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ABSTRACT

In this work we investigate the effect of the convolutional network depth on its
accuracy in the large-scale image recognition setting. Our main contribution is
a thorough evaluation of networks of increasing depth using an architecture with
very small (3× 3) convolution filters, which shows that a significant improvement
on the prior-art configurations can be achieved by pushing the depth to 16–19
weight layers. These findings were the basis of our ImageNet Challenge 2014
submission, where our team secured the first and the second places in the localisa-
tion and classification tracks respectively. We also show that our representations
generalise well to other datasets, where they achieve state-of-the-art results. We
have made our two best-performing ConvNet models publicly available to facili-
tate further research on the use of deep visual representations in computer vision.

1 INTRODUCTION

Convolutional networks (ConvNets) have recently enjoyed a great success in large-scale im-
age and video recognition (Krizhevsky et al., 2012; Zeiler & Fergus, 2013; Sermanet et al., 2014;
Simonyan & Zisserman, 2014) which has become possible due to the large public image reposito-
ries, such as ImageNet (Deng et al., 2009), and high-performance computing systems, such as GPUs
or large-scale distributed clusters (Dean et al., 2012). In particular, an important role in the advance
of deep visual recognition architectures has been played by the ImageNet Large-Scale Visual Recog-
nition Challenge (ILSVRC) (Russakovsky et al., 2014), which has served as a testbed for a few
generations of large-scale image classification systems, from high-dimensional shallow feature en-
codings (Perronnin et al., 2010) (the winner of ILSVRC-2011) to deep ConvNets (Krizhevsky et al.,
2012) (the winner of ILSVRC-2012).

With ConvNets becoming more of a commodity in the computer vision field, a number of at-
tempts have been made to improve the original architecture of Krizhevsky et al. (2012) in a
bid to achieve better accuracy. For instance, the best-performing submissions to the ILSVRC-
2013 (Zeiler & Fergus, 2013; Sermanet et al., 2014) utilised smaller receptive window size and
smaller stride of the first convolutional layer. Another line of improvements dealt with training
and testing the networks densely over the whole image and over multiple scales (Sermanet et al.,
2014; Howard, 2014). In this paper, we address another important aspect of ConvNet architecture
design – its depth. To this end, we fix other parameters of the architecture, and steadily increase the
depth of the network by adding more convolutional layers, which is feasible due to the use of very
small (3× 3) convolution filters in all layers.

As a result, we come up with significantly more accurate ConvNet architectures, which not only
achieve the state-of-the-art accuracy on ILSVRC classification and localisation tasks, but are also
applicable to other image recognition datasets, where they achieve excellent performance even when
used as a part of a relatively simple pipelines (e.g. deep features classified by a linear SVM without
fine-tuning). We have released our two best-performing models1 to facilitate further research.

The rest of the paper is organised as follows. In Sect. 2, we describe our ConvNet configurations.
The details of the image classification training and evaluation are then presented in Sect. 3, and the
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configurations are compared on the ILSVRC classification task in Sect. 4. Sect. 5 concludes the
paper. For completeness, we also describe and assess our ILSVRC-2014 object localisation system
in Appendix A, and discuss the generalisation of very deep features to other datasets in Appendix B.
Finally, Appendix C contains the list of major paper revisions.

2 CONVNET CONFIGURATIONS

To measure the improvement brought by the increased ConvNet depth in a fair setting, all our
ConvNet layer configurations are designed using the same principles, inspired by Ciresan et al.
(2011); Krizhevsky et al. (2012). In this section, we first describe a generic layout of our ConvNet
configurations (Sect. 2.1) and then detail the specific configurations used in the evaluation (Sect. 2.2).
Our design choices are then discussed and compared to the prior art in Sect. 2.3.

2.1 ARCHITECTURE

During training, the input to our ConvNets is a fixed-size 224 × 224 RGB image. The only pre-
processing we do is subtracting the mean RGB value, computed on the training set, from each pixel.
The image is passed through a stack of convolutional (conv.) layers, where we use filters with a very
small receptive field: 3 × 3 (which is the smallest size to capture the notion of left/right, up/down,
center). In one of the configurations we also utilise 1 × 1 convolution filters, which can be seen as
a linear transformation of the input channels (followed by non-linearity). The convolution stride is
fixed to 1 pixel; the spatial padding of conv. layer input is such that the spatial resolution is preserved
after convolution, i.e. the padding is 1 pixel for 3× 3 conv. layers. Spatial pooling is carried out by
five max-pooling layers, which follow some of the conv. layers (not all the conv. layers are followed
by max-pooling). Max-pooling is performed over a 2× 2 pixel window, with stride 2.

A stack of convolutional layers (which has a different depth in different architectures) is followed by
three Fully-Connected (FC) layers: the first two have 4096 channels each, the third performs 1000-
way ILSVRC classification and thus contains 1000 channels (one for each class). The final layer is
the soft-max layer. The configuration of the fully connected layers is the same in all networks.

All hidden layers are equipped with the rectification (ReLU (Krizhevsky et al., 2012)) non-linearity.
We note that none of our networks (except for one) contain Local Response Normalisation
(LRN) normalisation (Krizhevsky et al., 2012): as will be shown in Sect. 4, such normalisation
does not improve the performance on the ILSVRC dataset, but leads to increased memory con-
sumption and computation time. Where applicable, the parameters for the LRN layer are those
of (Krizhevsky et al., 2012).

