

Multimodal Perception and Interaction with Transformers

Francois Yvon, Camille Guinaudeau, Marc Evrard Univ Paris Saclay (LISN CNRS)

James L. Crowley
Grenoble Institut Polytechnique, Univ Grenoble Alpes

Multimodal Perception with Transformers

Plan:

Transformers in Natural Language Processing (François Yvon, 1h30)

- Text classification and language models
- The Transformer architecture
- Encoder-Decoder architecture for Neural Machine translation

Transformers in Speech (Marc Evrard, 45 minutes)

- Speech representation
- Speech Transformer
- Speech Recognition Transformers

Transformers in Vision (Camille Guinaudeau, 45 minutes)

- From CNN to Vision Transformer
- Vision Transformers
- Multi-Modal Transformer and Temporal encoding

Conclusions (James Crowley, 15 minutes)

Research Challenges and Data Sets

Research Challenges and Data Sets

- Ego-Centric Perception: Kitchen activities
 - EPIC-Kitchens 55 (2018)
 - EPIC-Kitchens 100 (2021)
- Visual Question and Answering (VQA)
- Vision and Language Navigation (VLN)
- Social-IQ

Egocentric Perception of Non-scripted Daily activity

Egocentric Perception of Non-scripted Daily activity Data Sets: Epic Kitchens https://epic-kitchens.github.io/2021

Key References

Damen, D., et al. (2018). Scaling egocentric vision: The epic-kitchens dataset. In *Proceedings of the European Conference on Computer Vision (ECCV)* (pp. 720-736). (Also appeared in PAMI 2020.

Damen, D., et al., EPIC-KITCHENS-55 - 2020 Challenges Report, CVPR 2019.

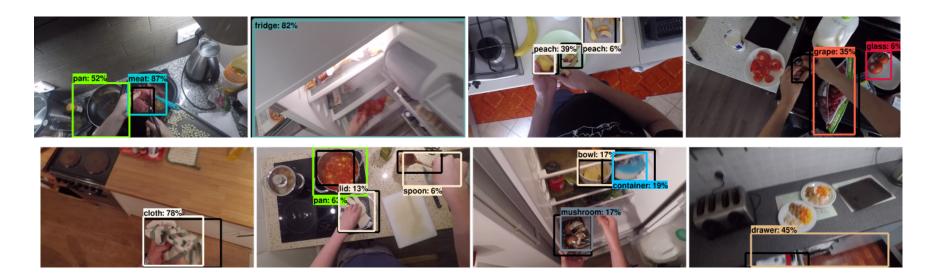
Damen, D., et al., EPIC-KITCHENS-200 - Rescaling Egocentric Vision, 2021

EPIC: Egocentric Perception of Non-scripted Daily activity

EPIC Kitchens-55: a large-scale egocentric video benchmark recorded by 32 participants in their native kitchen environments. Videos depict **nonscripted** daily activities accompanied by Audio Narration. 55 hours of video (11.5M frames). Ground truth labeling for 39.6K action segments and 454.2K object bounding boxes. Narrations (speech and text) added post-recording by participants

Damen, D., et al. (2018). Scaling egocentric vision: The epic-kitchens dataset. In *Proceedings of the European Conference on Computer Vision (ECCV)* (pp. 720-736)

EPIC-55 Research Challenges: Object Detection Challenge



Object Detection: 125 Visual object classes and 331 Noun classes, grouped into grouped into 19 super categories

Evaluation Metrics: mean average precision (mAP) metric from PASCAL VOC, using IoU thresholds of 0.05, 0.5 and 0.75 similar to MS-COCO

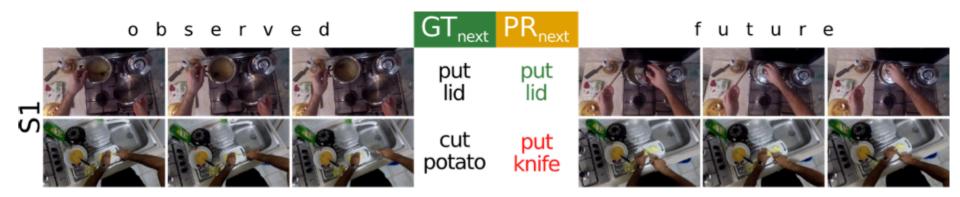
EPIC-55 Research Challenges: Action Recognition Challenge

Action Recognition Challenge: Given an action segment, classify the segment into its action class, where classes are defined (verb, noun), with 26 verbs and 70 noun classes.

