
Convolutional Neural Networks

James L. Crowley1

1 Grenoble Insitut Polytechnique, Univ. Grenoble Alpes
http://crowley-coutaz.fr/jlc/jlc.html

Abstract. This chapter presents Convolutional Neural Networks (CNNs). The
chapter begins with a review of the convolution equation, and a description of
the original LeNet series of CNN architectures. It then traces the emergence of
Convolutional Networks as a key enabling technology for Computer Vision re-
sulting from the publication of AlexNet at the 2012 ImageNet Large Scale Im-
age Recognition Challenge. This is followed by a description of the VGG archi-
tecture and the YOLO Single Shot Detection network for Image Object Detec-
tion.
Learning Objectives: This chapter presents Convolutional Neural Networks,
with a summary of the history, fundamental theory, and a review of popular ar-
chitectures that have played a key role in the emergence of Deep Learning as an
enabling technology for Artificial Intelligence. After reading this chapter, stu-
dents will be able to understand the basic principles of convolutional neural
networks and how such networks can be used to detect patterns in signals. Stu-
dents will understand the meaning and significance of network hyper-
parameters, and be able to select among the commonly used architectures such
as VGG and YOLO to solve problems in pattern analysis and signal detection in
audio, visual and other forms of multidimensional signals.

Keywords: Convolutional Neural Networks (CNNs), Hyper-parameters, CNN
Architectures, LeNet, AlexNet, VGG, You Only Look Once (YOLO).

1. Convolutional Neural Networks.
During the second wave of popularity of Neural Networks in the 1980s, researchers
began experimenting with networks for computer vision and speech recognition. Di-
rect application of neural networks in these domains required training networks with
an excessively large number of parameters, greatly exceeding the memory and com-
puting power of available computers. For example, direct recognition of the 44 Eng-
lish phonemes (speech elements) in a speech signal required a network capable of
processing an audio signal composed of 1600 samples. A fully connected two layer
network with 1600 hidden units in the first layer and 44 output units in the second
layer would have more than 2.5 Million trainable parameters, while typical computer
memory address spaces in this period were less than 1 Million bytes. In the case of
computer vision, the situation was even more extreme. A typical digital image at that
time was sampled at 512 x 512 rows and columns, represented by 218 (or 256 K) 8-

2

bit grayscale pixels. Training a fully connected 2-layer perceptron to recognize a large
set of objects in an image was not a serious proposition.

Inspiration for a solution was provided by neuroscience. In the early 1960s, David
Hubel and Torsten Wiesel [1] fixed a cat's head in a rig and probed the visual cortex
with electrodes while scanning patterns of light on a screen, as shown in figure
1.They found that individual cells in the visual cortex responded to specific patterns
of light at specific locations and sized. They referred to these patterns as receptive
fields. By systematic probing, they found that the visual cortex of the cat is composed
of layers of retinotopic maps that respond to patterns of spots, bars, and edges at a
narrow range of positions, sizes and orientations. Subsequent research showed that
the receptive fields could be modeled as local filters for spatial frequency patterns at
different spatial frequency bands and orientation. As they moved through the visual
cortex, Hubel and Weisel found that these patterns were combined to form more
complex patterns, such as corners and crosses. These more complex patterns were
named "complex" receptive field.

Fig 1. David Hubel and Torsten Wiesel probed the visual cortex of a cat with elec-
trodes and found layers of cells that responded to local patterns of stimulation.

(image widely used on the internet - source unknown)

Inspired by these results (and the subsequent Nobel Prize of Hubel and Weisel),
computer vision researchers explored the use of image descriptions using convolution
with Finite Impulse Response digital filters based on mathematical models of recep-
tive fields [2], [3] including Gaussian derivatives and Gabor Functions [4]. Research-
ers in Machine learning speculated that it would be better to learn the weights for such
filters with back-propagation. This would eventually lead to a new form of neural
network known as a convolutional neural network. To properly understand such net-
works it can be worthwhile to review some basics from digital signal processing.

1.1 Convolution

Convolution describes the response of a linear time-invariant system to an input stim-
ulus or driving function. An example of convolution is provided by shouting into a
tunnel. The tunnel can be modeled as a shift invariant acoustic function that describe
the multiple paths that sound waves of the shout may follow through the tunnel, with
different lengths and different durations. The sound at the far end of the tunnel will be
composed of multiple superimposed copies of the shout arriving at different times. An
observer at the far end of the tunnel will hear a sonically blurred version of the shout.
In addition, some vocal frequencies may resonate in the tunnel and dominant the

3

sound at the far end, while other frequencies may be attenuated by interference. The
effect described mathematically as a convolution as shown in equation 1, where s(t)
is the waveform of a sound, f(t) is a characteristic impulse response that describes the
possible paths of the sound through the tunnel, and u is a dummy variable used for
integration.