2.2 CONFIGURATIONS

The ConvNet configurations, evaluated in this paper, are outlined in Table 1, one per column. In
the following we will refer to the nets by their names (A–E). All configurations follow the generic
design presented in Sect. 2.1, and differ only in the depth: from 11 weight layers in the network A
(8 conv. and 3 FC layers) to 19 weight layers in the network E (16 conv. and 3 FC layers). The width
of conv. layers (the number of channels) is rather small, starting from 64 in the first layer and then
increasing by a factor of 2 after each max-pooling layer, until it reaches 512.

In Table 2 we report the number of parameters for each configuration. In spite of a large depth, the
number of weights in our nets is not greater than the number of weights in a more shallow net with
larger conv. layer widths and receptive fields (144M weights in (Sermanet et al., 2014)).

2.3 DISCUSSION

Our ConvNet configurations are quite different from the ones used in the top-performing entries
of the ILSVRC-2012 (Krizhevsky et al., 2012) and ILSVRC-2013 competitions (Zeiler & Fergus,
2013; Sermanet et al., 2014). Rather than using relatively large receptive fields in the first conv. lay-
ers (e.g. 11× 11 with stride 4 in (Krizhevsky et al., 2012), or 7× 7 with stride 2 in (Zeiler & Fergus,
2013; Sermanet et al., 2014)), we use very small 3 × 3 receptive fields throughout the whole net,
which are convolved with the input at every pixel (with stride 1). It is easy to see that a stack of two
3× 3 conv. layers (without spatial pooling in between) has an effective receptive field of 5× 5; three
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Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv〈receptive field size〉-〈number of channels〉”.
The ReLU activation function is not shown for brevity.

ConvNet Configuration
A A-LRN B C D E

11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers

input (224× 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128

maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-256

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Table 2: Number of parameters (in millions).
Network A,A-LRN B C D E
Number of parameters 133 133 134 138 144

such layers have a 7 × 7 effective receptive field. So what have we gained by using, for instance, a
stack of three 3×3 conv. layers instead of a single 7×7 layer? First, we incorporate three non-linear
rectification layers instead of a single one, which makes the decision function more discriminative.
Second, we decrease the number of parameters: assuming that both the input and the output of a
three-layer 3× 3 convolution stack has C channels, the stack is parametrised by 3

(

32C2
)

= 27C2

weights; at the same time, a single 7 × 7 conv. layer would require 72C2 = 49C2 parameters, i.e.
81% more. This can be seen as imposing a regularisation on the 7× 7 conv. filters, forcing them to
have a decomposition through the 3× 3 filters (with non-linearity injected in between).

The incorporation of 1 × 1 conv. layers (configuration C, Table 1) is a way to increase the non-
linearity of the decision function without affecting the receptive fields of the conv. layers. Even
though in our case the 1× 1 convolution is essentially a linear projection onto the space of the same
dimensionality (the number of input and output channels is the same), an additional non-linearity is
introduced by the rectification function. It should be noted that 1×1 conv. layers have recently been
utilised in the “Network in Network” architecture of Lin et al. (2014).

Small-size convolution filters have been previously used by Ciresan et al. (2011), but their nets
are significantly less deep than ours, and they did not evaluate on the large-scale ILSVRC
dataset. Goodfellow et al. (2014) applied deep ConvNets (11 weight layers) to the task of
street number recognition, and showed that the increased depth led to better performance.
GoogLeNet (Szegedy et al., 2014), a top-performing entry of the ILSVRC-2014 classification task,
was developed independently of our work, but is similar in that it is based on very deep ConvNets
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(22 weight layers) and small convolution filters (apart from 3 × 3, they also use 1 × 1 and 5× 5
convolutions). Their network topology is, however, more complex than ours, and the spatial reso-
lution of the feature maps is reduced more aggressively in the first layers to decrease the amount
of computation. As will be shown in Sect. 4.5, our model is outperforming that of Szegedy et al.
(2014) in terms of the single-network classification accuracy.

3 CLASSIFICATION FRAMEWORK

In the previous section we presented the details of our network configurations. In this section, we
describe the details of classification ConvNet training and evaluation.

3.1 TRAINING

The ConvNet training procedure generally follows Krizhevsky et al. (2012) (except for sampling
the input crops from multi-scale training images, as explained later). Namely, the training is carried
out by optimising the multinomial logistic regression objective using mini-batch gradient descent
(based on back-propagation (LeCun et al., 1989)) with momentum. The batch size was set to 256,
momentum to 0.9. The training was regularised by weight decay (the L2 penalty multiplier set to
5 ·10−4) and dropout regularisation for the first two fully-connected layers (dropout ratio set to 0.5).
The learning rate was initially set to 10−2, and then decreased by a factor of 10 when the validation
set accuracy stopped improving. In total, the learning rate was decreased 3 times, and the learning
was stopped after 370K iterations (74 epochs). We conjecture that in spite of the larger number of
parameters and the greater depth of our nets compared to (Krizhevsky et al., 2012), the nets required
less epochs to converge due to (a) implicit regularisation imposed by greater depth and smaller conv.
filter sizes; (b) pre-initialisation of certain layers.

