

LeBenchmark: A Reproducible Framework for Assessing Self-Supervised Representations from Speech

Solene Evain¹, Ha Nguyen^{1,2}, Hang Le¹, Marcely Zanon Boito¹, Salima Mdhaffar², Sina Alisamir^{1,3}, Ziyi Tong¹, Natalia Tomashenko², Marco Dinarelli¹, Titouan Parcollet², Alexandre Allauzen⁴, Yannick Esteve², Benjamin Lecouteux¹, François Portet¹, Solange Rossato¹, Fabien Ringeval¹, Didier Schwab¹ and Laurent Besacier^{1,5}

> ¹ LIG-Grenoble, ² LIA-Avignon, ³ Atos-Echirolles, ⁴ ESPCI-Paris, ⁵ Naver Labs Europe-Grenole

Outline

- Speech representations (for affect modeling)
- Self-supervised learning for speech
- LeBenchmark: A reproducible framework for SSL from speech
- Conclusion

Speech Representations (for Affect Modeling)

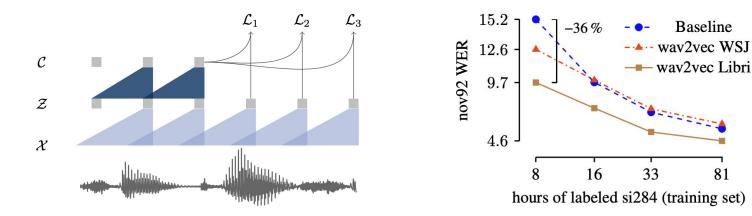
- Compact set describing human perception of sounds (e.g., log Mel filterbanks)
- Extension with long-term suprasegmental descriptors (e.g., prosody, voice quality)
- Distributional representations with Bags of Audio Words and Fisher Vectors (gradients of the log-likelihood of the data w.r.t. GMM's parameters)
- Data-driven feature extraction with learnable convolutional filter banks (CNNs)
- Exploit knowledge from computer vision (ImageNet) to describe spectrograms (Deep Spectrum)
- Self-supervised learning: representations are learnt while resolving an unsupervised task
 - Do not require labels and can explore a large amount of data
 - Speech: predict occluded parts of a sentence
 - Vision: make representations invariant to augmentations

Self-Supervised Learning for Speech: wav2vec

- Learn latent speech audio representations with Contrastive Predicting Coding
 - Encode speech signal with two stacked CNNs
 - Predict whether future frames are real or distractors
 - Simplified loss (binary cross entropy)
 - Improved performance in ASR tasks

WAV2VEC: UNSUPERVISED PRE-TRAINING FOR SPEECH RECOGNITION

Steffen Schneider, Alexei Baevski, Ronan Collobert, Michael Auli Facebook AI Research

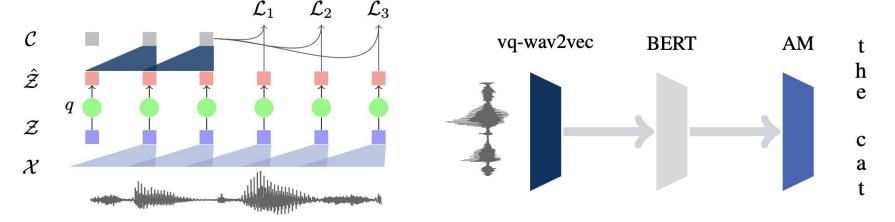


Self-Supervised Learning for Speech: vq-wav2vec

- Learn discrete latent speech representations with CPC
 - Identify an inventory of latent discrete speech representations with Vector Quantisation
 - Context representations learnt on top of speech units
 - VQ enables build NLP models with Seq2Seq
 - Vq-wav2vec: context in latent space prediction
 - Vq-vae: context in data reconstruction