 (s* f)(t) = s(t −u) f (u)du
−∞

∞

∫ (1)

A copy of the waveform for the sound, s(u), is placed at each time, t, and then multi-
plied by the characteristic impulse response of the tunnel, f(u). For each time step, the
resulting products are integrated and the result is placed in the output signal at posi-
tion t. The result is a distorted version of the sound.

Computer science students generally find this operation easier to visualize and un-
derstand when expressed using sampled digitized signals. Let s(n) represent a sam-
pled copy of the sound and f(n) represent the linear shift invariant system created by
the tunnel. In order to compute the convolution it is necessary for at least one of the
signals to have a finite duration. Let N represent the duration of the shorter of the two
signal s(n) and f(n). The discrete convolution equation is written as

 (s* f)(n) = s(n−m) f (m)
m=0

N−1

∑ (2)

A copy of the sound s(-), is placed at each time, n, and then scaled by the value of
system, f(n). For each value of n, the products are summed and the result is placed in
the output signal. This is exactly the equation for convolution with a Finite Impulse
Response (FIR) digital filter, f(n) composed of N coefficients with a digital signal,
s(n). Both multiplication and convolution are commutative, and so the order of the
signals does not matter. In the engineering literature, convolution is commonly writ-
ten as shown in equation 3.

 f (n)* s(n) = f (m)s(n−m)
m=0

N−1

∑ (3)

Note that the operator "*" is exclusively reserved to represent convolution. This oper-
ator should never be used for multiplication in a context involving convolution.

For image processing, the image and filter are generally finite 2D signals with a
positions defined over a range from 1 to N. For an image P(x,y) with the horizontal
and vertical axes noted as x and y, the 2D convolution of an NxN filter f(x,y) would be
written:

 (f *P)(x, y) = f (u,v)P(x −u, y− v)
u=1

N

∑
v=1

N

∑ (4)

This operation can be seen as sliding the 2D filter, f(x,y) over the image and at each
position, multiplying the weights of the filter f(u,v) by the pixels of the image, sum-
ming the product and placing this at the position (x,y). Any image positions less than
1 or greater than the size of the image are taken as zero. The use of x–u and y–v rather

4

than y+u and x+v flips the filter around the zero position, resulting in a mirror image
of the filter. This is a mathematical convenience to assure that convolution is equiva-
lent to multiplication in the Fourier domain, and has no relevance to Convolutional
Neural Networks. In the machine learning literature, it is not unusual to see authors
neglect this detail and write y+u and x+v.

In the 1980s, researchers in machine learning asked if such filters could not be
learned using back-propagation1. It was observed that learning perceptrons for small
local windows greatly reduces the number of parameters to learn, while greatly in-
creasing the availability of training data. Training a single perceptron to provide a
binary classification for 512 x 512 image would require learning 218 parameters and
each image would provide only one training sample for a binary decision. Alterna-
tively, training a perceptron for an 8 by 8 receptive field would require learning only
257 parameters, and each 512 x 512 image could provide up to 218 examples of local
neighborhoods to use as training samples. This makes it practical to learn many lay-
ers of local perceptrons with several perceptrons at each level, much like the visual
cortex of cats or humans. Such a network could be used to recognize many different
classes of visual patterns.

The dominant paradigm in computer vision at the time (and until well after 2000)
was that receptive fields should be designed as digital filters with well-defined math-
ematical properties for bandwidth and invariance to scale or rotation. However, one
area where image processing with neural networks did show promise was in reading
handwritten digits for mail sorting and check processing.

1.2 Early Convolutional Neural Networks: LeNet

In the early 1990s, the US National Institute of Standards and Technology (NIST)
published a data set of digitized images of handwritten digits collected during the
1980 US census and issued a research challenge for recognizing handwritten digits
using this data set. Such a technology could potentially be used to build machines for
labor intensive tasks such as sorting mail and processing checks. A team of research-
ers at AT&T led by Yann Lecun began experimenting with neural networks architec-
tures for this task. The team proposed a family of neural network architectures, re-
ferred to as LeNet, composed of multiple layers of receptive fields using a number of
insights inspired by techniques used in image processing and computer vision [5]. A
typical example of a LeNet architecture is shown in figure 2.

