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Introduction Attention

Attention in MNT†

Core idea: On each step of the decoder, use a direct connection
encoder to focus on a particular part of the source sequence

Main aims of attention:
Provide a solution to the seq-to-seq bottleneck problem

Raymond Mooney (2014): You can’t cram the meaning of a whole
%&!$# sentence into a single $&!#* vector!

Decoder can look directly at the source, bypassing the bottleneck

Help with the vanishing gradient problem

Provides shortcuts to distant states

Provides some interpretability

Can inspect what the decoder was focusing on

We learn a structure (soft alignment), without an explicit loss
†Inspired by Stanford cs224n Lecture 7 (2021)
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Introduction Attention

Attention in general†

General definition of attention:
Technique to compute a weighted sum of vector values,
dependent on a vector query

The query attends to the values
E.g., in the seq2seq + attention model:

Query: Each decoder hidden state (attending to)

Values: The encoder hidden states

Intuition: Attention is

Weighted sum: Selective summary of the information contained
in the values (the query determines which values to focus on)

Way to obtain a fixed-size representation of a set of
representations (values), dependent on some other repr. (the query)

†Inspired by Stanford cs224n Lecture 7 (2021)
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Introduction Attention

Attention in Speech: Listen Attend and Spell
Listen Attend and Spell (Chan et al. 2016)

NN that learns to transcribe speech utterances to characters

Learns all components of a speech recognizer jointly
(Unlike traditional DNN-HMM models)

2 components:
Listener: Pyramidal RNN encoder with filter bank spectra as inputs
Speller: Attention-based RNN decoder with characters as outputs

Produces character sequences without independence assumptions
(Key improvement over previous end-to-end models)

Results on a Google voice search task subset:
WER = 14.1% without dictionary or LM
WER = 10.3% with LM rescoring over the top 32 beams
(vs. WER = 8.0% for Sainath et al. (2015)’s CLDNN-HMM model)
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Introduction Attention

Listen Attend and Spell: Listener Module†

We want to model each character output yi as a conditional distribution over the previous characters
y<i and the input signal x using the chain rule:

P (y|x) =
Y

i

P (yi|x, y<i) (1)

Our Listen, Attend and Spell (LAS) model consists of two sub-modules: the listener and the speller.
The listener is an acoustic model encoder, whose key operation is Listen. The speller is an attention-
based character decoder, whose key operation is AttendAndSpell. The Listen function transforms
the original signal x into a high level representation h = (h1, . . . , hU ) with U  T , while the
AttendAndSpell function consumes h and produces a probability distribution over character se-
quences:

h = Listen(x) (2)
P (y|x) = AttendAndSpell(h,y) (3)

Figure 1 visualizes LAS with these two components. We provide more details of these components
in the following sections.
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Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input
sequence x into high level features h, the speller is an attention-based decoder generating the y characters
from h.

3

Pyramidal BLSTM encoding input sequence x into high-level features h

†Fig. from Chan et al. (2016)
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Introduction Attention

Listen Attend and Spell: Speller Module†

We want to model each character output yi as a conditional distribution over the previous characters
y<i and the input signal x using the chain rule:

P (y|x) =
Y

i

P (yi|x, y<i) (1)

Our Listen, Attend and Spell (LAS) model consists of two sub-modules: the listener and the speller.
The listener is an acoustic model encoder, whose key operation is Listen. The speller is an attention-
based character decoder, whose key operation is AttendAndSpell. The Listen function transforms
the original signal x into a high level representation h = (h1, . . . , hU ) with U  T , while the
AttendAndSpell function consumes h and produces a probability distribution over character se-
quences:

h = Listen(x) (2)
P (y|x) = AttendAndSpell(h,y) (3)

Figure 1 visualizes LAS with these two components. We provide more details of these components
in the following sections.
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Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input
sequence x into high level features h, the speller is an attention-based decoder generating the y characters
from h.

3

†Fig. from Chan et al. (2016)
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Transformers Speech-Transformer

Early Research (2018)

Transformer:
Why not use only attention for representation?

Represent different features using different layers of attention

Early transformer-based architectures in speech recognition:
Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model
for Speech Recognition (Dong et al. 2018)

Minimal changes in the architecture (vs. the original Transformer):
Mainly: Input embeddings through CNNs

Slightly lower performance than traditional SOTA models
(proof of concept: transformer-based ASRs can work)
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Transformers Speech-Transformer

Speech-Transformer (Dong et al. 2018)

Motivation:
Recurrent sequence-to-sequence models using encoder-decoder
architecture yielded performances improvements in speech recognition

Drawback: Slow (internal recurrence limits the training
parallelization)

Speech-Transformer: Model relying entirely on attention
mechanisms to learn the positional dependencies

2D-Attention mechanism attending jointly (time and frequency axes)

