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Speech Representations (for Affect Modeling)
● Compact set describing human perception of sounds (e.g., log Mel filterbanks)
● Extension with long-term suprasegmental descriptors (e.g., prosody, voice quality)
● Distributional representations with Bags of Audio Words and Fisher Vectors (gradients of the 

log-likelihood of the data w.r.t. GMM’s parameters)
● Data-driven feature extraction with learnable convolutional filter banks (CNNs)
● Exploit knowledge from computer vision (ImageNet) to describe spectrograms (Deep Spectrum)
● Self-supervised learning: representations are learnt while resolving an unsupervised task

○ Do not require labels and can explore a large amount of data
○ Speech: predict occluded parts of a sentence
○ Vision: make representations invariant to augmentations
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Self-Supervised Learning for Speech: wav2vec
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● Learn latent speech audio representations with Contrastive Predicting Coding
○ Encode speech signal with two stacked CNNs
○ Predict whether future frames are real or distractors
○ Simplified loss (binary cross entropy)
○ Improved performance in ASR tasks



Self-Supervised Learning for Speech: vq-wav2vec
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● Learn discrete latent speech representations with CPC
○ Identify an inventory of latent discrete speech representations with Vector Quantisation
○ Context representations learnt on top of speech units
○ VQ enables build NLP models with Seq2Seq
○ Vq-wav2vec: context in latent space prediction
○ Vq-vae: context in data reconstruction



Self-Supervised Learning for Speech: wav2vec 2.0
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● Jointly learn an inventory of speech units and a context representation with Transformer
○ Encode the raw waveform with a CNN (25 ms speech audio)
○ Transformer builds a representation for the entire sequence
○ Masked prediction task performed on discrete vocabulary of speech (Gumbel softmax VQ)
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LeBenchmark: A reproducible framework for SSL 
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● Motivations
○ SSL enables exploring huge unlabeled data for both NLP and image processing
○ Pioneering work successfully improved performance on downstream tasks (ASR)
○ Lack of common benchmarks and language-specific models

● What we did
○ Gathered a large and heterogeneous collection of French utterances (read, spontaneous)
○ Trained SSL models on collections of 1k and 3k hours of French speech
○ Assessed performance on French language with several tasks using Jean Zay cluster

■ Speech Recognition (ASR)
■ Spoken Language Understanding (SLU)
■ Speech Translation (AST)
■ Emotion Recognition (AER)



LeBenchmark: A reproducible framework for SSL 
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LeBenchmark: A reproducible framework for SSL 
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● Automatic Speech Recognition
○ Datasets: Common Voice (477h), ETAPE (36h), EPAC (17.5k vocabulary)
○ Systems

■ Hybrid DNN-HMM: TDNN-F, 2 tri-gram LMs
■ End-to-end: SpeechBrain toolkit (encoder/decoder with attention)



LeBenchmark: A reproducible framework for SSL 
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● Spoken Language Understanding
○ Dataset: MEDIA corpus (56h)
○ System: end-to-end model with a pyramidal LSTM encoder (Fairseq)



LeBenchmark: A reproducible framework for SSL 
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● Speech-to-text Translation
○ French as source language in two multilingual corpora (CoVoST-2, TEDx)
○ Target languages: English (TEDx: 50h, CoVoST2: 180h), Spanish (38h), Portuguese (25h)
○ System: Transformer (Fairseq S2T toolkit); block of linear-ReLU used before CNNs



LeBenchmark: A reproducible framework for SSL 
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● Automatic Emotion Recognition
○ Datasets: RECOLA (4h), AlloSat (37h)
○ Task: time-continuous prediction of affective dimensions (arousal, valence, satisfaction)
○ System: linear layer + tanh, GRU, performance: concordance correlation coefficient



Conclusion
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● We trained SSL Wav2Vec 2.0 models for French on large and diverse collection of speech
● SSL models seem benefinitial for lower resource tasks (SLU, AST/TEDx, AER) or simple 

architectures (AER)
● SSL models do not improve compared to MFCC for end-to-end ASR (no fine-tuning)
● Models and scripts available online

○ Github: https://github.com/LeBenchmark 
○ Hugginface: https://huggingface.co/LeBenchmark 

● Ongoing work
○ Extension of the collection of speech data (7.7k hours at the moment)
○ Perform fine-tuning of the wav2vec models

■ Pursue unsupervised training on task data
■ Perform end-to-end supervised training on ASR
■ Perform end-to-end supervised training on task data

○ Jointly learn a model that predicts masked speech units and text units

https://github.com/LeBenchmark
https://huggingface.co/LeBenchmark
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