1 Private discussion between the author and Geoff Hinton at CMU in 1982 or 1983.

5

INPUT
28x28

feature maps
4@24x24

feature maps
4@12x12

feature maps
12@8x8

feature maps
12@4x4

Subsampling

Convolution

Convolution

Subsampling

Convolution

OUTPUT
10@1x1

Fig 2. An early LeNet architecture for recognizing handwritten digits on checks

and postal codes. Image copied from [5].

The first insight was to process the image as a set of 5x5 overlapping windows.
Training a perceptron to process a 5x5 window requires learning only 26 parameters.
Processing every position in the image with the same perceptron greatly increases the
amount of data available for training, as each position of the image provides a training
sample. Processing an image in this way is referred to as a "sliding window" detector.
For a perceptron, the linear part of the perceptron is equivalent to convolving a digital
filter with the image. This was referred to as a convolutional neural network.

a(i, j) = f w(u,v)p(i−u, j − v)+ b
u,v

N

∑
#

$
%

&

'
((4)

Fig 3. A convolutional network processes a stream of 2-D overlapping windows. In equation 4,
p(i,j) is a 2D input layer, w(u,v) is an NxN learned receptive field, b is a learned bias, f(-) is a

non-linear activation function as discussed in the chapter on training neural networks with
back-propagation [6], and a(i,j) is the resulting output layer.

A second insight was to use several neural units in parallel to describe each win-

dow, as seen with the retinotopic maps observed in the visual cortex of the cat by
Hubel and Weisel. This lead to a map of features for each pixel with the number of
features referred to as the depth of the feature map. Figure 2 show that the first layer
of LeNet-1 has a depth of 4.

ad (i, j) = f wd (u,v)p(i−u, j − v)+ bd
u,v

N

∑
#

$
%

&

'
((5)

Fig 4. A convolutional network processes each window in parallel with D receptive fields,
resulting in vector of D feature values

!a(i, j) for each image position (i,j). Equation 5 general-
izes equation 4 by replacing a single learned receptive field, w(i,j), with a vector of D learned

receptive fields, wd(i,j) generating a vector of d output layers, ad(i,j).

 A third insight was to reduce the resolution of each layer by resampling and then

processing the resulting resampled feature map with another convolutional network.
For example the second layer of LeNet-1 was produced by subsampling the feature

6

map of first level using a sample distance of 2, and then processing the result with
convolution by another set of 4 perceptrons trained with back-propagation. This
resampling operation was referred to as "pooling" and had the effect of increasing the
effective size of the receptive field at the second level, in a manner that is similar to
the image pyramids used for computer vision at the time, and to the layers of larger
receptive fields found in the deeper in the visual cortex of the cat by Hubel and
Weisel. As the number of rows and columns of the feature map is reduced by succes-
sive resampling (or pooling), the number of features (depth) at each layer was in-
creased. For example layers 3 and 4 of LeNet-1 contain features from convolution
with 12 receptive fields (depth=12), as can be seen in figure 2. Once the image has
been reduced to a 5x5 map of 16 features, the resulting 400 features are directly
mapped by a perceptron to one of the 10 possible output class labels.

Fig 5. The LeNet-5 architecture presented at the 1997 IEEE CVPR [7].

The AT&T team experimented with several such architectures. The LeNet-5 archi-

tecture, shown in figure 5, was found to provide the best recognition rates for the
NIST dataset of hand-written digits and was used to construct a commercially suc-
cessful system for processing checks.

In order to describe the architectures for convolutional networks such as LeNet, we
need to define some of the common "hyper-parameters" that are used to define convo-
lutional networks.

1.3 Convolutional Network Hyper-parameters

Convolutional networks are commonly specified by a number of hyper-parameters.
These include the Spatial Extent, Depth, Stride, Padding and Pooling:

Spatial Extent: This is the size of the filter. Early networks followed computer vi-
sion theory and used 11x11 or 9x9 filters. Experimentation has shown that 3x3 filters
can work well with multi-layer networks.

Depth: This is the number D of receptive fields for each position in the feature map.
For a color image, the first layer depth at layer 0 would be D=3. If described with 32
image descriptors, the depth would be D=32 at layer 1. Some networks will use
NxNxD receptive fields, including 1x1xD.

7

Stride: Stride is the step size, S, between window positions. By default, stride is
generally set to 1, but for larger windows, it is possible define larger step sizes.

Zero-Padding: Size of region at the border of the feature map that is filled with zeros
in order to preserve the image size (typically N).