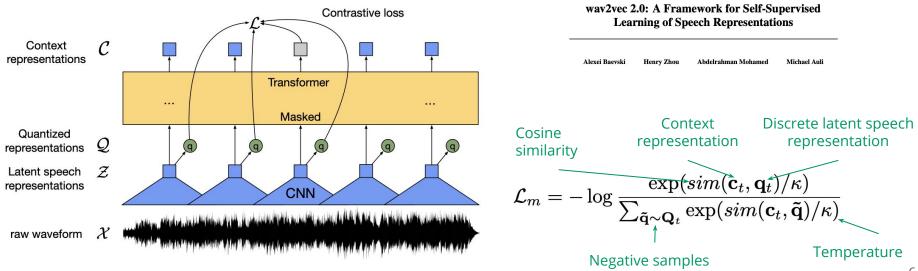
VQ-WAV2VEC: SELF-SUPERVISED LEARNING OF DISCRETE SPEECH REPRESENTATIONS

Alexei Baevski^{*} Steffen Schneider^{*} Michael Auli^{\triangle} ^{\triangle} Facebook AI Research, Menlo Park, CA, USA ^{\forall} University of Tübingen, Germany



Self-Supervised Learning for Speech: wav2vec 2.0

- Jointly learn an inventory of speech units and a context representation with Transformer
 - Encode the raw waveform with a CNN (25 ms speech audio)
 - Transformer builds a representation for the entire sequence
 - Masked prediction task performed on discrete vocabulary of speech (Gumbel softmax VQ)



- Motivations
 - SSL enables exploring huge unlabeled data for both NLP and image processing
 - Pioneering work successfully improved performance on downstream tasks (ASR)
 - Lack of common benchmarks and language-specific models
- What we did
 - Gathered a large and heterogeneous collection of French utterances (read, spontaneous)
 - Trained SSL models on collections of 1k and 3k hours of French speech
 - Assessed performance on French language with several tasks using Jean Zay cluster
 - Speech Recognition (ASR)
 - Spoken Language Understanding (SLU)
 - Speech Translation (AST)
 - Emotion Recognition (AER)

Table 1: Statistics for the speech corpora used to train SSL models according to gender information (male / female / unknown). The small dataset (1k hours) is from MLS only, and the medium dataset (2.9k hours) is from all of them; duration: hour(s):minute(s).

Corpus	# Utterances	Duration	# Speakers	Mean Utt. Duration	Speech type	
African Accented	16,402	18:56	232	4 s	Read	
French [8]	373 / 102 / 15,927	-/-/18:56	48 / 36 / 148	-/-/-	Read	
Att-Hack [9]	36,339	27:02	20	2.7 s	Acted	
Au-Hack [9]	16,564 / 19,775 / 0	12:07 / 14:54 / 0:00	9/11/0	2.6 s / 2.7 s / –	Emotional	
CaFE [10]	936	1:09	12	4.4 s	Acted	
Care[10]	468 / 468 / 0	0:32 / 0:36 / 0:00	6/6/0	4.2 s / 4.7 s / –	Emotional	
CEDD2000* [11] [12]	12,574	20:20	50	5.8 s	Createrson	
CFPP2000* [11] [12]	203 / 1,686 / 10,685	0:16 / 2:35 / 17:28	2/4/44	4.9s/5.5s/5.9s	Spontaneous	
ESI 02 [12] [14]	62,918	34:12	190	1.9 s	Spontaneous	
ESLO2 [13], [14]	30,440 / 32,147 / 331	17:06 / 16:57 / 0:09	68 / 120 / 2	2.0s/1.9s/1.7s		
EPAC** [15]	623,250	1,626:02	1,935	9 s	Radio	
	465,859 / 157,391 / 0	1,240:10 / 385:52 / 0:00	-/-/-	-/-/-	Broadcasts	
	1,236	0:50	10	2.5 s	Acted	
GEMEP [16]	616 / 620 / 0	0:24 / 0:26 / 0:00	5/5/0	2.4 s / 2.5 s / -	Emotional	
MISEssel [17]	263055	1,096:43	178	15.0 s	Deed	
MLS French [17]	124,590 / 138,465 / 0	520:13 / 576:29 / 0:00	80/98/0	15.0 s / 15.0 s / -	Read	
MDE [19] [10]	19,527	19:06	114	3.5 s	Casadonasaa	
MPF [18], [19]	5,326 / 4,649 / 9,552	5:26 / 4:36 / 9:03	36 / 29 / 49	3.7s/3.6s/3.4s	Spontaneous	
PODTMEDIA (Essenth) [20]	19,627	38:59	193	7.1 s	Acted telephone	
PORTMEDIA (French) [20]	9,294 / 10,333 / 0	19:08 / 19:50 / 0:00	84 / 109 / 0	7.4s/6.9s/-	dialogue	
TCOF (Adult s) [21]	58,722	53:59	749	3.3 s	Grantanaana	
	10,377 / 14,763 / 33,582	9:33 / 12:39 / 31:46	119 / 162 / 468	3.3 s / 3.1 s / 3.4 s	Spontaneous	
ALL	1,114,586	2,937:18		2007	85	
	664,110 / 380,399 / 70,077	1.824:42 / 1034:54 / 77:22	-	-		

*version without the CEFC corpus v2.1, 02/2021; **speakers are not uniquely identified.