Evaluation Metrics:

- (1) Aggregate metrics: top-1 and top-5 accuracy for cv, cn and (cv,cn) we refer to these as 'verb', 'noun' and 'action'.
- (2) Per-class metric: precision and recall for classes with more than 100 samples in training

EPIC-55 Research Challenges: Action Anticipation Challenge



Action Anticipation Challenge: Given an action segment, predict the action class by observing the video segment *preceding* the action.

Evaluation Metrics:

- (1) Aggregate metrics: top-1 and top-5 accuracy for cv, cn and (cv,cn) we refer to these as 'verb', 'noun' and 'action'.
- (2) Per-class metric: precision and recall for classes with more than 100 samples in training

EPIC-55 Results: CVPR June 2019

D. Damen, E. Kazakos, W. Price, J. Ma, H. Doughty, A. Furnari, G. M. Farinella, EPIC-KITCHENS-55- 2020 Challenges Report, at CVPR 2019, Los Angeles, June 2019

Object Detection Challenge:

			Subn	nissions	Few Shot Classes (%)			Many	Shot Classe	es (%)	All Classes (%)			
	Rank	Team	Entries	Date	IoU >0.05	IoU >0.5	IoU >0.75	IoU >0.05	IoU >0.5	IoU >0.75	IoU >0.05	IoU >0.5 ▲	IoU >0.75	
	1	hutom	51	05/30/20	47.44	35.75	14.32	60.77	46.50	15.60	58.27	44.48	15.36	
SI	2	DHARI	27	05/29/20	54.98	32.40	14.55	68.74	43.88	15.38	66.15	41.72	15.23	
	3	FB AI	69	04/01/20	26.55	19.01	8.22	58.44	46.22	15.61	52.44	41.10	14.22	
	4	CVG Lab Uni Bonn	23	05/12/20	39.36	26.66	7.89	53.50	41.28	12.46	50.84	38.53	11.60	
	5	VCL	61	05/18/20	33.23	23.16	5.00	50.78	37.91	9.79	47.48	35.13	8.89	
	6	[2] (baseline)	-	09/03/18	30.63	20.28	2.75	49.55	37.39	9.82	45.99	34.18	8.49	

Action Recognition Challenge:

			Submissions		1	Гор-1 Асс	uracy	Te	Top-5 Accuracy		Avg Class Precision			Avg Class Recall		
	Rank	Team	Entries	Date	VERB	NOUN	ACTION ▲	VERB	NOUN	ACTION	VERB	NOUN	ACTION	VERB	NOUN	ACTION
	1	UTS-Baidu	14	05/28/20	70.41	52.85	42.57	90.78	76.62	63.55	60.44	47.11	24.94	45.82	50.02	26.93
	2	NUS-CVML	18	05/29/20	63.23	46.45	41.59	87.50	70.49	64.11	51.54	42.09	25.37	40.99	42.69	26.98
		UTS-Baidu	16	05/30/19	69.80	52.27	41.37	90.95	76.71	63.59	63.55	46.86	25.13	46.94	49.17	26.39
	3	SAIC-Cambridge	34	05/27/20	69.43	49.71	40.00	91.23	73.18	60.53	60.01	45.74	24.95	47.40	46.78	25.27
æ	3	FBK-HuPBA	50	05/29/20	68.68	49.35	40.00	90.97	72.45	60.23	60.63	45.45	21.82	47.19	45.84	24.34
	4	GT-WISC-MPI	12	01/30/20	68.51	49.96	38.75	89.33	72.30	58.99	51.04	44.00	23.70	43.70	47.32	23.92
	5	G-Blend	14	05/28/20	66.67	48.48	37.12	88.90	71.36	56.21	51.86	41.26	20.97	44.33	44.92	21.48

