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Introduction to ASR Spoken communication

Oral communication

Interest of spoken communication for human-machine interaction
@ Means of communication between humans

More natural
We’re all experts
Fast: 150 wpm vs 20-50 wpm on keyboards
Specific needs:
o telephony
o help for the disabled
o Additional modality

@ Applications of automatic speech processing

e Encoding (vocoder: telecommunications)
e Text-to-speech synthesis
e Speech recognition
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Introduction to ASR Spoken communication

What to recognize in speech?

@ A lot of information is present in a speech signal:

o Speaker recognition: Who spoke?

Transcription: What was said?

Language identification: Which language?

Recognition of emotions: In what psychological state?

@ Non-verbal aspect of the voice:
e Timbre, vocal quality, disfluencies (filler, stutter, etc.)

e Prosody: melody + intensity + rhythm + ...
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Complexity of speech I
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Spoken communiction
Complexity of speech II

Signal resulting from production, perception, and understanding constraints
@ Signal continuity, coarticulation:
e no obvious segmentation
o Temporal distortions:
e variable rate
o Context variability:
e inter- and intra-speakers, acoustic conditions
e Homophonies:

o different transcriptions, identical pronunciation
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Historcal perspective
60’s: Rule-based approach (Dawn of Al)

o Gunnar Fant: source-filter model of speech production
e IBM: 16-word Shoebox machine’s speech recognition

@ Linear predictive coding (LPC), a speech coding method

(Nagoya University and NTT)f
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Introduction to ASR Historical perspective

70’s: Pattern recognition (Isolated words)

@ DARPA funded: Carnegie Mellon’s Harpy speech-understanding system
(understand 1011 words)

@ DTW: recognition of isolated words, success of the engineer approach’
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tFig. from https://www.audiolabs-erlangen.de
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Historical perspective

Introduction to ASR

80’s: Statistical approaches (Continuous speech)

e HMMs based recognition:T James and Janet Baker (Dragon systems)

o Fred Jelinek (IBM): Tangora
(HMM-based voice-activated typewriter, 20,000-word)

Anytime a linguist leaves the group, the recognition rate goes up

transitions
observations by(zy) by(s) '
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tLaurent Besacier, ASR-intro 2019, Université Grenoble Alpes
Transformers in HLT 2020-2021

M. Evrard, C. Guinaudeau, F. Yvon (LISN)

9/37



Introduction to ASR Historical perspective

90’s: International evaluation campaigns

o DARPA/NIST international assessment campaigns

@ Dragon Dictate, a consumer product released in 1990

e Lawrence Rabiner (AT&T): Voice Recognition Call Processing (VRCP)
service to route telephone calls without human operators

@ Introduction of the n-gram language model

@ Development of neural architectures
(that will allow for speech representation):

o CNN: Convolutional neural networks (LeCun et al. 1995)
o LSTM: Long short-term memory (Hochreiter et al. 1997)

o Gradient descent for neural networks (LeCun et al. 1998)
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Historical perspective
Since 2000: The rise of DNNs

@ 2000’s: Larger corpora, rise of DNN
o DARPA: Funded the collection of the Switchboard telephone speech corpus

@ 2010’s: Introduction of DNN
o (Deep) neural networks (Hinton et al. 2012)

e Speaker independence
(systems used to require adaptation training for new speakers)

e Distribution of consumer applications
(e.g., Google, Apple, Nuance)

e 2017:

o Human parity milestone of transcribing conversational telephony speech
(Microsoft)
@ CNN-BLSTM acoustic model
@ Character-based LSTM language models
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Introduction to ASR Statistical and Neural-based

Statistical-based ASR
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@ The various modules are specialized and rely on techniques specific to
their domain®

@ The acoustic, pronunciation, and language models specify explicitly:

Y* =argmax P(X | Y) P(Y)
Y

Aim Find the most likely text sequence Y*
that produced the given audio features X

‘LFig. from Stanford cs224n Lecture 12 (2017)
M. Evrard, C. Guinaudea
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Statistical and Neural-based
Neural-based ASR'

Convolutional models DNN-HMMs, Neural network based  Neural language
on raw signals’ LSTM-HMMs pronunciation models models
. : Gaussian Pronunciation N-gram
Classical signal .
& processing Mixture Models tables models

speech > features <t acoustic 1 pronunciation 1 language
preprocessing eatures models? models® models*

Jaitly et al. (2011) Learning a better representation of speech sound waves using RBMs
Hinton et al. (2012) DNN for acoustic modeling in speech recognition

