb’,	  ‘noun’	  and	  ‘ac3on’.	  

(2)  Per-‐class	  metric:	  	  precision	  and	  recall	  for	  classes	  with	  more	  than	  100	  
samples	  in	  training	  	  	  
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Ac$on	  Recogni$on	  Challenge:	  

Object	  Detec$on	  Challenge:	  

Submissions Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall
Rank Team Entries Date VERB NOUN ACTION N VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S1

1 NUS CVML 18 05/29/20 37.87 24.10 16.64 79.74 53.98 36.06 36.41 25.20 9.64 15.67 22.01 10.05
2 VI-I2R 28 05/23/20 36.72 24.61 16.02 80.39 54.90 37.11 31.03 26.02 8.68 15.28 22.03 8.70
3 Ego-OMG 16 05/26/20 32.20 24.90 16.02 77.42 50.24 34.53 14.92 23.25 4.03 15.48 19.16 5.36
4 UNIPD-UNICT 16 05/26/20 36.73 24.26 15.67 79.87 53.76 36.31 35.86 25.16 7.42 14.12 21.30 7.62
5 GT-WISC-MPI 20 11/12/19 36.25 23.83 15.42 79.15 51.98 34.29 24.90 24.03 6.93 15.31 21.91 7.88
6 UNICT 9 05/05/19 31.13 22.93 15.25 78.03 51.05 35.13 22.58 24.26 8.41 17.71 20.05 8.05

RML 13 05/30/19 34.40 23.36 13.20 79.07 47.57 31.80 26.36 21.81 5.28 19.47 20.01 5.20
Inria-Facebook 14 10/03/18 30.74 16.47 9.74 76.21 42.72 25.44 12.42 16.67 3.67 8.80 12.66 3.85

S2

1 Ego-OMG 16 05/26/20 27.42 17.65 11.81 68.59 37.93 23.76 13.36 15.19 4.52 10.99 14.34 5.65
2 VI-I2R 28 05/23/20 28.71 17.21 10.11 71.77 40.49 23.46 12.54 15.94 4.28 9.24 14.21 5.97
3 NUS CVML 18 05/29/20 29.50 16.52 10.04 70.13 37.83 23.42 20.43 12.95 4.92 8.03 12.84 6.26
5 GT-WISC-MPI 20 11/12/19 29.87 16.80 9.94 71.77 38.96 23.69 15.96 12.02 4.40 9.65 13.51 5.18
6 UNIPD-UNICT 16 05/26/20 28.51 16.59 9.32 71.66 37.97 23.28 13.15 13.26 4.72 7.86 13.77 5.07
7 UNICT 9 05/05/19 26.63 15.47 9.12 68.11 35.27 21.88 16.58 9.93 3.16 11.08 11.70 4.55

RML 13 05/30/19 27.89 15.53 8.50 70.47 34.28 20.38 17.77 12.32 3.28 9.35 12.11 3.84
Inria-Facebook 14 10/03/18 28.37 12.43 7.24 69.96 32.20 19.29 11.62 8.36 2.20 7.80 9.94 3.36

Table 2: Results on EPIC-KITCHENS-55 Action Anticipation challenge - 1 June 2020

chunks using K-Means. Camera motion is compensated
for each chunk separately, and features from each chunk
are late-fused to obtain final predictions. Preliminary re-
sults in the submitted report showed promise on the authors
own split but the experiments did not materialise, with this
method performing last on the public leaderboard. The au-
thors wanted to highlight the importance of ego-motion by
submitting this technical report.

4. Action Anticipation Challenge
The 2020 edition of the Action Anticipation challenge

has been set similarly to the 2019 edition. The instruc-
tions given to the participants for the 2020 edition are sum-
marised in Figure 2. For each annotated action segment
A

i

of temporal bounds [t
si , tei ], the participates were asked

to predict the action by observing a video segment pre-
ceding the start of the action by a fixed anticipation time
⌧

a

= 1 second. The length of the observed segment ⌧
o

(ob-
servation time) could be set arbitrarily by the participants.
Submissions observing any visual content appearing after
time t

si � ⌧

a

as outlined in Figure 2 (right) were deemed to
be invalid.