Pooling: Pooling is a form of down-sampling that partitions the image into non-
overlapping regions and computes a representative value for each region. An exam-
ple of 2x2 max pooling is shown in figure 6. The feature map is partitioned into small
non-overlapping rectangles, typically of size 2x2 or 4x4, and a single value it deter-
mined for each rectangle. The most common pooling operators are average and max.
Median is also sometimes used. The earliest architectures used average pooling,
where the neighborhood is replaced with the average value of the samples, creating a
form of multi-resolution pyramid. Max pooling has generally been found to provide
slightly better performance.

1" 2" 3" 4"

4" 5" 6" 7"

6" 7" 5" 3"

8" 9" 7" 4"

5" 7"

9" 7"

Fig 6. Max pooling replaces an NxN window of features with the largest feature value in the
window. For example the 2x2 red square in the upper left corner is replaced by the largest of

the 4 values in the square (5).

1.4 The LeNet-5 Architecture

LeNet-5 is composed of multiple repetitions of 3 operations: Convolution, Pooling,
and Non-linearity. The system uses convolution of receptive fields of size 5x5 with a
stride of 1, no zero padding and a depth of 6. Six receptive fields are learned for each
pixel in the first layer. Using 5x5 filters without zero padding reduces the input win-
dow of 32x32 pixels to a layer of composed of 6 sets of 28x28 units. A sigmoid acti-
vation function was used for the activation function. Pooling was performed as a
spatial averaging over 2x2 windows giving a second layer of 6x14x14. The output
was then convolved with sixteen 5x5 receptive fields, yielding a layer with 16x10x10
units. Average pooling over 2x2 windows reduced this to a layer of 16x5x5 units.
These were then fed to two fully connected layers and then smoothed with a Gaussian
filter to produce 10 output units, one for each possible digit.

Despite the experimental and commercial success of LeNet, the approach was
largely ignored by the computer vision community, which was more concerned at that
time with multi-camera geometry and Bayesian approaches to recognition. The situa-
tion began to change in the early 2000's, driven by the availability of GPUs, and plan-

8

etary scale data, made possible by the continued exponential growth of the World
Wide Web, and the emergence of challenge-based research in computer vision. Dur-
ing this period, computer vision and machine learning were increasingly organized
around open competitions for performance evaluation for well-defined tasks using
publically available "benchmark" data-sets.

Many of the insights of LeNet-5 continued to be relevant as more training data, and
additional computing power enabled larger and deeper networks, as they allowed
more effective performance for a given amount of training data and parameters.

2. Classic CNN Architectures

The emergence of the internet and the world-wide web made it possible to assemble
large collections of training data with ground truth labels, and to issue global chal-
lenges for computer vision techniques for tasks such as image classification and ob-
ject detection. Many of the most famous CNN architectures have been designed to
compete in these large-scale image challenges, and the size of the input image and the
number of output categories are often determined by the parameters of the challenge
for which the network was designed.

Several key data sets that have influenced the evolution of the domain. Perhaps the
most influential of these has been ImageNet.

 ImageNet is an image database organized according to the nouns in the WordNet
hierarchy compiled for research in Linguistics. In 2006, Fei-Fei Li began working on
the idea for ImageNet based on the idea of providing image examples for each word
in WordNet, eventually using Amazon Mechanical Turk to help with assigning
WordNet words to images. The ImageNet data set was first presented as a poster at
the 2009 Conference on Computer Vision and Pattern Recognition (CVPR) in Florida
and later published in the Journal of Vision [8].

In 2010 Li joined with the European PASCAL Visual Object Class (POC) chal-
lenge team to create a joint research challenge on several visual recognition tasks. The
resulting annual competition is known as the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC). The ILSVRC uses a list of 1000 image categories or clas-
ses, including 90 of the 120 dog breeds classified by the full ImageNet schema. In
2010 and 2011, a good score for the ILSVRC top-5 classification error rate was 25%.

Winning teams during the first years used statistical recognition techniques such as
Support Vector Machines (SVM) combined with image features such as Scale Invari-
ant Feature Transform (SIFT) and Histogram of Oriented Gradients (HoG). However,
in 2012, Alex Krizhevsky won the competition with a deep convolutional neural net
inspired by LeNet-5 called AlexNet, as shown in figure 7. AlexNet achieved an error
rate of 16% (accuracy of 84%). This dramatic quantitative improvement marked the
start of the rapid shift to techniques based on Deep Learning using Neural Networks
by the computer vision community. By 2014, more than fifty institutions participated
in the ILSVRC, almost exclusively with different forms of Network Architectures. In
2017, 29 of 38 competing teams demonstrated error rates less than 5% (better than
95% accuracy). Many state-of-the-art object detection networks now pre-train on

9

ImageNet and then rely on transfer learning to adapt the learned recognition system to
a specific domain.