Action Anticipation Challenge

			Submissions		Top-1 Accuracy			Top-5 Accuracy			Avg Class Precision			Avg Class Recall		
	Rank	Team	Entries	Date	VERB	NOUN	ACTION ▲	VERB	NOUN	ACTION	VERB	NOUN	ACTION	VERB	NOUN	ACTION
	1	NUS_CVML	18	05/29/20	37.87	24.10	16.64	79.74	53.98	36.06	36.41	25.20	9.64	15.67	22.01	10.05
	2	VI-I2R	28	05/23/20	36.72	24.61	16.02	80.39	54.90	37.11	31.03	26.02	8.68	15.28	22.03	8.70
	3	Ego-OMG	16	05/26/20	32.20	24.90	16.02	77.42	50.24	34.53	14.92	23.25	4.03	15.48	19.16	5.36
\mathbf{S}	4	UNIPD-UNICT	16	05/26/20	36.73	24.26	15.67	79.87	53.76	36.31	35.86	25.16	7.42	14.12	21.30	7.62
	5	GT-WISC-MPI	20	11/12/19	36.25	23.83	15.42	79.15	51.98	34.29	24.90	24.03	6.93	15.31	21.91	7.88

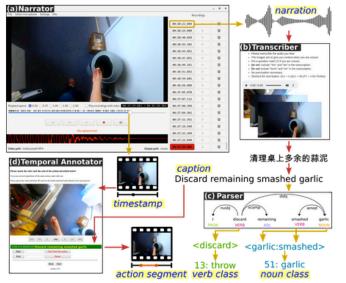
EPIC Kitchens-100

EPIC Kitchens-100: 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head-mounted cameras. Annotated with denser and more complete annotations of fine-grained actions (54% more actions per minute, +128% more action segments)

Ground truth labeling for 39.6K action segments and 454.2K object bounding boxes. Narrations (speech and text) added post-recording by participants

Damen, D., et al. (2021). ReScaling egocentric vision: The epic-kitchens dataset. IJCV 2021

EPIC Kitchens-100 Data Collection



Annotation Pipeline

Automatic Annotations

45 participants in 4 cities collected video over 2 to 4 days using GoPro Hero7 black.

Videos are narrated off-line in native language using "Pause and talk" to provide synchronized audio-visual recording

Narratives are translated English with Amazon Mechanical Turk, spell checked and transformed to verbs/nouns

https://epic-kitchens.github.io/2021

EPIC-Kitchens-100: Five research challenges

Five research challenges

- 1) Action Recognition
- 2) Action Detection
- 3) Action Anticipation
- 4) Cross-modal retrieval
- 5) Domain adaptation

EPIC-100 Research Challenges: Action Recognition Challenge

Action Recognition Challenge: Given an action segment, classify the segment into its action class. Data contains 53 action classes with 128 instances

Evaluation Metrics:

- (1) Aggregate metrics: top-1 and top-5 accuracy for cv, cn and (cv,cn) we refer to these as 'verb', 'noun' and 'action'.
- (2) Per-class metric: precision and recall for classes with more than 100 samples in training

EPIC-100: Action Detection Challenge

Action Detection Challenge

Action Detection: Given a video, detect Action instances with Start Time, Stop time, verb, noun and action class.

Data: 100 hours of audio-video recording, 4053 action classes, 89977 action instances, average 128.5 actions/video and 53.2 classes/video, 28% overlap

Evaluation Metrics: mean average precision (mAP) metric. Temporal segments are matched with Intersection over Union from 0.1 to 0.5

EPIC-100: Action Anticipation Challenge

Action Anticipation Challenge: Given an action segment, predict the (Verb, Noun, Action) classes by observing a segment preceding the action segment by 1 second.

Evaluation Metrics:

- (1) Aggregate metrics: top- 1 and top-5 accuracy for (Verb, Noun, Action) classes
- (2) Per-class metric: precision and recall for (Verb, Noun, Action) classes

EPIC-100: Cross-Modal Action Retrieval Challenge

Cross-Modal Action Retrieval Challenge: Given an query segment, rank segments in a gallery set that are semantically relevant

Text to video: Query is text caption, gallery contains videos

Video to text: Query is video: gallery contains text captions.