The submissions followed the same format as that of the
recognition challenge, i.e., the participants provided recog-
nition scores for verbs, nouns and actions. Results are re-
ported considering both the S1 and S2 test sets. Table 2
shows the results achieved by the participants, along with
the public leaderboard rankings. The top-3 submissions are
highlighted in bold. Shaded lines reflect the top-3 ranked
methods of last edition for direct comparison. The methods
have been evaluated using the same metrics as the action
recognition challenge. Interestingly, all submissions outper-
form the top ranked methods of last year’s edition. Overall,
the submissions have improved over the top scoring method
of the 2019 challenges by +6.87%, +1.97% and +1.39%
for top-1 verb, noun and action on S1 and +1.5%, +2.12%,
+2.69% on S2.

Figure 2: Expected (left) and rejected (right) action antici-
pation challenge instructions.

We next summarise the contributions of the participants
based on their technical reports.

4.1. Technical Reports
Technical reports for the Action Anticipation challenge,

in order of their overall rank on the public leaderboard, are:
NUS CVML (Rank 1 - S1, Rank 3 - S2) The method is
based on the analysis of long- and short-term features. Ac-
tion anticipation is obtained by aggregating such features
using computation modules based on non-local blocks - a
coupling block to aggregate representations from long- and
short-term past representations and a temporal aggregation
block to combine the representations to perform anticipa-
tion. The proposed approach achieves good results leverag-
ing image representations employed in previous approach,
which suggests superior temporal reasoning abilities.
VI-I2R (Rank 2) The method extends Rolling-Unrolling
LSTMs by improving the RGB and Flow representations
using Temporal Relational Networks (TRN) instead of
Temporal Segment Networks (TSM), including additional
hand mask features, and incorporating a past action classi-
fication module. The final results are obtained considering
an ensemble of different instances of the same method.
Ego-OMG (Rank 3 - S1, Rank 1 - S1) The method is based
on Egocentric Object Manipulation Graphs (Ego-OMG), a
representation proposed for activity modeling and future ac-
tion prediction. The graph encodes contact and anticipated
contact between hands and objects. Hand-object contact is
anticipated using a contact anticipation network based on a

3

Submissions Few Shot Classes (%) Many Shot Classes (%) All Classes (%)
Rank Team Entries Date IoU >0.05 IoU >0.5 IoU >0.75 IoU >0.05 IoU >0.5 IoU >0.75 IoU >0.05 IoU >0.5 N IoU >0.75

S1

1 hutom 51 05/30/20 47.44 35.75 14.32 60.77 46.50 15.60 58.27 44.48 15.36
2 DHARI 27 05/29/20 54.98 32.40 14.55 68.74 43.88 15.38 66.15 41.72 15.23
3 FB AI 69 04/01/20 26.55 19.01 8.22 58.44 46.22 15.61 52.44 41.10 14.22
4 CVG Lab Uni Bonn 23 05/12/20 39.36 26.66 7.89 53.50 41.28 12.46 50.84 38.53 11.60
5 VCL 61 05/18/20 33.23 23.16 5.00 50.78 37.91 9.79 47.48 35.13 8.89
6 [2] (baseline) - 09/03/18 30.63 20.28 2.75 49.55 37.39 9.82 45.99 34.18 8.49

S2

1 FB AI 69 04/01/20 13.70 10.41 2.88 59.21 45.42 16.24 54.57 41.85 14.88
2 hutom 51 05/30/20 29.81 20.87 8.09 58.66 43.42 13.00 55.72 41.12 12.50
3 DHARI 27 05/29/20 35.75 22.31 7.33 67.92 41.92 14.29 64.64 39.93 13.58
4 CVG Lab Uni Bonn 23 05/12/20 25.34 21.54 7.81 52.18 38.24 11.41 49.45 36.54 11.04
5 VCL 61 05/18/20 19.87 15.27 4.07 50.37 35.63 9.16 47.26 33.55 8.64
6 [2] (baseline) - 09/03/18 20.81 15.88 2.41 47.69 33.84 8.49 44.95 32.01 7.87

Table 3: Results of EPIC-KITCHENS-55 Object Detection in Video challenge - 1 June 2020