The initialisation of the network weights is important, since bad initialisation can stall learning due
to the instability of gradient in deep nets. To circumvent this problem, we began with training
the configuration A (Table 1), shallow enough to be trained with random initialisation. Then, when
training deeper architectures, we initialised the first four convolutional layers and the last three fully-
connected layers with the layers of net A (the intermediate layers were initialised randomly). We did
not decrease the learning rate for the pre-initialised layers, allowing them to change during learning.
For random initialisation (where applicable), we sampled the weights from a normal distribution
with the zero mean and 10−2 variance. The biases were initialised with zero. It is worth noting that
after the paper submission we found that it is possible to initialise the weights without pre-training
by using the random initialisation procedure of Glorot & Bengio (2010).

To obtain the fixed-size 224×224ConvNet input images, they were randomly cropped from rescaled
training images (one crop per image per SGD iteration). To further augment the training set, the
crops underwent random horizontal flipping and random RGB colour shift (Krizhevsky et al., 2012).
Training image rescaling is explained below.

Training image size. Let S be the smallest side of an isotropically-rescaled training image, from
which the ConvNet input is cropped (we also refer to S as the training scale). While the crop size
is fixed to 224× 224, in principle S can take on any value not less than 224: for S = 224 the crop
will capture whole-image statistics, completely spanning the smallest side of a training image; for
S $ 224 the crop will correspond to a small part of the image, containing a small object or an object
part.

We consider two approaches for setting the training scale S. The first is to fix S, which corresponds
to single-scale training (note that image content within the sampled crops can still represent multi-
scale image statistics). In our experiments, we evaluated models trained at two fixed scales: S =
256 (which has been widely used in the prior art (Krizhevsky et al., 2012; Zeiler & Fergus, 2013;
Sermanet et al., 2014)) and S = 384. Given a ConvNet configuration, we first trained the network
using S = 256. To speed-up training of the S = 384 network, it was initialised with the weights
pre-trained with S = 256, and we used a smaller initial learning rate of 10−3.

The second approach to setting S is multi-scale training, where each training image is individually
rescaled by randomly sampling S from a certain range [Smin, Smax] (we used Smin = 256 and
Smax = 512). Since objects in images can be of different size, it is beneficial to take this into account
during training. This can also be seen as training set augmentation by scale jittering, where a single
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model is trained to recognise objects over a wide range of scales. For speed reasons, we trained
multi-scale models by fine-tuning all layers of a single-scale model with the same configuration,
pre-trained with fixed S = 384.

3.2 TESTING

At test time, given a trained ConvNet and an input image, it is classified in the following way. First,
it is isotropically rescaled to a pre-defined smallest image side, denoted as Q (we also refer to it
as the test scale). We note that Q is not necessarily equal to the training scale S (as we will show
in Sect. 4, using several values of Q for each S leads to improved performance). Then, the network
is applied densely over the rescaled test image in a way similar to (Sermanet et al., 2014). Namely,
the fully-connected layers are first converted to convolutional layers (the first FC layer to a 7 × 7
conv. layer, the last two FC layers to 1 × 1 conv. layers). The resulting fully-convolutional net is
then applied to the whole (uncropped) image. The result is a class score map with the number of
channels equal to the number of classes, and a variable spatial resolution, dependent on the input
image size. Finally, to obtain a fixed-size vector of class scores for the image, the class score map is
spatially averaged (sum-pooled). We also augment the test set by horizontal flipping of the images;
the soft-max class posteriors of the original and flipped images are averaged to obtain the final scores
for the image.

Since the fully-convolutional network is applied over the whole image, there is no need to sample
multiple crops at test time (Krizhevsky et al., 2012), which is less efficient as it requires network
re-computation for each crop. At the same time, using a large set of crops, as done by Szegedy et al.
(2014), can lead to improved accuracy, as it results in a finer sampling of the input image compared
to the fully-convolutional net. Also, multi-crop evaluation is complementary to dense evaluation due
to different convolution boundary conditions: when applying a ConvNet to a crop, the convolved
feature maps are padded with zeros, while in the case of dense evaluation the padding for the same
crop naturally comes from the neighbouring parts of an image (due to both the convolutions and
spatial pooling), which substantially increases the overall network receptive field, so more context
is captured. While we believe that in practice the increased computation time of multiple crops does
not justify the potential gains in accuracy, for reference we also evaluate our networks using 50 crops
per scale (5× 5 regular grid with 2 flips), for a total of 150 crops over 3 scales, which is comparable
to 144 crops over 4 scales used by Szegedy et al. (2014).

3.3 IMPLEMENTATION DETAILS

Our implementation is derived from the publicly available C++ Caffe toolbox (Jia, 2013) (branched
out in December 2013), but contains a number of significant modifications, allowing us to perform
training and evaluation on multiple GPUs installed in a single system, as well as train and evaluate on
full-size (uncropped) images at multiple scales (as described above). Multi-GPU training exploits
data parallelism, and is carried out by splitting each batch of training images into several GPU
batches, processed in parallel on each GPU. After the GPU batch gradients are computed, they are
averaged to obtain the gradient of the full batch. Gradient computation is synchronous across the
GPUs, so the result is exactly the same as when training on a single GPU.