Evaluation Metrics:

(1) Normalized Discounted Cumulative Gain (nDCG). Given query x_r , and a gallery C_r

16

$$nDCG(x_i, C_r) = \frac{DCG(x_i, C_r)}{IDCG(x_i, C_r)} \qquad \text{Where:} \qquad DCG(x_i, C_r) = \sum_{j=1}^{|C_r|} \frac{\mathcal{R}(x_i, c_j)}{log(j+1)}$$

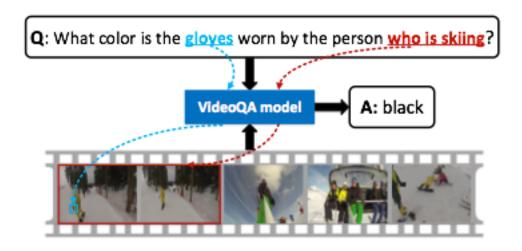
$$IDCG(x_i, C_r) = DCG(x_i, \hat{C_r})$$

EPIC-100: Domain Adaptation Challenge

Unsupervised Domain Adaptation Challenge: Given a labeled source domain (kitchen) from 2018 learn to adapt to an unlabeled target domain from 2020. Source and Targets are from the 16 participants who provided recordings from both 2018 and 2020.

Evaluation Metrics: Same as with action recognition - Given an action segment, classify the segment into its action class, where classes are defined (verb, noun), with 26 verbs and 70 noun classes.

Visual Question and Answering



VisualQA Problem: Generate natural language answer to a question about a video

Image from Yu, Z., Xu, D., Yu, J., Yu, T., Zhao, Z., Zhuang, Y., and Tao, D. (2019, July). Activitynet-QA: A dataset for understanding complex web videos via question answering. AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 9127-9134).

VQA Datasets:

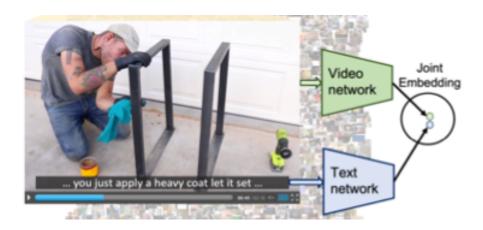
		-				
Datasets	Video source	QA pairs generation	QA tasks	# Videos	# QA pairs	Average video length
MSVD-QA (Xu et al. 2017)	MSVD	Automatic	OE	1,970	50,505	10s
MSRVTT-QA (Xu et al. 2017)	MSRVTT	Automatic	OE	10,000	243,680	15s
TGIF-QA (Jang et al. 2017)	TGIF	Automatic & Human	OE & MC	56,720	103,919	3s
MovieQA (Tapaswi et al. 2016)	Movies	Human	MC	6,771	6,462	200s
Video-QA (Zeng et al. 2017)	Jukinmedia	Automatic	OE	18,100	174,775	45s
ActivityNet-QA (Ours)	ActivityNet	Human	OE	5,800	58,000	180s

VisualQA Problem: Generate natural language answer to a question about a video As the videos are collected, Question-Answer Pairs are generated for each video.

Most data sets exploit narrative descriptions or captions provided with the video. Activity net uses crowdsourcing to generate QA pairs.

Table from Yu, Z., Xu, D., Yu, J., Yu, T., Zhao, Z., Zhuang, Y., and Tao, D. (2019, July). Activitynet-QA: A dataset for understanding complex web videos via question answering. AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 9127-9134).

HowTo100M: 100 Million Narrated Video Clips



Dataset of narrated instructional videos where content creators teach complex tasks with an explicit intention of explaining the visual content on screen.

Includes 136M video clips with captions sourced from 1.2M Youtube videos (15 years of video) showing **23k activities** from domains such as cooking, hand crafting, personal care, gardening or fitness. Each video is associated with a narration available as subtitles automatically downloaded from Youtube.

Challenges: text based action localization and text-to-video retrieval

Miech, A., Zhukov, D., Alayrac, J. B., Tapaswi, M., Laptev, I., and Sivic, J. (2019). Howto100m: Learning a text-video embedding by watching hundred million narrated video clips. *IEEE International Conference on Computer Vision, CVPR* 2019, pp. 2630-2640.

HowToVQA69M: Question-answer triplets for HowTo100M

Speech: Fold them in half again, to make a triangle.

