
Transformers in Language and Speech Processing
Part II – Transformers in Automatic Speech Recognition

Marc Evrard, Camille Guinaudeau, François Yvon

LISN — CNRS and Université Paris-Saclay

2020-2021

M. Evrard, C. Guinaudeau, F. Yvon (LISN) Transformers in HLT 2020-2021 1 / 37



Outline

Introduction to ASR

1 Spoken communication
2 Historical perspective
3 Statistical and neural-based
4 End-to-end approach

Transformers for ASR

1 Attention for speech
2 Self-attention for speech
3 Transformer-based ASR models
4 Self-supervised pre-training for speech

M. Evrard, C. Guinaudeau, F. Yvon (LISN) Transformers in HLT 2020-2021 2 / 37



Introduction to ASR Spoken communication

Oral communication

Interest of spoken communication for human-machine interaction

Means of communication between humans

More natural
We’re all experts
Fast: 150 wpm vs 20-50 wpm on keyboards
Specific needs:

telephony
help for the disabled

Additional modality

Applications of automatic speech processing

Encoding (vocoder: telecommunications)
Text-to-speech synthesis
Speech recognition
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Introduction to ASR Spoken communication

What to recognize in speech?

A lot of information is present in a speech signal:

Speaker recognition: Who spoke?

Transcription: What was said?

Language identification: Which language?

Recognition of emotions: In what psychological state?

Non-verbal aspect of the voice:

Timbre, vocal quality, disfluencies (filler, stutter, etc.)

Prosody: melody + intensity + rhythm + . . .
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Introduction to ASR Spoken communication

Complexity of speech I

 Speech Processing is complicated
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Introduction to ASR Spoken communication

Complexity of speech II

Signal resulting from production, perception, and understanding constraints

Signal continuity, coarticulation:

no obvious segmentation

Temporal distortions:

variable rate

Context variability:

inter- and intra-speakers, acoustic conditions

Homophonies:

different transcriptions, identical pronunciation
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Introduction to ASR Historical perspective

60’s: Rule-based approach (Dawn of AI)

Gunnar Fant: source-filter model of speech production

IBM: 16-word Shoebox machine’s speech recognition

Linear predictive coding (LPC), a speech coding method
(Nagoya University and NTT)†
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†Fig. from https://ccrma.stanford.edu/~hskim08/lpc
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Introduction to ASR Historical perspective

70’s: Pattern recognition (Isolated words)

DARPA funded: Carnegie Mellon’s Harpy speech-understanding system
(understand 1011 words)

DTW: recognition of isolated words, success of the engineer approach†

†Fig. from https://www.audiolabs-erlangen.de
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Introduction to ASR Historical perspective

80’s: Statistical approaches (Continuous speech)

HMMs based recognition:† James and Janet Baker (Dragon systems)

Fred Jelinek (IBM): Tangora
(HMM-based voice-activated typewriter, 20,000-word)

Anytime a linguist leaves the group, the recognition rate goes up

†Laurent Besacier, ASR-intro 2019, Université Grenoble Alpes
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Introduction to ASR Historical perspective

90’s: International evaluation campaigns

DARPA/NIST international assessment campaigns

Dragon Dictate, a consumer product released in 1990

Lawrence Rabiner (AT&T): Voice Recognition Call Processing (VRCP)
service to route telephone calls without human operators

Introduction of the n-gram language model

Development of neural architectures
(that will allow for speech representation):

CNN: Convolutional neural networks (LeCun et al. 1995)

LSTM: Long short-term memory (Hochreiter et al. 1997)

Gradient descent for neural networks (LeCun et al. 1998)
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Introduction to ASR Historical perspective

Since 2000: The rise of DNNs

2000’s: Larger corpora, rise of DNN

DARPA: Funded the collection of the Switchboard telephone speech corpus

2010’s: Introduction of DNN

(Deep) neural networks (Hinton et al. 2012)

Speaker independence
(systems used to require adaptation training for new speakers)

Distribution of consumer applications
(e.g., Google, Apple, Nuance)

2017:

Human parity milestone of transcribing conversational telephony speech
(Microsoft)

CNN-BLSTM acoustic model
Character-based LSTM language models
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Introduction to ASR Statistical and Neural-based

Statistical-based ASR

The various modules are specialized and rely on techniques specific to
their domain†

The acoustic, pronunciation, and language models specify explicitly:

Y⇤ = argmax
Y

P(X | Y) P(Y)

Aim Find the most likely text sequence Y⇤

that produced the given audio features X
†Fig. from Stanford cs224n Lecture 12 (2017)
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Introduction to ASR Statistical and Neural-based

Neural-based ASR†

1 Jaitly et al. (2011) Learning a better representation of speech sound waves using RBMs
2 Hinton et al. (2012) DNN for acoustic modeling in speech recognition
3 Rao et al. (2015) Grapheme-to-phoneme conversion using LSTM
4 Mikolov et al. (2010) Recurrent neural network-based language model

Each component is trained independently (different objective functions)