Fig 7. Error rates for the top 5 entries in the 2012 ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [9]

2.1 AlexNet

AlexNet [10], is a deeper and larger variation of LeNet5, using two parallel tracks of
5 convolutional layer followed by 3 fully connected layer. The initial receptive field is
11x11 with a stride (sample distance) of 4, followed by 48 parallel 5x5 receptive
fields.
Innovations in AlexNet include:
1. The use of ReLU avtivation instead of sigmoid or tanh. ReLU provided a 6

times speed up with no loss of accuracy, allowing more training for the same cost
in computation.

2. DropOut: A technique called “dropout” randomly chose units that are temporari-
ly removed during learning. This was found to prevent over-fitting to training da-
ta.

3. Overlap pooling: Max pooling was performed with overlapping windows.

10

Fig. 7. The AlexNet architecture [10].

Image copied from https://medium.com/coinmonks/paper-review-of-alexnet-
caffenet-winner-in-ilsvrc-2012-image-classification-b93598314160

The AlexNet architecture is composed of 5 convolutional layers followed by 3 ful-

ly connected layers. ReLU activation is used after each convolution and in each fully
connected layer. The input image size of 224 x 224 is dictated by the number of layers
in the architecture.

Source code for AlexNet can be found in PyTorch2. The network has 62.3 million
parameters, and needs 1.1 billion computations in a forward pass. The convolution
layers account for 6% of all the parameters, and consume 95% of the computation.
The network is commonly trained in 90 epochs, with a learning rate 0.01, momentum
0.9 and weight decay 0.0005. The learning rate is divided by 10 once the accuracy
reaches a plateau.

2.2 VGG-16 - Visual Geometry Group 16 Layer Architecture

In 2014, Karen Simonyan and Andrew Zisserman of the Visual Geometry Group at
the Univ of Oxford demonstrated a series of networks referred to as VGG [11], shown
in figure 8. An important innovation in VGG was the use of many small (3x3) convo-
lutional receptive fields. VGG also introduced the idea of a 1x1 convolutional filter,
using a perceptron to reduce the number of features (depth) at each image position.
For a layer with a depth of D receptive fields, a 1x1 convolution performs a weighted
sum of the D features, followed by non-linear activation using ReLU activation.

2 An open source machine learning framework available at https://pytorch.org/.

11

Fig. 8.The VGG-16 Architecture.

VGG uses a stack of 18 convolutional layers in which decreases in resolution pro-

vided by pooling are accompanied by increases in depth. The final 7x7x512 convolu-
tional layer is followed by three Fully-Connected layers: the first two have 4096
channels while the third fully connected layer outputs a probability distribution for
each of the 1000 classes of the ILSVR Challenge using a soft-max activation func-
tion. All except the last output layer use Relu activation.

2.3 YOLO: You Only Look Once

YOLO [12] poses object detection as a single regression problem that estimates
bounding box coordinates and class probabilities at the same time directly from image
pixels. This is known as a Single Shot Network (SSD). A single convolutional net-
work simultaneously predicts multiple bounding boxes and class probabilities for
each box in a single evaluation. The result is a unified architecture for detection and
classification that is very fast.

12

making predictions. Unlike sliding window and region
proposal-based techniques, YOLO sees the entire image
during training and test time so it implicitly encodes contex-
tual information about classes as well as their appearance.
Fast R-CNN, a top detection method [14], mistakes back-
ground patches in an image for objects because it can’t see
the larger context. YOLO makes less than half the number
of background errors compared to Fast R-CNN.

Third, YOLO learns generalizable representations of ob-
jects. When trained on natural images and tested on art-
work, YOLO outperforms top detection methods like DPM
and R-CNN by a wide margin. Since YOLO is highly gen-
eralizable it is less likely to break down when applied to
new domains or unexpected inputs.

YOLO still lags behind state-of-the-art detection systems
in accuracy. While it can quickly identify objects in im-
ages it struggles to precisely localize some objects, espe-
cially small ones. We examine these tradeoffs further in our
experiments.

All of our training and testing code is open source. A
variety of pretrained models are also available to download.