3D CNN. Graph convolutions and LSTMs are used to ob-
tain the final prediction.
UNIPD-UNICT (Rank 3 - S1, Rank 6 - S2) The method
employs a label smoothing technique which can be used
to distill knowledge shared between verbs, nouns, and ac-
tions from one-hot labels through the introduction of “soft
labels”. The proposed approach includes verb-noun label
smoothing, glove-based label smoothing and temporal label
smoothing. The knowledge distillation technique is applied
to the state-of-the-art Rolling-Unrolling LSTM and to an
approach to anticipation based on multi-head attention.
GT-WISC-MPI (Rank 4 - S1, Rank 5 - S2) The method
considers hand motion and interaction hotspots as features
for egocentric action anticipation. The model comprises a
backbone 3D CNN, an anticipation module to predict future
actions, a motor attention module to anticipate hand trajec-
tories, and an interaction hotspots module to predict inter-
action regions. The final results are obtained combining the
network based on RGB frames with the object branch of
Rolling-Unrolling LSTMs.

5. Object Detection in Video challenge
The Object Detection in Video challenge follows simi-

lar challenges in object detection [6, 9] where the goal is
to localise and classify objects in an image. Unlike previ-
ous object recognition challenges, the annotation in EPIC-
KITCHENS-55 focuses on ‘active’ objects where the same
object is labelled multiple times while being manipulated.
This introduces a temporal aspect to the problem, with de-
pendencies between the annotations, different from object
detection from individual images. Objects are labelled at
2fps throughout the duration of the action they appear in,
as well as ±2 seconds around the action’s temporal bounds.

Since the annotations focus on ‘active’ objects, the im-
ages evaluated per class are restricted to those where the
object has been annotated, as inactive object will appear in
other images without annotation. Table 3 shows the results
of methods submitted to the public leaderboard for both test
sets (S1 and S2). Methods are ranked by performance on
all classes with IoU > 0.5. The top three submissions are

highlighted in bold. While last year’s challenge did not see
any submissions, likely due to the additional temporal as-
pect of the problem and computational resources required
(see [2]), this year’s challenge saw several works beating
the Faster-RCNN [8] baseline by a large margin. The top-
performing method outperforms the baseline, for all classes
and IoU>0.5, by 10% in both S1 and S2. Similar im-
provement is reported for many-shot classes, however the
improvement over few-shot classes varies for the various
approaches, particularly for unseen environments (S2).

We next describe the individual contributions of each
team based on their technical report.

5.1. Technical Reports
Technical reports for the Object Detection in Video chal-

lenge are:
hutom (Rank 1 - S1, Rank 2 - S2) introduces a semi-
supervised learning method which uses a bidirectional
tracker to generate pseudo labels for frames where the ob-
ject is not annotated. By using these pseudo labels with a
Fully Convolutional One-Stage Object Detection (FCOS)
network the proposed method is able to be robust to the
sparsity of the annotations.
FB AI (Rank 3 - S1, Rank 1 - S2) uses the current frame’s
features to warp features from relevant previous and future
frames. The aggregation of these warped features with the
current frame is then used with Cascade R-CNN to produce
object detections. These long-range temporal cues allow the
method to mitigate the negative effects caused by motion
blur and object occlusions.
DHARI (Rank 2 - S1, Rank 3 - S2) propose the Global
Region of Interest (RoI) Extractor to extract RoI features
from all levels of a Feature Pyramid Network. A Hard IoU-
imbalance Sampling strategy is also used to better sample
incorrect bounding boxes as opposed to unlabelled objects.
These techniques, and other training tricks such as class-
balanced sampling, are used in combination with a Cascade
R-CNN.
VCL (Rank 5 - S1, Rank 5 - S2) experiment with various
ways to incorporate prior knowledge into existing multi-
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EPIC	  Kitchens-‐100	  

EPIC	  Kitchens-‐100:	  	  	  100	  hours,	  20M	  frames,	  90K	  ac3ons	  in	  700	  variable-‐length	  videos,	  
capturing	   long-‐term	   unscripted	   ac3vi3es	   in	   45	   environments,	   using	   head-‐mounted	  
cameras.	   Annotated	   with	   denser	   and	   more	   complete	   annota3ons	   of	   fine-‐grained	  
ac3ons	  (54%	  more	  ac3ons	  per	  minute,	  +128%	  more	  ac3on	  segments)	  	  