Errors within each component may amplify errors in the others

Solution: Train a global end-to-end model (Graves et al. 2014)
†Fig. from Stanford cs224n Lecture 12 (2017)
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Introduction to ASR End-to-end approach

LSTM-based†

†Fig. from Audhkhasi et al. (2019)
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Introduction to ASR End-to-end approach

Connectionist Temporal Classification Loss

CTC: Loss function associated with RNNs (Graves et al. 2006)

Tailored for sequence modeling where timing differs between the input
and output sequences

E.g., typically used for modeling phonemes

Find the best path through a matrix of softmax outputs at each frame
(targeting the whole dictionary and a blank token)

Solved efficiently through a dynamic programming algorithm

Gradients can be calculated from the CTC scores and be back-propagated
to update the neural network weights

CTC is independent of the underlying neural network structure
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Introduction to ASR End-to-end approach

CTC Loss I

Compute the softmax through the network for each feature frame†

†Fig. from Stanford cs224n Lecture 12 (2017)
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Introduction to ASR End-to-end approach

CTC Loss II

Find the best path through the softmax at each frame (for “cat”)†

Y⇤ = argmax
Y

P(Y | X)

†Fig. from Stanford cs224n Lecture 12 (2017)
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Introduction to ASR End-to-end approach

CNN-LSTM-hybrid based†

†Fig. from Passricha et al. (2020)
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Transformers for ASR Attention for speech

Attention in NMT

Core idea: On each step of the decoder, use a direct connection encoder
to focus on a particular part of the source sequence

Main aims of attention:†

Provide a solution to the seq-to-seq bottleneck problem

Raymond Mooney (2014): You can’t cram the meaning of a whole %&!$#
sentence into a single $&!#* vector!

Decoder can look directly at the source, bypassing the bottleneck

Help with the vanishing gradient problem

Provides shortcuts to distant states

Provides some interpretability

Can inspect what the decoder was focusing on

We learn a structure (soft alignment), without an explicit loss
†Inspired by Stanford cs224n Lecture 7 (2021)
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Transformers for ASR Attention for speech

Attention in general

General definition of attention:

Technique to compute a weighted sum of vector values, dependent on a
vector query

The query attends to the values†

E.g., in the seq2seq + attention model:

Query (decoder hidden state) ! Values (encoder hidden states)

Intuition: Attention is

Weighted sum: Selective summary of the information contained in the
values (the query determines which values to focus on)

Way to obtain a fixed-size representation: of a set of representations (values)
dependending on some other representation (the query)

†Inspired by Stanford cs224n Lecture 7 (2021)
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Transformers for ASR Attention for speech

Attention in Speech: Listen Attend and Spell

Listen Attend and Spell (Chan et al. 2016)

NN that learns to transcribe speech utterances to characters

Learns all components of a speech recognizer jointly
(Unlike traditional DNN-HMM models)

Listener: Pyramidal RNN encoder (inputs: filter bank spectra)

Speller: Attention-based RNN decoder (outputs: characters)

Attention method:

Speller LSTM produces a probability distribution (softmax)
over the next character conditioned on all previous characters
(for every output step)

Results on a Google voice search task subset:

WER = 14.1% (without dictionary or LM)
WER = 10.3% (with LM rescoring over the top 32 beams)
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Transformers for ASR Attention for speech

Listen Attend and Spell: Listener Module

We want to model each character output yi as a conditional distribution over the previous characters
y<i and the input signal x using the chain rule:

P (y|x) =
�

i

P (yi|x, y<i) (1)

Our Listen, Attend and Spell (LAS) model consists of two sub-modules: the listener and the speller.
The listener is an acoustic model encoder, whose key operation is Listen. The speller is an attention-
based character decoder, whose key operation is AttendAndSpell. The Listen function transforms
the original signal x into a high level representation h = (h1, . . . , hU ) with U � T , while the
AttendAndSpell function consumes h and produces a probability distribution over character se-
quences:

h = Listen(x) (2)
P (y|x) = AttendAndSpell(h,y) (3)

Figure 1 visualizes LAS with these two components. We provide more details of these components
in the following sections.

x1 x2 xT

h2 hUh1

x3 x4 x5 x6 x7 x8

h = (h1, . . . , hU)

y2 y3

�sos�

�eos�

y2 y3

y4

yS�1

c1 c2

Speller

Long input sequence x is encoded with the pyramidal
BLSTM Listen into shorter sequence h

Listener

Grapheme characters yi are
modelled by the
CharacterDistribution

AttentionContext creates
context vector ci from h
and si

s1 s2

h h h

Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input
sequence x into high level features h, the speller is an attention-based decoder generating the y characters
from h.