Generated Question: How do

you make a triangle?

Generated Answer: Fold them

in half again

Speech: The sound is amazing on this piano.

Generated Question: What kind of instrument is the sound of?
Generated Answer: Piano

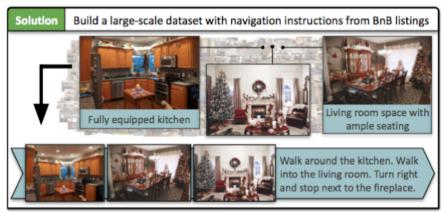
A large dataset with 69 Million video-question-answer triplets generated using transformers to automatically generate questions for videos in HowTo100M.

Approach: Use transformers trained on a question-answering text to generate a non-scripted questions and corresponding open-vocabulary answers from text using the HowTo100M data set.

Challenge: Given a video and a question, Generate a natural language answer.

Yang, A., Miech, A., Sivic, J., Laptev, I. and Schmid, C., 2021. Just ask: Learning to answer questions from millions of narrated videos. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1686-1697).

Vision and Language Navigation



Task: Enable a Robot to navigate in realistic environments using natural language instructions.

Dataset: BnB: image-caption (IC) pairs from listings from online rental marketplace, with 1.4M indoor images and 0.7M captions. Static image-caption pairsare transformed into visual paths and navigation-like instructions

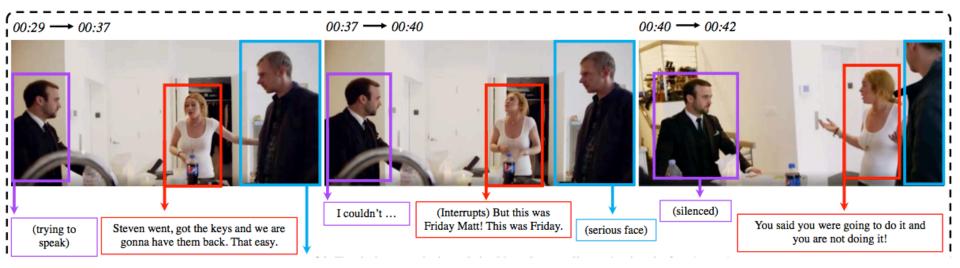
Challenges:

Path Discrimination. Choose the base path from a set of candidates

Path Generation: sequentially predict actions

Guhur, P.L., Tapaswi, M., Chen, S., Laptev, I. and Schmid, C., 2021. Airbert: In-domain Pretraining for Vision-and-Language Navigation. In IEEEF International Conference on Computer Vision, ICCV2021, pp. 1634-1643, Oct 2021

Social-IQ



DataSet: 1,250 natural in-the-wild Annotated videos, with 7,500 questions and 52,500 correct and incorrect answers, in 3 classes: (easy, intermediate, advanced)

Challenge: generate answer for question from video

Example:

Q1: How is the discussion between the woman and the man in the white shirt?

A3: They are having a romantic conversation. <easy>

Zadeh, A., Chan, M., Liang, P.P., Tong, E. and Morency, L.P., Social-IQ: A question answering benchmark for artificial social intelligence. *IEEE Conference on Computer Vision and Pattern Recognition, CVPR2019*, pp. 8807-8817, June 2019

https://github.com/A2Zadeh/Social-IQ

Multimodal Perception with Transformers

Plan:

Transformers in Natural Language Processing (François Yvon, 1h30)

- Text classification and language models
- The Transformer architecture
- Encoder-Decoder architecture for Neural Machine translation

Transformers in Speech (Marc Evrard, 45 minutes)

- Speech representation
- Speech Transformer
- Speech Recognition Transformers

Transformers in Vision (Camille Guinaudeau, 45 minutes)

- From CNN to Vision Transformer
- Vision Transformers
- Multi-Modal Transformer and Temporal encoding

Conclusions (James Crowley, 15 minutes)

Research Challenges and Data Sets

Multimodal Perception and Interaction with Transformers

Francois Yvon, Camille Guinaudeau, Marc Evrard Univ Paris Saclay (LISN CNRS)

James L. Crowley
Grenoble Institut Polytechnique, Univ Grenoble Alpes