Ground	   truth	   labeling	   for	  39.6K	  ac3on	  segments	  and	  454.2K	  object	  bounding	  boxes.	  
Narra3ons	  (speech	  and	  text)	  added	  post-‐recording	  	  by	  par3cipants	  
	  
Damen,	  D.,	  et	  al.	  (2021).	  ReScaling	  egocentric	  vision:	  The	  epic-‐kitchens	  dataset.	  	  IJCV	  2021	  
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Fig. 1. Frames from EPIC-KITCHENS-100 showcasing returning participants&kitchens
(top 2), participants who changed kitchens (middle 2) and new participants (bottom 2).

YouTube [28,30] and movies [5,29] typically contain curated videos, with edited
shots. However, attempts to define multiple challenges for these datasets have
been exemplary. ActivityNet [28] is the most popular video challenge, evaluated
for localisation, dense captioning [32] and object detection [33]. Similarly, AVA [5]
has challenges on action localisation and active speaker detection [34].

In contrast, egocentric vision captures untrimmed daily activities, enabling
challenges such as detection and anticipation in uncurated videos, and potential
deployment through wearable setups for activities of daily living. Several leading
egocentric datasets [35,36,37,38,39] showcased the unique perspective and poten-
tial of first-person views for action recognition, particularly hand-object interac-
tions. In 2018, the introduction of the largest-scale dataset EPIC-KITCHENS [1]
has transformed egocentric vision, not only due to its size, but also the unscripted
nature of its collection and the scalable nature of the collection pipeline. In
this paper, we present EPIC-KITCHENS-100, a substantial extension which
brings the total footage to 100 hours, capturing diverse unscripted and unedited
human-object interactions in people’s kitchens2. In addition to our objective of
rescaling egocentric vision in dataset size, we propose an annotation pipeline that
results in denser and more complete annotations of actions. This pipeline enables

2 We will refer to the previous edition as EPIC-KITCHENS-55 in reference to the
number of hours collected and annotated.



EPIC	  Kitchens-‐100	  Data	  Collec$on	  

45	  par3cipants	  in	  4	  ci3es	  collected	  video	  over	  2	  to	  4	  days	  using	  GoPro	  Hero7	  black.	  
Videos	   are	   narrated	   off-‐line	   in	   na3ve	   language	   using	   “Pause	   and	   talk”	   to	   provide	  
synchronized	  audio-‐visual	  recording	  

Narra3ves	   are	   translated	   English	   with	   Amazon	   Mechanical	   Turk,	   spell	   checked	   and	  
transformed	  to	  verbs/nouns	  
	  

hYps://epic-‐kitchens.github.io/2021	  
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EPIC-‐Kitchens-‐100:	  Five	  research	  challenges	  

Five	  research	  challenges	  
1)  Ac3on	  Recogni3on	  

2)  Ac3on	  Detec3on	  
3)  Ac3on	  An3cipa3on	  

4)  Cross-‐modal	  retrieval	  

5)  Domain	  adapta3on	  
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EPIC-‐100	  	  Research	  Challenges:	  Ac3on	  Recogni3on	  Challenge	  

Ac$on	  Recogni$on	  Challenge:	  Given	  an	  ac3on	  segment,	  classify	  the	  segment	  
into	  its	  ac3on	  class.	  	  Data	  contains	  53	  ac3on	  classes	  with	  128	  instances	  	  

Evalua$on	  Metrics:	  	  
(1)  Aggregate	  metrics:	  	  	  top-‐	  1	  and	  top-‐5	  accuracy	  for	  cv,	  cn	  and	  	  (cv,cn)	  –	  we	  

refer	  to	  these	  as	  ‘verb’,	  ‘noun’	  and	  ‘ac3on’.	  

(2)  Per-‐class	  metric:	  	  precision	  and	  recall	  for	  classes	  with	  more	  than	  100	  
samples	  in	  training	  	  	  
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EPIC-‐100:	  Ac3on	  Detec3on	  Challenge	  

Ac$on	  Detec$on	  Challenge	  

Ac$on	  Detec$on:	  Given	  a	  video,	  detect	  Ac3on	  instances	  with	  Start	  Time,	  Stop	  
3me,	  verb,	  noun	  and	  ac3on	  class.	  