Evaluated on the Wall Street Journal (WSJ) speech recognition
dataset (vs. Zhang et al. (2017)’s seq2seq + deep CNN model)

Best model: Word error rate (WER) of 10.9% (vs. 10.5%)

Training time: 1.2 days on 1 GPU (vs. 5 days on 10 GPUs)
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Transformers Speech-Transformer

Features

Input feature sequence: 2-dim. spectrograms (time/frequency)
80-dim. filterbanks: hop size = 10ms and window size = 25ms

Including dynamic features: Temporal 1st and 2nd order differences

Per-speaker mean subtraction and variance normalization

Training batch = 20,000 frames

CNNs are used to model the input spectrograms to mitigate the
length mismatch along time (few speech frames per character)

Output alphabet = 31 classes: 26 lowercase letters, apostrophe,
period, space, noise marker, and end-of-sequence tokens

Learned character-level embeddings are used to convert the
character sequence
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Transformers Speech-Transformer

2D-Attention Mechanism†

PE(pos,i) =

(
sin(pos/100002i/dmodel) 0  i < dmodel/2

cos(pos/100002i/dmodel) dmodel/2  i < dmodel

(5)
Where pos represents the position in sequence, i represents the i-
th dimension. The positional encoding works because for arbitrary
fixed offset k, PEpos+k can be represented as a linear function
of PEpos. We can obtain the final encoded outputs by inputting
the sum of input encoding and positional encoding to a stack of
Ne encoder-blocks, each of them has two sub-blocks: The first is
a multi-head attention whose queries, keys and values come from
the outputs of the previous block. And the second is position-wise
feed-forward networks. Meanwhile, layer normalization and residu-
al connection are introduced to each sub-block for effective training.
Given sub-block inputs x, the corresponding outputs are:

x+ SubBlock(LayerNorm(x)) (6)

The decoder is shown in the right half of Figure 2. We firstly
employ a learned character-level embedding to convert the charac-
ter sequence to the output encoding of dimension dmodel, which is
added with the positional encoding. Then, the sum of them are in-
putted to a stack of Nd decoder-blocks to obtain the final decoder
outputs. Differently from the encoder-block, each decoder-block has
three sub-blocks: The first is a masked multi-head attention which
has the same queries, keys and values. And the masking is utilized to
ensure the predictions for position j can depend only on the known
outputs at positions less than j. The second is a multi-head attention
whose keys and values come from the encoder outputs and queries
come from the previous sub-block outputs. The third is also position-
wise feed-forward networks. Like the encoder, layer normalization
and residual connection are also performed to each sub-block of the
decoder. Finally, the outputs of decoder are transformed to the prob-
abilities of output classes by a linear projection and a subsequent
softmax function.

3. PROPOSAL: 2D-ATTENTION MECHANISM

The attention mechanism used in the encoder-block of the Speech-
Transformer relates positions on time axis to build the temporal de-
pendencies. Here we call it 1D-Attention. However, speech feature
sequence is often transformed to 2-dimensional spectrograms with
both time and frequency axes. When reading a spectrogram, a hu-
man predicts its pronunciation relying on the varying correlation-
s between different frequencies with time. Therefore, attending to
both time and frequency axes may be beneficial to the modeling of
the temporal and spectral dynamics in a spectrogram.

Motivated by the analysis above, we propose a 2D-Attention
block which is illustrated in Figure 3. Firstly, it performs three con-
volutional networks on the n-channels spectrograms to extract the
representations of queries, keys and values independently, where the
output channels of each convolution network are c. Then, it intro-
duces two types of attention to capturing temporal and spectral de-
pendencies respectively: As Figure 3 shows, the bottom one attends
to the time axis using c Scaled Dot Product Attentions, each atten-
tion handles the queries, keys and values from the corresponding
channel. The top one applies c Scaled Dot Product Attentions to the
transposed queries, keys, values in order to attend to the frequency
axis, and its outputs are then transposed to original size. Finally,
the outputs of 2D-Attention are concatenated and fed into another

Conv Conv Conv

Scaled Dot-Product Attention (to frequency)

Conv

Scaled Dot-Product Attention (to time)

T T T

T

Concatenate

Fig. 3. Illustration of the Proposed 2D-Attention mechanism. The
colored rectangles represent spectrograms, and the circle with T in-
side represents the transposition operation.

convolution network to obtain the final n-channels outputs:

2D-Attention(I) = WO ⇤ Concat(channelt1, . . . , channeltc,

channelf1 , . . . , channelfc )
(7)

where channelti = Attention((WQ

i
⇤I), (WK

i ⇤I), (WV

i ⇤I)) (8)

channelf
i
= Attention((WQ

i
⇤I)T , (WK

i ⇤I)T , (WV

i ⇤I)T )T (9)

Where, I is the n-channels inputs, * represents the convolutional op-
eration, WQ

i
, WK

i and WV

i represent the filters applied on I to
obtain the queries, keys, values of channel i, respectively. WO rep-
resents the filters applied on the 2c concatenated channels to obtain
the final n-channels outputs.