Rao et al. (2015) Grapheme-to-phoneme conversion using LSTM

Mikolov et al. (2010) Recurrent neural network-based language model

@ Each component is trained independently (different objective functions)

@ Errors within each component may amplify errors in the others

Solution: Train a global end-to-end model (Graves et al. 2014)

‘LFlg from Stanford cs224n Lecture 12 (2017)
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Introduction to ASR End-to-end approach

LSTM-based'

True symbol sequence
THE CAT IS BLACK

Linear layer

LSTM output

Backward LSTM network
Forward LSTM network

Sk JEs -~ Acoustic feature
L ISR = » . sequence

‘LFig. from Audhkhasi et al. (2019)
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Introduction to ASR End-to-end approach

Connectionist Temporal Classification Loss

@ CTC: Loss function associated with RNNs (Graves et al. 2006)

o Tailored for sequence modeling where timing differs between the input
and output sequences

e E.g., typically used for modeling phonemes

@ Find the best path through a matrix of softmax outputs at each frame
(targeting the whole dictionary and a blank token)

@ Solved efficiently through a dynamic programming algorithm

@ Gradients can be calculated from the CTC scores and be back-propagated
to update the neural network weights

o CTC is independent of the underlying neural network structure
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Introduction to ASR End-to-end approach

CTC Loss I

e Compute the softmax through the network for each feature frame'
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Introduction to ASR End-to-end approach

CTC Loss 1T

e Find the best path through the softmax at each frame (for “cat”)f

Y* = argmax P(Y | X)
Y

c ¢ <b> a
‘LFig. from Stanford cs224n Lecture 12 (2017)
M. Evrard, C. Guinaudeau, F. Yvon (LISN) Transformers in HLT 2020-2021

<b> t <b>

© [V

17/37


https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/lectures/cs224n-2017-lecture12.pdf

Introduction to AS End-to-end approach

CNN-LSTM-hybrid based!
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Transformers for ASR Attention for speech

Attention in NMT

@ Core idea: On each step of the decoder, use a direct connection encoder
to focus on a particular part of the source sequence

@ Main aims of attention:’
e Provide a solution to the seq-to-seq bottleneck problem

e Raymond Mooney (2014): You can’t cram the meaning of a whole %&! $#
sentence into a single $&!#* vector!

@ Decoder can look directly at the source, bypassing the bottleneck
o Help with the vanishing gradient problem

e Provides shortcuts to distant states
e Provides some interpretability

o Can inspect what the decoder was focusing on

@ We learn a structure (soft alignment), without an explicit loss

nspired by Stanford cs224n Lecture 7 (2021)
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Transformers for ASR Attention for speech

Attention in general

@ General definition of attention:

e Technique to compute a weighted sum of vector values, dependent on a
vector query

o The query attends to the values'
e E.g., in the seq2seq + attention model:
Query (decoder hidden state) — Values (encoder hidden states)

o Intuition: Attention is

o Weighted sum: Selective summary of the information contained in the
values (the query determines which values to focus on)

@ Way to obtain a fixed-size representation: of a set of representations (values)
dependending on some other representation (the query)

nspired by Stanford cs224n Lecture 7 (2021)
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Transformers for ASR Attention for speech

Attention in Speech: Listen Attend and Spell

e Listen Attend and Spell (Chan et al. 2016)

o NN that learns to transcribe speech utterances to characters

@ Learns all components of a speech recognizer jointly
(Unlike traditional DNN-HMM models)

o Listener: Pyramidal RNN encoder (inputs: filter bank spectra)
o Speller: Attention-based RNN decoder (outputs: characters)
@ Attention method:

o Speller LSTM produces a probability distribution (softmax)
over the next character conditioned on all previous characters
(for every output step)

@ Results on a Google voice search task subset:

e WER = 14.1% (without dictionary or LM)
e WER = 10.3% (with LM rescoring over the top 32 beams)
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Transformers for ASR Attention for speech

Listen Attend and Spell: Listener Module

Listener

Pyramidal BLSTM encoding input sequence x into high-level features h (¥

fFig. from Chan et al. (2016)
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Transformers for ASR Attention for speech

Listen Attend and Spell: Speller Module'

Speller

¥ s v (eos) Grapheme characters y; are
modelled by the
CharacterDistribution

AttentionContext _creates
context vector ¢; from h
and S

Long input sequence X is encoded with the pyramidal
h= (..., BLSTM Listen into shorter sequence h

fFig. from Chan et al. (2016)
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Transformers for ASR Self-attention for speech

Transformers: Why not using only attention?