2. Unified Detection

We unify the separate components of object detection
into a single neural network. Our network uses features
from the entire image to predict each bounding box. It also
predicts all bounding boxes across all classes for an im-
age simultaneously. This means our network reasons glob-
ally about the full image and all the objects in the image.
The YOLO design enables end-to-end training and real-
time speeds while maintaining high average precision.

Our system divides the input image into an S ⇥ S grid.
If the center of an object falls into a grid cell, that grid cell
is responsible for detecting that object.

Each grid cell predicts B bounding boxes and confidence
scores for those boxes. These confidence scores reflect how
confident the model is that the box contains an object and
also how accurate it thinks the box is that it predicts. For-
mally we define confidence as Pr(Object) ⇤ IOUtruth

pred . If no
object exists in that cell, the confidence scores should be
zero. Otherwise we want the confidence score to equal the
intersection over union (IOU) between the predicted box
and the ground truth.

Each bounding box consists of 5 predictions: x, y, w, h,
and confidence. The (x, y) coordinates represent the center
of the box relative to the bounds of the grid cell. The width
and height are predicted relative to the whole image. Finally
the confidence prediction represents the IOU between the
predicted box and any ground truth box.

Each grid cell also predicts C conditional class proba-
bilities, Pr(Class

i

|Object). These probabilities are condi-
tioned on the grid cell containing an object. We only predict

one set of class probabilities per grid cell, regardless of the
number of boxes B.

At test time we multiply the conditional class probabili-
ties and the individual box confidence predictions,

Pr(Classi|Object) ⇤ Pr(Object) ⇤ IOUtruth
pred = Pr(Classi) ⇤ IOUtruth

pred (1)

which gives us class-specific confidence scores for each
box. These scores encode both the probability of that class
appearing in the box and how well the predicted box fits the
object.

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S⇥S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S ⇥ S ⇥ (B ⇤ 5 + C) tensor.

For evaluating YOLO on PASCAL VOC, we use S = 7,
B = 2. PASCAL VOC has 20 labelled classes so C = 20.
Our final prediction is a 7⇥ 7⇥ 30 tensor.

2.1. Network Design

We implement this model as a convolutional neural net-
work and evaluate it on the PASCAL VOC detection dataset
[9]. The initial convolutional layers of the network extract
features from the image while the fully connected layers
predict the output probabilities and coordinates.

Our network architecture is inspired by the GoogLeNet
model for image classification [34]. Our network has 24
convolutional layers followed by 2 fully connected layers.
Instead of the inception modules used by GoogLeNet, we
simply use 1⇥ 1 reduction layers followed by 3⇥ 3 convo-
lutional layers, similar to Lin et al [22]. The full network is
shown in Figure 3.

We also train a fast version of YOLO designed to push
the boundaries of fast object detection. Fast YOLO uses a
neural network with fewer convolutional layers (9 instead
of 24) and fewer filters in those layers. Other than the size
of the network, all training and testing parameters are the
same between YOLO and Fast YOLO.

Fig 9. You Only Look Once (YOLO). The Yolo network simultaneously estimate bounding

box coordinates and class probabilities for objects. Image copied from [12].

The input image is divided into an S x S grid of cells. Each grid cell predicts B
bounding boxes as well as C class probabilities. The bounding box prediction has 5
components: (x, y, w, h, confidence). The (x, y) coordinates represent the center of
the predicted bounding box, relative to the grid cell location. Width and height (w, h)
are predicted relative to the entire image. Both the (x, y) coordinates and the window
size (w, h) are normalized to a range of [0,1]. Predictions for bounding boxes cen-
tered outside the range [0,1] are ignored. If the predicted object center (x, y) coordi-
nates are not within the grid cell, then object is ignored by that cell.

Fig. 10. Yolo uses a CNN architecture followed by a fully connected layer to simultaneously

bounding boxes and classes for objects. Image copied from [13].

 Each grid cell predicts C class conditional probabilities P(Classi | Object). These
are conditioned on the grid cell containing an object. Only one set of class probabili-
ties are predicted per grid cell, regardless of the number of boxes. The scores encode
the probability of a member of class i appearing in a box, and how well the box fits
the object. If no object exists in a cell, the confidence score should be zero. Other-

13

wise the confidence score should equal the intersection over union (IOU) between the
predicted box and the ground truth.

These predictions are encoded as an S x S x (5B+C) tensor. Where SxS is the
number of grid cells, B is the number of Bounding Boxes predicted and C is the num-
ber of image classes. For the Pascal visual Object Classification challenge, S = 7, B
= 2 and C=20 yielding a 7x7x30 tensor.