While more sophisticated methods of speeding up ConvNet training have been recently pro-
posed (Krizhevsky, 2014), which employ model and data parallelism for different layers of the net,
we have found that our conceptually much simpler scheme already provides a speedup of 3.75 times
on an off-the-shelf 4-GPU system, as compared to using a single GPU. On a system equipped with
four NVIDIA Titan Black GPUs, training a single net took 2–3 weeks depending on the architecture.

4 CLASSIFICATION EXPERIMENTS

Dataset. In this section, we present the image classification results achieved by the described
ConvNet architectures on the ILSVRC-2012 dataset (which was used for ILSVRC 2012–2014 chal-
lenges). The dataset includes images of 1000 classes, and is split into three sets: training (1.3M
images), validation (50K images), and testing (100K images with held-out class labels). The clas-
sification performance is evaluated using two measures: the top-1 and top-5 error. The former is a
multi-class classification error, i.e. the proportion of incorrectly classified images; the latter is the
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main evaluation criterion used in ILSVRC, and is computed as the proportion of images such that
the ground-truth category is outside the top-5 predicted categories.

For the majority of experiments, we used the validation set as the test set. Certain experiments were
also carried out on the test set and submitted to the official ILSVRC server as a “VGG” team entry
to the ILSVRC-2014 competition (Russakovsky et al., 2014).

4.1 SINGLE SCALE EVALUATION

We begin with evaluating the performance of individual ConvNet models at a single scale with the
layer configurations described in Sect. 2.2. The test image size was set as follows: Q = S for fixed
S, and Q = 0.5(Smin + Smax) for jittered S ∈ [Smin, Smax]. The results of are shown in Table 3.

First, we note that using local response normalisation (A-LRN network) does not improve on the
model A without any normalisation layers. We thus do not employ normalisation in the deeper
architectures (B–E).

Second, we observe that the classification error decreases with the increased ConvNet depth: from
11 layers in A to 19 layers in E. Notably, in spite of the same depth, the configuration C (which
contains three 1× 1 conv. layers), performs worse than the configuration D, which uses 3× 3 conv.
layers throughout the network. This indicates that while the additional non-linearity does help (C is
better than B), it is also important to capture spatial context by using conv. filters with non-trivial
receptive fields (D is better than C). The error rate of our architecture saturates when the depth
reaches 19 layers, but even deeper models might be beneficial for larger datasets. We also compared
the net B with a shallow net with five 5 × 5 conv. layers, which was derived from B by replacing
each pair of 3× 3 conv. layers with a single 5× 5 conv. layer (which has the same receptive field as
explained in Sect. 2.3). The top-1 error of the shallow net was measured to be 7% higher than that
of B (on a center crop), which confirms that a deep net with small filters outperforms a shallow net
with larger filters.

Finally, scale jittering at training time (S ∈ [256; 512]) leads to significantly better results than
training on images with fixed smallest side (S = 256 or S = 384), even though a single scale is
used at test time. This confirms that training set augmentation by scale jittering is indeed helpful for
capturing multi-scale image statistics.

Table 3: ConvNet performance at a single test scale.
ConvNet config. (Table 1) smallest image side top-1 val. error (%) top-5 val. error (%)

train (S) test (Q)
A 256 256 29.6 10.4
A-LRN 256 256 29.7 10.5
B 256 256 28.7 9.9

C
256 256 28.1 9.4
384 384 28.1 9.3

[256;512] 384 27.3 8.8

D
256 256 27.0 8.8
384 384 26.8 8.7

[256;512] 384 25.6 8.1

E
256 256 27.3 9.0
384 384 26.9 8.7

[256;512] 384 25.5 8.0

4.2 MULTI-SCALE EVALUATION

Having evaluated the ConvNet models at a single scale, we now assess the effect of scale jittering at
test time. It consists of running a model over several rescaled versions of a test image (corresponding
to different values of Q), followed by averaging the resulting class posteriors. Considering that a
large discrepancy between training and testing scales leads to a drop in performance, the models
trained with fixed S were evaluated over three test image sizes, close to the training one: Q =
{S − 32, S, S + 32}. At the same time, scale jittering at training time allows the network to be
applied to a wider range of scales at test time, so the model trained with variable S ∈ [Smin;Smax]
was evaluated over a larger range of sizes Q = {Smin, 0.5(Smin + Smax), Smax}.
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The results, presented in Table 4, indicate that scale jittering at test time leads to better performance
(as compared to evaluating the same model at a single scale, shown in Table 3). As before, the
deepest configurations (D and E) perform the best, and scale jittering is better than training with a
fixed smallest side S. Our best single-network performance on the validation set is 24.8%/7.5%
top-1/top-5 error (highlighted in bold in Table 4). On the test set, the configuration E achieves 7.3%
top-5 error.

Table 4: ConvNet performance at multiple test scales.
ConvNet config. (Table 1) smallest image side top-1 val. error (%) top-5 val. error (%)

train (S) test (Q)
B 256 224,256,288 28.2 9.6

C
256 224,256,288 27.7 9.2
384 352,384,416 27.8 9.2

[256; 512] 256,384,512 26.3 8.2

D
256 224,256,288 26.6 8.6
384 352,384,416 26.5 8.6

[256; 512] 256,384,512 24.8 7.5

E
256 224,256,288 26.9 8.7
384 352,384,416 26.7 8.6

[256; 512] 256,384,512 24.8 7.5

4.3 MULTI-CROP EVALUATION

In Table 5 we compare dense ConvNet evaluation with mult-crop evaluation (see Sect. 3.2 for de-
tails). We also assess the complementarity of the two evaluation techniques by averaging their soft-
max outputs. As can be seen, using multiple crops performs slightly better than dense evaluation,
and the two approaches are indeed complementary, as their combination outperforms each of them.
As noted above, we hypothesize that this is due to a different treatment of convolution boundary
conditions.