@ Recurrent sequence-to-sequence models using encoder-decoder
architecture:

e Yield good performances in speech recognition

o Slow (internal recurrence limits the training parallelization)

o To improve speed — compute speech representation with self-attention
instead of recurrent networks (e.g., with LSTM)

@ Transformers implement 2 types of attention:
o Self-attention for representation

o Encoder-decoder attention
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Transformers for ASR Self-attention for speech

Self-attention in speech

@ Unlike text, speech signal is continuous:
Need a way to discretize it

Note: Features are actually time-discrete but in large numbers
o Differents options are proposed to handle speech features:
e Using simple (reshape) downsampling technique (Liu et al. 2020)
e Using CNN layers with a particular stride (Dong et al. 2018)
e Vector quantizations (Baevski et al. 2020)
@ Positional encoding (PE) needed as well

e May cause performance degradations for longer sequences with similar
acoustic attributes at different positions (Zhou et al. 2019)

o Alternative approaches:

@ Replacing absolute PE with relative PE (Zhou et al. 2019)
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Transformers for ASR Transformer-based ASR models

Speech-Transformer (Dong et al. 2018)

o Early transformer-based architectures in speech recognition

Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model
for Speech Recognition (Dong et al. 2018)

@ Model relying entirely on attention mechanisms to learn the positional
dependencies

e 2D-Attention mechanism attending jointly
(time and frequency axes)

e Represent different features using different attention heads

@ Minimal changes in the architecture (vs. the original Transformer)
e Mainly: Input embeddings through CNNs

o Slightly lower performance than traditional SOTA models

(proof of concept: transformer-based ASRs can work)
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Transformer-based ASR models
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Transformers for ASR Transformer-based ASR models

CTC Loss and Transformers

@ Improvement: Integrate CTC loss into Speech-Transformer
(Karita et al. 2019)

@ CTC loss has several advantages:

o Allows the alignment of audio frames to transcription characters

o Better integration of the language model into the learning process
@ Hybrid architecture combining Transformer and RNN-based ASR

o Learning curve appears to converge faster than with a pure Transformer
architecture

@ Evaluations:
o WER =4.5% on Wall Street Journal
e WER =11.6% on TED-LIUM
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Transformers for ASR Transformer-based ASR models

Conformer (Gulati et al. 2020) I

@ Main strengths of transformer-based architectures:
o Fast and accurate

e Ability to capture the global context

CNNs s capture local context effectively

@ Combine CNNs and transformers to model both local
and global contexts

e Add a convolution module after the Multi-Head Attention block

e Conformer:
Convolution-augmented transformer for speech recognition
@ LibriSpeech: WER = 1.9%/2.1% (with/without using a LM)
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Transformer-based ASR models
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Transformers for ASR Self-supervised pre-training for speech

Self-supervised pre-training for speech

@ Self-supervised learning (SSL) can be used for speech
o Like the BERT model (Devlin et al. 2018) for NLP
@ BERT’s task: Predict the next sentence

o Self-supervised pre-training can be used on large audio corpora
to learn representation without labels

o Helps building ASR systems with as few as 10 minutes of labeled data
o Helps in multilingual transfer learning
@ Popular models:

e Wav2vec (Schneider et al. 2019)
and Wav2vec 2.0 (Baevski et al. 2020)

e Mockingjay (Liu et al. 2020)
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Transformers for ASR Self-supervised pre-training for speech

Wav2vec 2.0 (Baevski et al. 2020) I
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o Fully convolutional

@ Vector quantize (Jegou et al. 2010):
Split into small segments and cluster them in discrete values

@ Sample random segments (start points) for masking: '

e Expand starting points by 10 time-steps (10 x 25ms)
o Try to predict the resulting masked segments

tFig. from Auli (2021)

M. Evrard, C. Guinaudeau, F. Yvon (LISN) Transformers in HLT 2020-2021 32/37



Self-supervised pre-training for speech

Wav2vec 2.0 (Baevski et al. 2020) IIf
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Conclusion

Conclusion

@ A brief overview of some chosen paper is given

@ Transformers for ASR is a very active field of research

In a short amount of time, vast improvements have been made

Architectures are still changing but currently seem to converge toward a
mixture of CNNs and Transformers

Self-supervised learning allows to greatly improve transfer learning
performances for low resources data
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