Data:	   	  100	  hours	  of	  audio-‐video	  recording,	  4053	  ac3on	  classes,	  89977	  ac3on	  
instances,	  average	  128.5	  ac3ons/video	  and	  53.2	  classes/video,	  28%	  overlap	  

Evalua$on	   Metrics:	   	   mean	   average	   precision	   (mAP)	   metric.	   Temporal	  
segments	  are	  matched	  with	  Intersec3on	  over	  Union	  from	  0.1	  to	  0.5	  
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EPIC-‐100:	  Ac3on	  An3cipa3on	  Challenge	  

Ac$on	  An$cipa$on	  Challenge:	  Given	  an	  ac3on	  segment,	  	  predict	  the	  (Verb,	  
Noun,	  Ac3on)	  classes	  by	  observing	  a	  segment	  preceding	  the	  ac3on	  segment	  by	  1	  
second.	  	  

	  
Evalua$on	  Metrics:	  	  

(1)  Aggregate	  metrics:	  	  	  top-‐	  1	  and	  top-‐5	  accuracy	  for	  (Verb,	  Noun,	  Ac3on)	  
classes	  

(2)  Per-‐class	  metric:	  	  precision	  and	  recall	  for	  	  (Verb,	  Noun,	  Ac3on)	  classes	  
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EPIC-‐100:	  Cross-‐Modal	  Ac3on	  Retrieval	  Challenge	  

Cross-‐Modal	  Ac$on	  Retrieval	  Challenge:	  Given	  an	  query	  segment,	  rank	  segments	  in	  a	  
gallery	  set	  that	  are	  seman3cally	  relevant	  

Text	  to	  video:	  	  Query	  is	  text	  cap3on,	  gallery	  contains	  videos	  

Video	  to	  text:	  	  Query	  is	  video:	  gallery	  contains	  text	  cap3ons.	  

Evalua$on	  Metrics:	  	  
(1)  Normalized	  Discounted	  Cumula3ve	  Gain	  (nDCG).	  Given	  query xr,	  and	  a	  gallery	  Cr	  	  
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The nDCG can be calculated for a query video, xi, and the ranked list of
gallery captions, Cr, as the Discounted Cumulative Gain (DCG) over the Ideal
Discounted Cumulative Gain (IDCG):

nDCG(xi, Cr) =
DCG(xi, Cr)

IDCG(xi, Cr)
(3)

with the DCG being given by:

DCG(xi, Cr) =

|Cr|X

j=1

R(xi, cj)

log(j + 1)
(4)

and IDCG(xi, Cr) = DCG(xi, Ĉr)), where Ĉr is the list of captions sorted by
relevance in descending order, i.e. the ranking in a perfect scenario. nDCG can
be similarly defined for a query caption, ci and a gallery set of videos Xr.
Implementation and Training Details. For video features we use 25 RGB,
Flow and Audio features extracted uniformly from TBN [67]. We make these
features publicly available. Features from each modality are temporally averaged
and then concatenated to provide the final feature vector for each video, with
size 3072. Text features come from word2vec [41] trained on the wikipedia corpus
with an embedding space of size 100.

The MLP baseline uses a 2 layer perceptron which projects both the visual
and textual features into the same embedding space. We set the final embedding
size to 512 and the size of the hidden units is 1280 and 78 for visual/textual
respectively (halfway between initial feature size and output space size). MLP
is trained for 100 epochs with a batch size of 64 and a learning rate of 0.01.
Triplets are sampled randomly using the semantic relevance used when calculating
mAP/nDCG (i.e. verb and noun class are identical), with triplets being sampled
every 10 iterations. The triplet loss terms for all four pairs of modalities are set
to 1.0, apart from the the text-to-visual weight which is assigned a weight of 2.0.