3

Pyramidal BLSTM encoding input sequence x into high-level features h (†)

†Fig. from Chan et al. (2016)
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Transformers for ASR Attention for speech

Listen Attend and Spell: Speller Module†

We want to model each character output yi as a conditional distribution over the previous characters
y<i and the input signal x using the chain rule:

P (y|x) =
�

i

P (yi|x, y<i) (1)

Our Listen, Attend and Spell (LAS) model consists of two sub-modules: the listener and the speller.
The listener is an acoustic model encoder, whose key operation is Listen. The speller is an attention-
based character decoder, whose key operation is AttendAndSpell. The Listen function transforms
the original signal x into a high level representation h = (h1, . . . , hU ) with U � T , while the
AttendAndSpell function consumes h and produces a probability distribution over character se-
quences:

h = Listen(x) (2)
P (y|x) = AttendAndSpell(h,y) (3)

Figure 1 visualizes LAS with these two components. We provide more details of these components
in the following sections.

x1 x2 xT

h2 hUh1

x3 x4 x5 x6 x7 x8
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BLSTM Listen into shorter sequence h
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Grapheme characters yi are
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Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input
sequence x into high level features h, the speller is an attention-based decoder generating the y characters
from h.

3

†Fig. from Chan et al. (2016)
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Transformers for ASR Self-attention for speech

Transformers: Why not using only attention?

Recurrent sequence-to-sequence models using encoder-decoder
architecture:

Yield good performances in speech recognition

Slow (internal recurrence limits the training parallelization)

To improve speed ! compute speech representation with self-attention
instead of recurrent networks (e.g., with LSTM)

Transformers implement 2 types of attention:

Self-attention for representation

Encoder-decoder attention
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Transformers for ASR Self-attention for speech

Self-attention in speech

Unlike text, speech signal is continuous:
Need a way to discretize it

Note: Features are actually time-discrete but in large numbers

Differents options are proposed to handle speech features:

Using simple (reshape) downsampling technique (Liu et al. 2020)

Using CNN layers with a particular stride (Dong et al. 2018)

Vector quantizations (Baevski et al. 2020)

Positional encoding (PE) needed as well

May cause performance degradations for longer sequences with similar
acoustic attributes at different positions (Zhou et al. 2019)

Alternative approaches:

Replacing absolute PE with relative PE (Zhou et al. 2019)

Replacing PE with dedicated trainable CNN layers
(Mohamed et al. 2019)
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Transformers for ASR Transformer-based ASR models

Speech-Transformer (Dong et al. 2018)

Early transformer-based architectures in speech recognition

Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model
for Speech Recognition (Dong et al. 2018)

Model relying entirely on attention mechanisms to learn the positional
dependencies

2D-Attention mechanism attending jointly
(time and frequency axes)

Represent different features using different attention heads

Minimal changes in the architecture (vs. the original Transformer)

Mainly: Input embeddings through CNNs

Slightly lower performance than traditional SOTA models

(proof of concept: transformer-based ASRs can work)
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Transformers for ASR Transformer-based ASR models

2D-Attention Mechanism†
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†Fig. from Dong et al. (2018)
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Transformers for ASR Transformer-based ASR models

CTC Loss and Transformers

Improvement: Integrate CTC loss into Speech-Transformer
(Karita et al. 2019)

CTC loss has several advantages:

Allows the alignment of audio frames to transcription characters

Better integration of the language model into the learning process

Hybrid architecture combining Transformer and RNN-based ASR

Learning curve appears to converge faster than with a pure Transformer
architecture

Evaluations:

WER = 4.5% on Wall Street Journal

WER = 11.6% on TED-LIUM
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Transformers for ASR Transformer-based ASR models

Conformer (Gulati et al. 2020) I

Main strengths of transformer-based architectures:

Fast and accurate

Ability to capture the global context

CNNs capture local context effectively

Combine CNNs and transformers to model both local
and global contexts

Add a convolution module after the Multi-Head Attention block

Conformer:

Convolution-augmented transformer for speech recognition

LibriSpeech: WER = 1.9%/2.1% (with/without using a LM)

M. Evrard, C. Guinaudeau, F. Yvon (LISN) Transformers in HLT 2020-2021 29 / 37



Transformers for ASR Transformer-based ASR models

Conformer (Gulati et al. 2020) II†

†Fig. from Gulati et al. (2020)
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Transformers for ASR Self-supervised pre-training for speech

Self-supervised pre-training for speech

Self-supervised learning (SSL) can be used for speech

Like the BERT model (Devlin et al. 2018) for NLP

BERT’s task: Predict the next sentence

Self-supervised pre-training can be used on large audio corpora
to learn representation without labels

Helps building ASR systems with as few as 10 minutes of labeled data

Helps in multilingual transfer learning

Popular models:

Wav2vec (Schneider et al. 2019)
and Wav2vec 2.0 (Baevski et al. 2020)

Mockingjay (Liu et al. 2020)
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Transformers for ASR Self-supervised pre-training for speech

Wav2vec 2.0 (Baevski et al. 2020) I

Masking
• Sample starting points for masks without replacement, then expand to 10 time-steps 

• Spans can overlap 

• For a 15s sample, ~49% of the time-steps masked with an average span length of ~300ms
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Wav2vec 2.0 (Baevski et al. 2020) II†
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Conclusion

Conclusion

A brief overview of some chosen paper is given

Transformers for ASR is a very active field of research

In a short amount of time, vast improvements have been made

Architectures are still changing but currently seem to converge toward a
mixture of CNNs and Transformers

Self-supervised learning allows to greatly improve transfer learning
performances for low resources data
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