Table 5: ConvNet evaluation techniques comparison. In all experiments the training scale S was
sampled from [256; 512], and three test scales Q were considered: {256, 384, 512}.

ConvNet config. (Table 1) Evaluation method top-1 val. error (%) top-5 val. error (%)

D
dense 24.8 7.5

multi-crop 24.6 7.5
multi-crop & dense 24.4 7.2

E
dense 24.8 7.5

multi-crop 24.6 7.4
multi-crop & dense 24.4 7.1

4.4 CONVNET FUSION

Up until now, we evaluated the performance of individual ConvNet models. In this part of the exper-
iments, we combine the outputs of several models by averaging their soft-max class posteriors. This
improves the performance due to complementarity of the models, and was used in the top ILSVRC
submissions in 2012 (Krizhevsky et al., 2012) and 2013 (Zeiler & Fergus, 2013; Sermanet et al.,
2014).

The results are shown in Table 6. By the time of ILSVRC submission we had only trained the
single-scale networks, as well as a multi-scale model D (by fine-tuning only the fully-connected
layers rather than all layers). The resulting ensemble of 7 networks has 7.3% ILSVRC test error.
After the submission, we considered an ensemble of only two best-performing multi-scale models
(configurations D and E), which reduced the test error to 7.0% using dense evaluation and 6.8%
using combined dense and multi-crop evaluation. For reference, our best-performing single model
achieves 7.1% error (model E, Table 5).

4.5 COMPARISON WITH THE STATE OF THE ART

Finally, we compare our results with the state of the art in Table 7. In the classification task of
ILSVRC-2014 challenge (Russakovsky et al., 2014), our “VGG” team secured the 2nd place with
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Table 6: Multiple ConvNet fusion results.
Combined ConvNet models Error

top-1 val top-5 val top-5 test
ILSVRC submission

(D/256/224,256,288), (D/384/352,384,416), (D/[256;512]/256,384,512)
(C/256/224,256,288), (C/384/352,384,416)
(E/256/224,256,288), (E/384/352,384,416)

24.7 7.5 7.3

post-submission
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), dense eval. 24.0 7.1 7.0
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), multi-crop 23.9 7.2 -
(D/[256;512]/256,384,512), (E/[256;512]/256,384,512), multi-crop & dense eval. 23.7 6.8 6.8

7.3% test error using an ensemble of 7 models. After the submission, we decreased the error rate to
6.8% using an ensemble of 2 models.

As can be seen from Table 7, our very deep ConvNets significantly outperform the previous gener-
ation of models, which achieved the best results in the ILSVRC-2012 and ILSVRC-2013 competi-
tions. Our result is also competitive with respect to the classification task winner (GoogLeNet with
6.7% error) and substantially outperforms the ILSVRC-2013 winning submission Clarifai, which
achieved 11.2% with outside training data and 11.7% without it. This is remarkable, considering
that our best result is achieved by combining just two models – significantly less than used in most
ILSVRC submissions. In terms of the single-net performance, our architecture achieves the best
result (7.0% test error), outperforming a single GoogLeNet by 0.9%. Notably, we did not depart
from the classical ConvNet architecture of LeCun et al. (1989), but improved it by substantially
increasing the depth.

Table 7: Comparison with the state of the art in ILSVRC classification. Our method is denoted
as “VGG”. Only the results obtained without outside training data are reported.
Method top-1 val. error (%) top-5 val. error (%) top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.) 23.7 6.8 6.8
VGG (1 net, multi-crop & dense eval.) 24.4 7.1 7.0
VGG (ILSVRC submission, 7 nets, dense eval.) 24.7 7.5 7.3
GoogLeNet (Szegedy et al., 2014) (1 net) - 7.9
GoogLeNet (Szegedy et al., 2014) (7 nets) - 6.7
MSRA (He et al., 2014) (11 nets) - - 8.1
MSRA (He et al., 2014) (1 net) 27.9 9.1 9.1
Clarifai (Russakovsky et al., 2014) (multiple nets) - - 11.7
Clarifai (Russakovsky et al., 2014) (1 net) - - 12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets) 36.0 14.7 14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net) 37.5 16.0 16.1
OverFeat (Sermanet et al., 2014) (7 nets) 34.0 13.2 13.6
OverFeat (Sermanet et al., 2014) (1 net) 35.7 14.2 -
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets) 38.1 16.4 16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net) 40.7 18.2 -

5 CONCLUSION

In this work we evaluated very deep convolutional networks (up to 19 weight layers) for large-
scale image classification. It was demonstrated that the representation depth is beneficial for the
classification accuracy, and that state-of-the-art performance on the ImageNet challenge dataset can
be achieved using a conventional ConvNet architecture (LeCun et al., 1989; Krizhevsky et al., 2012)
with substantially increased depth. In the appendix, we also show that our models generalise well to
a wide range of tasks and datasets, matching or outperforming more complex recognition pipelines
built around less deep image representations. Our results yet again confirm the importance of depth
in visual representations.
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A LOCALISATION

In the main body of the paper we have considered the classification task of the ILSVRC challenge,
and performed a thorough evaluation of ConvNet architectures of different depth. In this section,
we turn to the localisation task of the challenge, which we have won in 2014 with 25.3% error. It
can be seen as a special case of object detection, where a single object bounding box should be
predicted for each of the top-5 classes, irrespective of the actual number of objects of the class. For
this we adopt the approach of Sermanet et al. (2014), the winners of the ILSVRC-2013 localisation
challenge, with a few modifications. Our method is described in Sect. A.1 and evaluated in Sect. A.2.