The detection network has 24 convolutional layers followed by 2 fully connected
layers as shown in figure 11. The convolutional layers were pretrained on the
ImageNet data-set at half the resolution (224 by 224 input image). Image resolution
was then doubled to (448 x 448) for detection.

Fig 11. YOLO is composed of 24 convolutional layers followed by 2 fully connected layers.

(from: http://datahacker.rs/how-to-peform-yolo-object-detection-using-keras/)

2.4 YOLO-9000 (YOLOv2)

YOLO9000:
Better, Faster, Stronger

Joseph Redmon⇤†, Ali Farhadi⇤†
University of Washington⇤, Allen Institute for AI†

http://pjreddie.com/yolo9000/

Abstract
We introduce YOLO9000, a state-of-the-art, real-time

object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOv2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2
model can run at varying sizes, offering an easy tradeoff
between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
faster. Finally we propose a method to jointly train on ob-
ject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don’t have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

1. Introduction
General purpose object detection should be fast, accu-

rate, and able to recognize a wide variety of objects. Since
the introduction of neural networks, detection frameworks
have become increasingly fast and accurate. However, most
detection methods are still constrained to a small set of ob-
jects.

Current object detection datasets are limited compared
to datasets for other tasks like classification and tagging.
The most common detection datasets contain thousands to
hundreds of thousands of images with dozens to hundreds
of tags [3] [10] [2]. Classification datasets have millions
of images with tens or hundreds of thousands of categories
[20] [2].

We would like detection to scale to level of object clas-
sification. However, labelling images for detection is far
more expensive than labelling for classification or tagging
(tags are often user-supplied for free). Thus we are unlikely

Figure 1: YOLO9000. YOLO9000 can detect a wide variety of
object classes in real-time.

1

ar
X

iv
:1

61
2.

08
24

2v
1

 [c
s.C

V
]

25
 D

ec
 2

01
6

YOLO9000:
Better, Faster, Stronger

Joseph Redmon⇤†, Ali Farhadi⇤†
University of Washington⇤, Allen Institute for AI†

http://pjreddie.com/yolo9000/

Abstract
We introduce YOLO9000, a state-of-the-art, real-time

object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOv2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2
model can run at varying sizes, offering an easy tradeoff
between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
faster. Finally we propose a method to jointly train on ob-
ject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don’t have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

1. Introduction
General purpose object detection should be fast, accu-

rate, and able to recognize a wide variety of objects. Since
the introduction of neural networks, detection frameworks
have become increasingly fast and accurate. However, most
detection methods are still constrained to a small set of ob-
jects.

Current object detection datasets are limited compared
to datasets for other tasks like classification and tagging.
The most common detection datasets contain thousands to
hundreds of thousands of images with dozens to hundreds
of tags [3] [10] [2]. Classification datasets have millions
of images with tens or hundreds of thousands of categories
[20] [2].

We would like detection to scale to level of object clas-
sification. However, labelling images for detection is far
more expensive than labelling for classification or tagging
(tags are often user-supplied for free). Thus we are unlikely

Figure 1: YOLO9000. YOLO9000 can detect a wide variety of
object classes in real-time.

1

ar
X

iv
:1

61
2.

08
24

2v
1

 [c
s.C

V
]

25
 D

ec
 2

01
6

YOLO9000:
Better, Faster, Stronger

Joseph Redmon⇤†, Ali Farhadi⇤†
University of Washington⇤, Allen Institute for AI†

http://pjreddie.com/yolo9000/

Abstract
We introduce YOLO9000, a state-of-the-art, real-time

object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOv2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2
model can run at varying sizes, offering an easy tradeoff
between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
faster. Finally we propose a method to jointly train on ob-
ject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don’t have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

1. Introduction
General purpose object detection should be fast, accu-

rate, and able to recognize a wide variety of objects. Since
the introduction of neural networks, detection frameworks
have become increasingly fast and accurate. However, most
detection methods are still constrained to a small set of ob-
jects.

Current object detection datasets are limited compared
to datasets for other tasks like classification and tagging.
The most common detection datasets contain thousands to
hundreds of thousands of images with dozens to hundreds
of tags [3] [10] [2]. Classification datasets have millions
of images with tens or hundreds of thousands of categories
[20] [2].

We would like detection to scale to level of object clas-
sification. However, labelling images for detection is far
more expensive than labelling for classification or tagging
(tags are often user-supplied for free). Thus we are unlikely

Figure 1: YOLO9000. YOLO9000 can detect a wide variety of
object classes in real-time.