4. EXPERIMENTS

4.1. Experimental Setups

We experimented with the Wall Street Journal (WSJ) dataset, train-
ing on si284, validating on dev93 and evaluating on eval92 set. The
input acoustic features were 80-dimensional filterbanks extracted
with a hop size of 10ms and a window size of 25ms, extended with
temporal first and second order differences and per-speaker mean
subtraction and variance normalization. The output alphabet of tar-
get text consisted of 31 classes, 26 lowercase letters, apostrophe,
period, space, noise marker and end-of-sequence tokens.

In the training stage, the samples were batched together by ap-
proximate feature sequence length and each training batch contained
20000-frames features. We trained the model on 1 NVIDIA K80 G-
PU for a total of 100k steps. We used the Adam optimizer [19] with
�1 = 0.9, �2 = 0.98, ✏ = 10�9 and varied the learning rate over
the course of training, according to the formula:

lrate = k · d�0.5
model

· min(n�0.5, n · warmup n�1.5) (10)
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Fig. 1. (left) Scaled Dot-Product Attention with a simple illustra-
tion of its running process. (right) Multi-Head Attention consists of
multiple Scaled Dot-Product Attention performing in parallel.

2.1. Core Module of the Speech-Transformer

2.1.1. Scaled Dot-Product Attention

Self-attention, a mechanism that relates different positions of input
sequences to compute representations for the inputs. Concretely, it
has three inputs: queries, keys and values. One query’s output is
computed as a weighted sum of the values, where each weight of
the value is computed by a designed function of the query with the
corresponding key. Here, we use Scaled Dot-Product Attention, an
effective self-attention mechanism demonstrated in [17]. As shown
in the left half of Figure 1 , Let Q 2 Rtq⇥dq be the queries, K 2
Rtk⇥dk be the keys and V 2 Rtv⇥dv be the values, where t⇤ are the
element numbers in different inputs and d⇤ are the corresponding
element dimensions. Normally, tk = tv , dq = dk. The outputs of
self-attention are computed as:

Attention(Q,K,V) = softmax(
QKT

p
dk

)V (1)

where the scalar 1 /
p
dk is used to prevent softmax function into

regions that has very small gradients.

2.1.2. Multi-Head Attention

Multi-head attention, a core module of the Speech-Transformer, is
applied to leverage different attending representations jointly. As the
right half of Figure 1 shows, multi-head attention calculates h times
Scaled Dot-Product Attention, where h means the head number. Be-
fore performing each attention, there are three linear projections to
transform the queries, keys and values to more discriminated repre-
sentations respectively. Then, each Scaled Dot-Product Attention is
calculated independently, and their outputs are concatenated and fed
into another linear projection to obtain the final dmodel-dimensional
outputs:

MultiHead(Q,K,V) = Concat(head1, . . . , headh)W
O (2)

where headi = Attention(QWQ

i
,KWK

i ,VWV

i ) (3)

In the above equation, since Q, K and V in the Speech-Transformer
have the same dimension of dmodel, the projection matrices WQ

i
2

Rdmodel⇥dq , WK

i 2 Rdmodel⇥dk , WV

i 2 Rdmodel⇥dv , WO 2
Rhdv⇥dmodel . dq = dk = dv = dmodel/h throughout the paper.
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Fig. 2. Model architecture of the Speech-Transformer.

2.1.3. Position-wise Feed-Forward Network

Position-wise feed-forward network is another core module of the
Speech-Transformer. It consists of two linear transformations with a
ReLU activation in between. The dimensionality of input and output
is dmodel, and the inner layer has dimensionality dff . Specifically,

FFN(x) = max(0,xW1 + b1)W2 + b2 (4)

where the weights W1 2 Rdmodel⇥dff , W2 2 Rdff⇥dmodel and
the biases b1 2 Rdff , b2 2 Rdmodel . The linear transformations
are the same across different positions.