A.1 LOCALISATION CONVNET

To perform object localisation, we use a very deep ConvNet, where the last fully connected layer
predicts the bounding box location instead of the class scores. A bounding box is represented by
a 4-D vector storing its center coordinates, width, and height. There is a choice of whether the
bounding box prediction is shared across all classes (single-class regression, SCR (Sermanet et al.,
2014)) or is class-specific (per-class regression, PCR). In the former case, the last layer is 4-D, while
in the latter it is 4000-D (since there are 1000 classes in the dataset). Apart from the last bounding
box prediction layer, we use the ConvNet architecture D (Table 1), which contains 16 weight layers
and was found to be the best-performing in the classification task (Sect. 4).

Training. Training of localisation ConvNets is similar to that of the classification ConvNets
(Sect. 3.1). The main difference is that we replace the logistic regression objective with a Euclidean
loss, which penalises the deviation of the predicted bounding box parameters from the ground-truth.
We trained two localisation models, each on a single scale: S = 256 and S = 384 (due to the time
constraints, we did not use training scale jittering for our ILSVRC-2014 submission). Training was
initialised with the corresponding classification models (trained on the same scales), and the initial
learning rate was set to 10−3. We explored both fine-tuning all layers and fine-tuning only the first
two fully-connected layers, as done in (Sermanet et al., 2014). The last fully-connected layer was
initialised randomly and trained from scratch.

Testing. We consider two testing protocols. The first is used for comparing different network
modifications on the validation set, and considers only the bounding box prediction for the ground
truth class (to factor out the classification errors). The bounding box is obtained by applying the
network only to the central crop of the image.

The second, fully-fledged, testing procedure is based on the dense application of the localisation
ConvNet to the whole image, similarly to the classification task (Sect. 3.2). The difference is that
instead of the class score map, the output of the last fully-connected layer is a set of bounding
box predictions. To come up with the final prediction, we utilise the greedy merging procedure
of Sermanet et al. (2014), which first merges spatially close predictions (by averaging their coor-
dinates), and then rates them based on the class scores, obtained from the classification ConvNet.
When several localisation ConvNets are used, we first take the union of their sets of bounding box
predictions, and then run the merging procedure on the union. We did not use the multiple pooling
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offsets technique of Sermanet et al. (2014), which increases the spatial resolution of the bounding
box predictions and can further improve the results.

A.2 LOCALISATION EXPERIMENTS

In this section we first determine the best-performing localisation setting (using the first test proto-
col), and then evaluate it in a fully-fledged scenario (the second protocol). The localisation error
is measured according to the ILSVRC criterion (Russakovsky et al., 2014), i.e. the bounding box
prediction is deemed correct if its intersection over union ratio with the ground-truth bounding box
is above 0.5.

Settings comparison. As can be seen from Table 8, per-class regression (PCR) outperforms the
class-agnostic single-class regression (SCR), which differs from the findings of Sermanet et al.
(2014), where PCR was outperformed by SCR. We also note that fine-tuning all layers for the lo-
calisation task leads to noticeably better results than fine-tuning only the fully-connected layers (as
done in (Sermanet et al., 2014)). In these experiments, the smallest images side was set to S = 384;
the results with S = 256 exhibit the same behaviour and are not shown for brevity.

Table 8: Localisation error for different modifications with the simplified testing protocol: the
bounding box is predicted from a single central image crop, and the ground-truth class is used. All
ConvNet layers (except for the last one) have the configuration D (Table 1), while the last layer
performs either single-class regression (SCR) or per-class regression (PCR).

Fine-tuned layers regression type GT class localisation error

1st and 2nd FC SCR 36.4
PCR 34.3

all PCR 33.1

Fully-fledged evaluation. Having determined the best localisation setting (PCR, fine-tuning of all
layers), we now apply it in the fully-fledged scenario, where the top-5 class labels are predicted us-
ing our best-performing classification system (Sect. 4.5), and multiple densely-computed bounding
box predictions are merged using the method of Sermanet et al. (2014). As can be seen from Ta-
ble 9, application of the localisation ConvNet to the whole image substantially improves the results
compared to using a center crop (Table 8), despite using the top-5 predicted class labels instead of
the ground truth. Similarly to the classification task (Sect. 4), testing at several scales and combining
the predictions of multiple networks further improves the performance.

Table 9: Localisation error
smallest image side top-5 localisation error (%)

train (S) test (Q) val. test.
256 256 29.5 -
384 384 28.2 26.7
384 352,384 27.5 -

fusion: 256/256 and 384/352,384 26.9 25.3

Comparison with the state of the art. We compare our best localisation result with the state
of the art in Table 10. With 25.3% test error, our “VGG” team won the localisation challenge of
ILSVRC-2014 (Russakovsky et al., 2014). Notably, our results are considerably better than those
of the ILSVRC-2013 winner Overfeat (Sermanet et al., 2014), even though we used less scales and
did not employ their resolution enhancement technique. We envisage that better localisation per-
formance can be achieved if this technique is incorporated into our method. This indicates the
performance advancement brought by our very deep ConvNets – we got better results with a simpler
localisation method, but a more powerful representation.