We use our public code of JPoSE [116] . Each Part-of-Speech embedding is
modelled o↵ of the MLP baseline, but using the part-of-speech relevancies defined
in [116] (e.g. for the verb embedding the verb class between two captions must
be the same). The final embeddings are concatenated and fed into a final fully
connected layer with shared weights for the action embedding. The verb and
noun embedding spaces have an output embedding size of 256, with the resulting
action embedding space having an output size of 512. Triplets are independently
resampled (randomly) every 10 epochs. A batch size of 64 is used with a learning
rate of 0.01 and the model is trained for 100 epochs.
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EPIC-‐100:	  Domain	  Adapta3on	  Challenge	  

Unsupervised	  Domain	  Adapta$on	  Challenge:	  Given	  a	  labeled	  source	  domain	  
(kitchen)	  from	  2018	  learn	  to	  adapt	  to	  an	  unlabeled	  target	  domain	  from	  2020.	  
Source	   and	   Targets	   are	   from	   the	   16	   par3cipants	   who	   provided	   recordings	  
from	  both	  2018	  and	  2020.	  	  

	  
Evalua$on	   Metrics:	   	   Same	   as	   with	   ac3on	   recogni3on	   -‐	   Given	   an	   ac3on	  
segment,	  classify	  the	  segment	  into	  its	  ac3on	  class,	  where	  classes	  are	  defined	  
(verb,	  noun),	  with	  26	  verbs	  and	  70	  noun	  classes.	  	  
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Visual	  Ques3on	  and	  Answering	  

VisualQA	  Problem:	  Generate	  natural	  language	  answer	  to	  a	  
ques3on	  about	  a	  video	  
	  
Image	  from	  Yu,	  Z.,	  Xu,	  D.,	  Yu,	  J.,	  Yu,	  T.,	  Zhao,	  Z.,	  Zhuang,	  Y.,	  and	  Tao,	  D.	  (2019,	  July).	  Ac3vitynet-‐
QA:	  A	  dataset	  for	  understanding	  complex	  web	  videos	  via	  ques3on	  answering.	  AAAI	  Conference	  
on	  Ar3ficial	  Intelligence	  (Vol.	  33,	  No.	  01,	  pp.	  9127-‐9134).	  
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VQA	  Datasets:	  	  

VisualQA	  Problem:	  Generate	  natural	  language	  answer	  to	  a	  ques3on	  about	  a	  video	  
As	  the	  videos	  are	  collected,	  Ques3on-‐Answer	  Pairs	  are	  generated	  for	  each	  video.	  
	  
Most	  data	  sets	  exploit	  narra3ve	  descrip3ons	  or	  cap3ons	  provided	  with	  the	  video.	  
Ac3vity	  net	  uses	  crowdsourcing	  to	  generate	  QA	  pairs.	  	  
	  
	  
Table	  from	  Yu,	  Z.,	  Xu,	  D.,	  Yu,	  J.,	  Yu,	  T.,	  Zhao,	  Z.,	  Zhuang,	  Y.,	  and	  Tao,	  D.	  (2019,	  July).	  Ac3vitynet-‐QA:	  A	  dataset	  for	  
understanding	  complex	  web	  videos	  via	  ques3on	  answering.	  AAAI	  Conference	  on	  Ar3ficial	  Intelligence	  (Vol.	  33,	  No.	  
01,	  pp.	  9127-‐9134).	  
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HowTo100M:	  100	  Million	  Narrated	  Video	  Clips	  	  

Dataset	  of	  narrated	  instruc3onal	  videos	  where	  content	  creators	  teach	  complex	  tasks	  with	  an	  
explicit	  inten3on	  of	  explaining	  the	  visual	  content	  on	  screen.	  	  	  
	  
Includes	   136M	  video	   clips	  with	   cap$ons	   sourced	   from	  1.2M	  Youtube	   videos	   (15	   years	   of	  
video)	  showing	   	   	  23k	  ac$vi$es	  from	  domains	  such	  as	  cooking,	  hand	  crajing,	  personal	  care,	  
gardening	   or	   fitness.	   Each	   video	   is	   associated	   with	   a	   narra3on	   available	   as	   sub3tles	  
automa3cally	  downloaded	  from	  Youtube.	  	  
	  