2.2. Model Architecture

The Speech-Transformer aims at transforming the speech feature se-
quence to the corresponding character sequence. The feature se-
quence, commonly a few times longer than the character sequence,
can be depicted as 2-dimensional spectrograms with time and fre-
quency axes. Therefore, we choose the convolutional networks to
exploit the structure locality of spectrograms and mitigate the length
mismatch by striding along time. Based on above, we present the
model architecture of the Speech-Transformer, and the details of its
encoder and decoder are as follows:

The encoder is shown in the left half of Figure 2. We firstly s-
tack two 3⇥3 CNN layers with stride 2 for both time and frequency
dimensions to prevent the GPU memory overflow and produce the
approximate hidden representation length with the character length.
Then, we can optionally stack M additional modules which are ap-
plied to extracting more expressive representations for our Speech-
Transformer, which will be detailed in section 4.2. Next, we perform
a linear transformation on the flattened feature map outputs to ob-
tain the vectors of dimension dmodel, which is called input encoding
here. Afterwards, in order to enable the model to attend by relative
positions, the dmodel-dimensional positional encoding is added to
the input encoding:
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Transformers Improvements

Proposed Improvements (2019)

Several key Speech-Transformer improvements in different directions:

Integration of the Connectionist Temporal Classification (CTC) loss
into Speech-Transformers (Karita et al. 2019)

Replacement of Sinusoidal Positional Encoding (PE)
(Mohamed et al. 2019)

Adaptations for streaming recognition (Moritz et al. 2020)

Hybrid Architecture: using only the encoder blocks of the
transformer for the acoustic modeling, and HMM or RNN modeling
for the rest of the architecture (Wang et al. 2020)
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Transformers Connectionist Temporal Classification Loss

Connectionist Temporal Classification Loss

Connectionist Temporal Classification (CTC) is a loss function
associated with RNNs (Graves et al. 2006)

It is tailored to sequence modeling where timing differs between the
input and output sequences

E.g., typically used for modeling phonemes in speech audio

Find the best path through a matrix of softmax at each frame
(targeting the whole dictionary and a blank token)

Can be solved efficiently through a dynamic programming algorithm

Gradients can be calculated from the CTC scores and be
back-propagated to update the neural network weights

CTC is independent of the underlying neural network structure but
is often applied at the output of BLSTMs
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Transformers Connectionist Temporal Classification Loss

CTC Loss†

†From Stanford cs224n Lecture 12 (2017)
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Transformers Connectionist Temporal Classification Loss

CTC Loss†

Find the best path through the softmax at each frame (for “cat”)

†From Stanford cs224n Lecture 12 (2017)
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Transformers Connectionist Temporal Classification Loss

CTC Loss and Transformers

Karita et al. (2019) proposed to integrate CTC loss into
Speech-Transformer

CTC loss has several advantages:
Allows the alignment of audio frames to transcription characters

Ease the integration of the language model into the learning process

They propose a hybrid architecture combining Transformer and
RNN-based ASR

They found that the learning curve converges faster than with an
only Transformer architecture

Evaluations:
WER = 4.5% on Wall Street Journal

WER = 11.6% on TED-LIUM
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Transformers Positional Encoding

Replacement of Sinusoidal Positional Encoding

Sinusoidal PE was proposed in the original Transformer paper
(Vaswani et al. 2017)

It may cause performance degradations for longer sequences that
have similar acoustic—or semantic—information at different
positions (Zhou et al. 2019)

Alternative approaches:
Replacing absolute PE with relative PE (Zhou et al. 2019)

Replacing PE with pooling layers (Tsunoo et al. 2019)

Replacing PE with trainable convolutional layers
(Mohamed et al. 2019)
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Transformers Positional Encoding

Positional Encoding through Convolutional Layers

Combining PE with speech features

Replacing the sinusoidal PE with convolutionally learned input
contextual representations (Mohamed et al. 2019):

2-D convolutional layers over input speech features in the encoder

1-D convolutional layers over previously generated outputs in the
decoder

Transformer’s inductive bias is most likely able to mimic
convolution filters but yields an unstable optimization process

Adding early convolutional layers allows the model to learn implicit
relative PE, which improves stability

The model achieves 4.7% and 12.9% WER on the LibriSpeech test
clean and test other subsets, respectively (no extra LM text)

Evrard, Guinaudeau, Yvon (LISN) Transformers in ASR 2020-2021 17 / 24



Transformers Positional Encoding

Positional Encoding through Convolutional Layers†

Left: Components of one transformer block
Right: Block diagram of the full end-to-end model

†Fig. from Mohamed et al. (2019)
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Transformers Local vs. Global Context

Conformer (Gulati et al. 2020)

Main strengths of transformer-based architectures:
High efficiency

Ability to capture the global context

CNNs capture local context effectively

Combine CNNs and transformers to model both local and global
contexts

Add a convolution module after the Multi-Head Attention block

Conformer: Convolution-augmented transformer for speech
recognition

LibriSpeech: WER = 1.9%/2.1% (with/without using a LM)
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Transformers Local vs. Global Context

Conformer†

†Fig. from Gulati et al. (2020)
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Conclusion

Conclusion

Transformers for ASR is a very active field of research

Here, just an overview of some chosen paper are given

In a short amount of time, vast improvements have been made

Architectures are still changing but seem to converge toward a mix
of CNNs and Transformers

It seems that the revolution lead by Transformers in machine
translation (and in NLP in general) may be about to happen in
speech processing as well
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