1

ar
X

iv
:1

61
2.

08
24

2v
1

 [c
s.C

V
]

25
 D

ec
 2

01
6

Fig 12. Typical output from YOLO-9000 [14].

In 2017, the YOLO team published performance evaluation results and source code
for a new version of YOLO referred to as Yolo9000. Yolo9000 employed a number
of innovations, including ideas that had emerged in the machine learning literature the
previous year. At low resolutions YOLO9000 operates as a cheap, fairly accurate
detector. At 288x288 it runs at more than 90 FPS. This makes it ideal for smaller
GPUs, high frame rate video, or multiple video streams. At high resolution the net-
work is competitive with the state of the art giving 78.6 mAP on VOC 2007 while still
operating above real-time speeds

14

3. Conclusions

Convolutional neural networks are now a well established technology for analysis of
multidimensional signals with applications in computer vision, recommender systems,
image classification, image segmentation, medical image analysis, natural language
processing, brain–computer interfaces, financial time series and many other areas.
New architectures for deep convolutional networks appear regularly addressing appli-
cations in an every expanding repertoire of domains.

Much of the progress of recent years has been obtained by training networks at ev-
er-increasing depths, leveraging the growing availability of computing power provid-
ed by application specific integrated circuits and related technologies, and made pos-
sible by the availability of very large data set of annotated data. However, much of
this work relied on supervised learning, and the need for annotated data has hindered
development in some application domains.

Recently transformers, based on stacked layers of encoders and decoders with pro-
cessing driven by self-attention, have begun to supplant convolutional neural net-
works in many areas, by improving performance while decreasing computational
requirements. In addition, transformers can be trained by self-supervised learning,
using data as its own ground truth, and eliminating the need for annotated training
data as described in the chapter on Natural Language Processing with Transformers
and Attention [15]. None-the-less, Convolutional networks remain an established tool
with many practical applications.

Bibliography

1. Hubel, David. H., and Torsten N. Wiesel, Receptive fields and functional architecture of

monkey striate cortex. The Journal of Physiology, vol. 195, no 1, p. 215-243, 1968.
2. Rosenfeld, Azriel, Picture Processing by Computer, Academic Press, 1969.
3. Duda, Richard O. and Peter E. Hart, Picture Processing and Scene Analysis, Wiley, New

York, 1973.
4. Zucker, Steven W., and Robert A. Hummel. Receptive Fields and the Reconstruction of

Visual Information. New York Univ, Courant Institute of Mathematical Sciences, 1985.
5. LeCun Y., Jackel L., Bottou L., Brunot A., Cortes C., Denker J., Drucker H., Guyon I.,

Muller U.A., Sackinger E., Simard P., Comparison of learning algorithms for handwritten
digit recognition. In International Conference on Artificial Neural Networks, Vol. 60, pp.
53-60, Nov 1995.

6. Crowley, James L., Machine Learning with Neural Networks, in Advanced course on
Human-Centered AI, Editors Mohamed Chetouani, Virginia Dignum, Paul Lukowicz and
Carles Sierra, Springer Lecture Notes in Artificial Intelligence (LNAI), 2022.

7. Bottou, Léon, Yoshua Bengio, and Yann LeCun. "Global training of document pro-
cessing systems using graph transformer networks." In Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, CVPR 97. San Juan,
Porto Rico, pp. 489-494, IEEE, 1997.

8. Fei-Fei, Li, Jia Deng, and Kai Li. "ImageNet: Constructing a large-scale image database."
Journal of vision 9, no. 8: pp1037-1037, 2009

15

9. J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and L. Fei-Fei. ILSVRC-2012.
10. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with

deep convolutional neural networks." Advances in neural information processing systems
25 (2012).

11. Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-
scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

12. Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. "You only look once:
Unified, real-time object detection." In Proceedings of the IEEE conference on computer
vision and pattern recognition, CVPR 2016, IEEE, pp. 779-788. 2016.

13. Kim, Jinsoo, and Jeongho Cho. "Exploring a multimodal mixture-of-YOLOs framework
for advanced real-time object detection." Applied Sciences 10, no. 2 p 612, 2020

14. Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger." In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 7263-7271. 2017.

15. Yvon, Francois, Natural Language Processing with Transformers and Attention, in Ad-
vanced course on Human-Centered AI, Editors Mohamed Chetouani, Virginia Dignum,
Paul Lukowicz and Carles Sierra, Springer Lecture Notes in Artificial Intelligence
(LNAI), 2022.