- Automatic Speech Recognition
 - Datasets: Common Voice (477h), ETAPE (36h), EPAC (17.5k vocabulary)
 - Systems
 - Hybrid DNN-HMM: TDNN-F, 2 tri-gram LMs
 - End-to-end: SpeechBrain toolkit (encoder/decoder with attention)

Table 2: ASR results (WER,%) on the ETAPE corpus for hybrid DNN-HMM acoustic models with TDNN-F topology.

Language Model	ETA	APE	ESTER-	ESTER-1.2 + EPAC		
Features	Dev	Test	Dev	Test		
hires MFCC	39.28	40.89	35.60	37.73		
W2V2-Fr-M-large	32.19	33.87	28.53	30.77		
W2V2-En-large	39.93	42.30	36.18	38.75		
XLSR-53-large	36.36	38.19	32.81	35.17		

Table 3: End-to-end ASR results (WER,%) on Common Voice and ETAPE corpora. (*) means the training algorithm did not converge to a WER smaller than 100%.

Corpus	Comm	onVoice	ET/	ETAPE	
Features	Dev	Test	Dev	Test	
MFB	20.19	23.40	54.55	56.17	
W2V2-Fr-M-large	20.23	24.06	55.56	57.04	
W2V2-En-large	34.07	37.29	98.79	99.10	
XLSR-53-large	30.07	32.72	(*)	(*)	

- Spoken Language Understanding
 - Dataset: MEDIA corpus (56h)
 - System: end-to-end model with a pyramidal LSTM encoder (Fairseq)

[39] Seq	spectrogram	29.42	28.71
Kheops⊕Basic [1997]	spectrogram	36.25	37.12
Kheops⊕LSTM	spectrogram	35.37	35.98
Kheops⊕Basic	W2V2-En-base	19.80	21.78
Kheops⊕Basic	W2V2-En-large	24.44	26.96
Kheops⊕Basic	W2V2-Fr-S-base	23.11	25.22
Kheops⊕Basic	W2V2-Fr-S large	18.48	19.92
Kheops⊕Basic	W2V2-Fr-M-base	14.97	16.37
Kheops⊕Basic	W2V2-Fr-M large	11.77	12.85
Kheops⊕Basic	XLSR-53-large	14.98	15.74

Token decoding (Word Error Rate %)

SLU decoding (Concept Error Rate %)

[39] Seq	spectrogram	28.11	27.52
[39] XT	spectrogram	23.39	24.02
Kheops⊕Basic 0.000 € € € € € € € € € € € € € € € € €	spectrogram	39.66	40.76
Kheops⊕Basic +token	spectrogram	34.38	34.74
Kheops⊕LSTM +SLU	spectrogram	33.63	34.76
Kheops⊕LSTM	W2V2-En-base	26.31	26.11
Kheops⊕LSTM	W2V2-En-large	28.38	28.57
Kheops⊕LSTM	W2V2-Fr-S-base	26.16	26.69
Kheops⊕LSTM	W2V2-Fr-S large	22.53	23.03
Kheops⊕LSTM	W2V2-Fr-M-base	22.56	22.24
Kheops⊕LSTM	W2V2-Fr-M-large	18.54	18.62
Kheops⊕LSTM	XLSR-53-large	20.34	19.73

- Speech-to-text Translation
 - French as source language in two multilingual corpora (CoVoST-2, TEDx)
 - Target languages: English (TEDx: 50h, CoVoST2: 180h), Spanish (38h), Portuguese (25h)
 - System: Transformer (Fairseq S2T toolkit); block of linear-ReLU used before CNNs