B GENERALISATION OF VERY DEEP FEATURES

In the previous sections we have discussed training and evaluation of very deep ConvNets on the
ILSVRC dataset. In this section, we evaluate our ConvNets, pre-trained on ILSVRC, as feature
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Table 10: Comparison with the state of the art in ILSVRC localisation. Our method is denoted
as “VGG”.

Method top-5 val. error (%) top-5 test error (%)
VGG 26.9 25.3
GoogLeNet (Szegedy et al., 2014) - 26.7
OverFeat (Sermanet et al., 2014) 30.0 29.9
Krizhevsky et al. (Krizhevsky et al., 2012) - 34.2

extractors on other, smaller, datasets, where training large models from scratch is not feasible due
to over-fitting. Recently, there has been a lot of interest in such a use case (Zeiler & Fergus, 2013;
Donahue et al., 2013; Razavian et al., 2014; Chatfield et al., 2014), as it turns out that deep image
representations, learnt on ILSVRC, generalise well to other datasets, where they have outperformed
hand-crafted representations by a large margin. Following that line of work, we investigate if our
models lead to better performance than more shallow models utilised in the state-of-the-art methods.
In this evaluation, we consider two models with the best classification performance on ILSVRC
(Sect. 4) – configurations “Net-D” and “Net-E” (which we made publicly available).

To utilise the ConvNets, pre-trained on ILSVRC, for image classification on other datasets, we
remove the last fully-connected layer (which performs 1000-way ILSVRC classification), and use
4096-D activations of the penultimate layer as image features, which are aggregated across multiple
locations and scales. The resulting image descriptor is L2-normalised and combined with a linear
SVM classifier, trained on the target dataset. For simplicity, pre-trained ConvNet weights are kept
fixed (no fine-tuning is performed).

Aggregation of features is carried out in a similar manner to our ILSVRC evaluation procedure
(Sect. 3.2). Namely, an image is first rescaled so that its smallest side equals Q, and then the net-
work is densely applied over the image plane (which is possible when all weight layers are treated
as convolutional). We then perform global average pooling on the resulting feature map, which
produces a 4096-D image descriptor. The descriptor is then averaged with the descriptor of a hori-
zontally flipped image. As was shown in Sect. 4.2, evaluation over multiple scales is beneficial, so
we extract features over several scales Q. The resulting multi-scale features can be either stacked
or pooled across scales. Stacking allows a subsequent classifier to learn how to optimally combine
image statistics over a range of scales; this, however, comes at the cost of the increased descriptor
dimensionality. We return to the discussion of this design choice in the experiments below. We also
assess late fusion of features, computed using two networks, which is performed by stacking their
respective image descriptors.

Table 11: Comparison with the state of the art in image classification on VOC-2007, VOC-2012,
Caltech-101, and Caltech-256. Our models are denoted as “VGG”. Results marked with * were
achieved using ConvNets pre-trained on the extended ILSVRC dataset (2000 classes).

Method VOC-2007 VOC-2012 Caltech-101 Caltech-256
(mean AP) (mean AP) (mean class recall) (mean class recall)

Zeiler & Fergus (Zeiler & Fergus, 2013) - 79.0 86.5 ± 0.5 74.2 ± 0.3
Chatfield et al. (Chatfield et al., 2014) 82.4 83.2 88.4 ± 0.6 77.6 ± 0.1
He et al. (He et al., 2014) 82.4 - 93.4 ± 0.5 -
Wei et al. (Wei et al., 2014) 81.5 (85.2∗) 81.7 (90.3∗) - -
VGG Net-D (16 layers) 89.3 89.0 91.8 ± 1.0 85.0 ± 0.2
VGG Net-E (19 layers) 89.3 89.0 92.3 ± 0.5 85.1 ± 0.3
VGG Net-D & Net-E 89.7 89.3 92.7 ± 0.5 86.2 ± 0.3

Image Classification on VOC-2007 and VOC-2012. We begin with the evaluation on the image
classification task of PASCAL VOC-2007 and VOC-2012 benchmarks (Everingham et al., 2015).
These datasets contain 10K and 22.5K images respectively, and each image is annotated with one
or several labels, corresponding to 20 object categories. The VOC organisers provide a pre-defined
split into training, validation, and test data (the test data for VOC-2012 is not publicly available;
instead, an official evaluation server is provided). Recognition performance is measured using mean
average precision (mAP) across classes.

Notably, by examining the performance on the validation sets of VOC-2007 and VOC-2012, we
found that aggregating image descriptors, computed at multiple scales, by averaging performs sim-
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ilarly to the aggregation by stacking. We hypothesize that this is due to the fact that in the VOC
dataset the objects appear over a variety of scales, so there is no particular scale-specific seman-
tics which a classifier could exploit. Since averaging has a benefit of not inflating the descrip-
tor dimensionality, we were able to aggregated image descriptors over a wide range of scales:
Q ∈ {256, 384, 512, 640, 768}. It is worth noting though that the improvement over a smaller
range of {256, 384, 512}was rather marginal (0.3%).