Challenges:	  text	  based	  ac3on	  localiza3on	  and	  text-‐to-‐video	  retrieval	  	  
	  
Miech,	  A.,	  Zhukov,	  D.,	  Alayrac,	  J.	  B.,	  Tapaswi,	  M.,	  Laptev,	  I.,	  and	  	  Sivic,	  J.	  (2019).	  Howto100m:	  Learning	  a	  text-‐video	  
embedding	  by	  watching	  hundred	  million	  narrated	  video	  clips.	  IEEE	  	  Interna9onal	  Conference	  on	  Computer	  Vision,	  CVPR	  
2019,	  	  pp.	  2630-‐2640.	  
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HowToVQA69M:	  Ques3on-‐answer	  triplets	  for	  HowTo100M	  

A	  large	  dataset	  with	  69	  Million	  video-‐ques3on-‐answer	  triplets	  generated	  using	  
transformers	  to	  automa3cally	  generate	  ques3ons	  for	  videos	  in	  HowTo100M.	  	  
	  
Approach:	  Use	  transformers	  trained	  on	  a	  ques3on-‐answering	  text	  to	  generate	  a	  
non-‐scripted	  ques3ons	  and	  corresponding	  open-‐vocabulary	  answers	  from	  text	  
using	  the	  HowTo100M	  data	  set.	  	  
	  
Challenge:	  Given	  a	  video	  and	  a	  ques3on,	  Generate	  a	  natural	  language	  answer.	  	  
	  
Yang,	  A.,	  Miech,	  A.,	  Sivic,	  J.,	  Laptev,	  I.	  and	  Schmid,	  C.,	  2021.	  Just	  ask:	  Learning	  to	  answer	  ques3ons	  from	  millions	  
of	  narrated	  videos.	  In	  Proceedings	  of	  the	  IEEE/CVF	  Interna3onal	  Conference	  on	  Computer	  Vision	  (pp.	  
1686-‐1697).	   33	  



Vision	  and	  Language	  Naviga3on	  

Task:	  Enable	  a	  Robot	   to	  navigate	   in	   realis3c	  environments	  using	  natural	   language	  
instruc3ons.	  	  
Dataset:	  BnB:	  image-‐cap3on	  (IC)	  pairs	  from	  lis3ngs	  from	  online	  rental	  marketplace,	  	  
with	   1.4M	   indoor	   images	   and	   0.7M	   cap3ons.	   Sta3c	   image-‐cap3on	   pairsare	  
transformed	  	  into	  visual	  paths	  and	  naviga3on-‐like	  instruc3ons	  	  
Challenges:	  	  

	  Path	  Discrimina$on.	  Choose	  the	  base	  path	  from	  a	  set	  of	  	  candidates	  

	  Path	  Genera$on:	  sequen3ally	  predict	  ac3ons	  
	  
Guhur,	  P.L.,	  Tapaswi,	  M.,	  Chen,	  S.,	  Laptev,	  I.	  and	  Schmid,	  C.,	  2021.	  Airbert:	  In-‐domain	  Pretraining	  for	  
Vision-‐and-‐Language	  Naviga3on.	  In	  IEEEF	  Interna3onal	  Conference	  on	  Computer	  Vision,	  ICCV2021,	  	  pp.	  
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Social-‐IQ	  

	  
DataSet:	  	  1,250	  natural	  in-‐the-‐wild	  Annotated	  videos,	  with	  	  7,	  500	  ques3ons	  and	  52,	  500	  correct	  
and	  incorrect	  answers,	  	  in	  3	  classes:	  (easy,	  intermediate,	  advanced)	  
Challenge:	  generate	  answer	  for	  ques3on	  from	  video	  	  
Example:	  

	  	  Q1:	  How	  is	  the	  discussion	  between	  the	  woman	  and	  the	  man	  in	  the	  white	  shirt	  ?	  	  
	   	  	  A3:	  	  They	  are	  having	  a	  roman3c	  conversa3on.	  <easy>	  	  
	  
Zadeh,	  A.,	  Chan,	  M.,	  Liang,	  P.P.,	  Tong,	  E.	  and	  Morency,	  L.P.,	  	  	  Social-‐IQ:	  A	  ques3on	  answering	  benchmark	  
for	  ar3ficial	  social	  intelligence.	  	  	  IEEE	  	  Conference	  on	  Computer	  Vision	  and	  PaAern	  Recogni9on,	  
CVPR2019,	  pp.	  8807-‐8817,	  June	  2019	  
hYps://github.com/A2Zadeh/Social-‐IQ	  
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