	Dev/Valid data				Test data			
Input features	CV2 mTEDx			CV2	mTEDx			
	en	en	es	pt	en	en	es	pt
MFB	23.37	1.14	0.84	0.49	22.66	1.33	0.98	0.68
W2V2-En- <i>base</i> W2V2-En- <i>large</i>	19.24 17.07	0.90 0.75	0.65 0.61	0.43 0.45	18.19 16.45	0.88 0.85	0.34 0.67	0.27 0.32
W2V2-Fr-S-base W2V2-Fr-S-large	19.86 19.62	2.64 5.12	0.49 4.62	0.50 2.06	19.04 18.61	1.66 2.97	0.67 3.19	0.61 2.25
W2V2-Fr-M- <i>base</i> W2V2-Fr-M- <i>large</i>	19.47 20.17	6.98 9.35	1.87 7.72	0.63 1.58	18.32 19.35	6.37 6.76	1.99 6.63	0.54 1.63
W2V2-Fr-VP-base W2V2-Fr-VP-large	18.44 20.72	0.81 7.43	0.45 4.66	0.56 0.43	17.40 19.88	0.89 5.39	0.58 3.62	0.75 0.49
XLSR-53-large	20.54	0.59	0.41	0.49	19.93	0.44	0.62	0.29

Table 5: BLEU on dev/valid and test sets of CoVoST-2 (CV2) and multilingual TEDx (mTEDx).

- Automatic Emotion Recognition
 - Datasets: RECOLA (4h), AlloSat (37h)
 - Task: time-continuous prediction of affective dimensions (arousal, valence, satisfaction)
 - System: linear layer + tanh, GRU, performance: concordance correlation coefficient

(Corpus	REC	AlloSat		
Model	Feature	Arousal	Valence	Satisfaction	
Linear-Tanh	MFB	0.192	0.075	0.065	
Linear-Tanh	W2V2-Fr-M-base	0.385	0.090	0.193	
Linear-Tanh	XLSR-53-large	0.155	0.024	0.093	
GRU-32	MFB	0.654	0.252	0.437	
GRU-32	W2V2-Fr-M-base	0.767	0.376	0.507	
GRU-32	XLSR-53-large	0.605	0.320	0.446	
GRU-64	MFB	0.712	0.307	0.400	
GRU-64	W2V2-Fr-M-base	0.760	0.352	0.507	
GRU-64	XLSR-53-large	0.585	0.280	0.434	

Conclusion

- We trained SSL Wav2Vec 2.0 models for French on large and diverse collection of speech
- SSL models seem benefinitial for lower resource tasks (SLU, AST/TEDx, AER) or simple architectures (AER)
- SSL models do not improve compared to MFCC for end-to-end ASR (no fine-tuning)
- Models and scripts available online
 - Github: <u>https://github.com/LeBenchmark</u>
 - Hugginface: <u>https://huggingface.co/LeBenchmark</u>
- Ongoing work
 - Extension of the collection of speech data (7.7k hours at the moment)
 - Perform fine-tuning of the wav2vec models
 - Pursue unsupervised training on task data
 - Perform end-to-end supervised training on ASR
 - Perform end-to-end supervised training on task data
 - Jointly learn a model that predicts masked speech units and text units

Bibliography

[1] Ringeval, Fabien, et al. "Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions", 10th IEEE international conference and workshops on automatic face and gesture recognition (FG). IEEE, 2013.

[2] Khorram, Soheil, Melvin McInnis, and Emily Mower Provost. "Jointly aligning and predicting continuous emotion annotations." IEEE Transactions on Affective Computing (2019).

[3] Ravanelli, Mirco, and Yoshua Bengio. "Speaker recognition from raw waveform with sincnet." IEEE Spoken Language Technology Workshop (SLT). IEEE (2018).

[4] Ringeval, Fabien, et al. "AVEC 2019 workshop and challenge: state-of-mind, detecting depression with AI, and cross-cultural affect recognition", Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop, 2019.

[5] Han, Jing, et al. "Bags in bag: Generating context-aware bags for tracking emotions from speech", Interspeech 2018. ISCA, 2018.

[6] Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. "Representation learning with contrastive predictive coding." arXiv preprint arXiv:1807.03748 (2018).

[7] Latif, Siddique, et al. "Deep representation learning in speech processing: Challenges, recent advances, and future trends." arXiv preprint arXiv:2001.00378 (2020).

[8] Baevski, Alexei, et al. "wav2vec 2.0: A framework for self-supervised learning of speech representations", arXiv preprint arXiv:2006.11477, 2020.

[9] Chung, Yu-An, and James Glass. "Speech2vec: A sequence-to-sequence framework for learning word embeddings from speech." arXiv preprint arXiv:1803.08976 (2018).