The test set performance is reported and compared with other approaches in Table 11. Our networks
“Net-D” and “Net-E” exhibit identical performance on VOC datasets, and their combination slightly
improves the results. Our methods set the new state of the art across image representations, pre-
trained on the ILSVRC dataset, outperforming the previous best result of Chatfield et al. (2014) by
more than 6%. It should be noted that the method of Wei et al. (2014), which achieves 1% better
mAP on VOC-2012, is pre-trained on an extended 2000-class ILSVRC dataset, which includes
additional 1000 categories, semantically close to those in VOC datasets. It also benefits from the
fusion with an object detection-assisted classification pipeline.

Image Classification on Caltech-101 and Caltech-256. In this section we evaluate very deep fea-
tures on Caltech-101 (Fei-Fei et al., 2004) and Caltech-256 (Griffin et al., 2007) image classification
benchmarks. Caltech-101 contains 9K images labelled into 102 classes (101 object categories and a
background class), while Caltech-256 is larger with 31K images and 257 classes. A standard eval-
uation protocol on these datasets is to generate several random splits into training and test data and
report the average recognition performance across the splits, which is measured by the mean class
recall (which compensates for a different number of test images per class). Following Chatfield et al.
(2014); Zeiler & Fergus (2013); He et al. (2014), on Caltech-101 we generated 3 random splits into
training and test data, so that each split contains 30 training images per class, and up to 50 test
images per class. On Caltech-256 we also generated 3 splits, each of which contains 60 training
images per class (and the rest is used for testing). In each split, 20% of training images were used
as a validation set for hyper-parameter selection.

We found that unlike VOC, on Caltech datasets the stacking of descriptors, computed over multi-
ple scales, performs better than averaging or max-pooling. This can be explained by the fact that
in Caltech images objects typically occupy the whole image, so multi-scale image features are se-
mantically different (capturing the whole object vs. object parts), and stacking allows a classifier to
exploit such scale-specific representations. We used three scales Q ∈ {256, 384, 512}.

Our models are compared to each other and the state of the art in Table 11. As can be seen, the deeper
19-layer Net-E performs better than the 16-layer Net-D, and their combination further improves the
performance. On Caltech-101, our representations are competitive with the approach of He et al.
(2014), which, however, performs significantly worse than our nets on VOC-2007. On Caltech-256,
our features outperform the state of the art (Chatfield et al., 2014) by a large margin (8.6%).

Action Classification on VOC-2012. We also evaluated our best-performing image representa-
tion (the stacking of Net-D and Net-E features) on the PASCAL VOC-2012 action classification
task (Everingham et al., 2015), which consists in predicting an action class from a single image,
given a bounding box of the person performing the action. The dataset contains 4.6K training im-
ages, labelled into 11 classes. Similarly to the VOC-2012 object classification task, the performance
is measured using the mAP. We considered two training settings: (i) computing the ConvNet fea-
tures on the whole image and ignoring the provided bounding box; (ii) computing the features on the
whole image and on the provided bounding box, and stacking them to obtain the final representation.
The results are compared to other approaches in Table 12.

Our representation achieves the state of art on the VOC action classification task even without using
the provided bounding boxes, and the results are further improved when using both images and
bounding boxes. Unlike other approaches, we did not incorporate any task-specific heuristics, but
relied on the representation power of very deep convolutional features.

Other Recognition Tasks. Since the public release of our models, they have been actively used
by the research community for a wide range of image recognition tasks, consistently outperform-
ing more shallow representations. For instance, Girshick et al. (2014) achieve the state of the
object detection results by replacing the ConvNet of Krizhevsky et al. (2012) with our 16-layer
model. Similar gains over a more shallow architecture of Krizhevsky et al. (2012) have been ob-

13



Published as a conference paper at ICLR 2015

Table 12: Comparison with the state of the art in single-image action classification on VOC-
2012. Our models are denoted as “VGG”. Results marked with * were achieved using ConvNets
pre-trained on the extended ILSVRC dataset (1512 classes).

Method VOC-2012 (mean AP)
(Oquab et al., 2014) 70.2∗

(Gkioxari et al., 2014) 73.6
(Hoai, 2014) 76.3
VGG Net-D & Net-E, image-only 79.2
VGG Net-D & Net-E, image and bounding box 84.0

served in semantic segmentation (Long et al., 2014), image caption generation (Kiros et al., 2014;
Karpathy & Fei-Fei, 2014), texture and material recognition (Cimpoi et al., 2014; Bell et al., 2014).

C PAPER REVISIONS

Here we present the list of major paper revisions, outlining the substantial changes for the conve-
nience of the reader.

v1 Initial version. Presents the experiments carried out before the ILSVRC submission.

v2 Adds post-submission ILSVRC experiments with training set augmentation using scale jittering,
which improves the performance.

v3 Adds generalisation experiments (Appendix B) on PASCAL VOC and Caltech image classifica-
tion datasets. The models used for these experiments are publicly available.

v4 The paper is converted to ICLR-2015 submission format. Also adds experiments with multiple
crops for classification.

v6 Camera-ready ICLR-2015 conference paper. Adds a comparison of the net B with a shallow net
and the results on PASCAL VOC action classification benchmark.
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