

Intelligent Systems: Reasoning and Recognition

James L. Crowley

MoSIG M1 Winter Semester 2020-2021
Lessons 15 30 March 2021

 Dichotomizers, CART and Random Forests
Outline

Notation ... 2	

Decision Trees ... 3	

Some Background from Information Theory 5	
Entropy and Information Gain .. 5	
GINI index or Gini Impurity .. 7	
Comparison of Entropy, Gini , and Classification Error 8	

Iterative Dichotomizers ... 9	
The ID3 Algorithm ... 9	
Improved ID3: The C4.5 algorithm .. 11	

Classification and Regression Trees (CART) 13	
Classifying observations CART Models 14	

Random Forests ... 17	

Sources

T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning", Springer, 2001
C. M. Bishop, "Pattern Recognition and Machine Learning", Springer Verlag, 2006.
https://en.wikipedia.org/wiki/Decision_tree_learning

Dichotomizers, CART and Random Forests

2

Notation
xd A feature or attribute. An observed or measured value.
 For discrete features, the values can be labeled with integers [1, Nd].
!
X A vector of D features.
D The number of dimensions for the vector
 S:

€

{
!
X m}

€

{ym} A set of training samples (observations) and their indicator variables.
M The number of training samples.
Ck The class k
k Class index (Natural number from 1 to K)
K Total number of classes

Mk Number of examples for the class k.

€

M = Mk
k=1

K

∑

P(Ck) The probability distribution for the indicator variables of the training

samples. P(Ck) ≡ P(
!
Xm ∈Ck) = P(ym =Ck) =

Mk

M

H(S) The entropy of a set of class labels for a set S of training samples.

 H (S) = − P(Ck)log2 P(Ck)()
k=1

K

∑

H(S|xd) Conditional entropy of dividing a set into D subsets using the values
for attribute xd

IG(S, xd) Information gain for dividing a set into D subsets using the values for
attribute xd IG(S, xd) = H (S)−H (S | xd)

IG (P(Ck)) The Gini Impurity index for a set S. IG (P(Ck)) = P(Ck) 1−P(Ck)()
k=1

K

∑

Dichotomizers, CART and Random Forests

3

Decision Trees
A decision tree is a data structure for estimating a function ŷ← f (

!
X) . The function

may be used to estimate a numerical value for a feature vector (regression), or may be
used to estimate the most likely class label ŷ ∈ [1,k] from a set of K possible labels
(Classification).

Decision Trees were developed in the 1980s as a form of inductive learning for
symbolic reasoning and for exploring the theoretical limits to machine learning.
Decision trees are among a fairly small family of machine learning models that are
easily interpreted to provide Explainable AI have thus recently received renewed
attention. Two families of supervised learning techniques for decision trees were
invented at about the same time: Dichotomizers and CART methods.

Dichotomizers, such as ID3, C4.5, C5.0 and their successors, are multi-branch
decision trees that that apply a series of multiple-choice questions to determine the
most likely class or most likely value for a feature vector. Dichotomizers are typically
used with qualitative values. Dichotomizers are most appropriate for classification of
feature vectors with symbolic or qualitative values for which the attributes have a
small number of, possibly unordered, symbolic values. Dichotomizers may be used
with unordered symbolic labels values, such as colors or nationalities.

Classification and Regression Tree (CART) are more appropriate for observations
(feature vectors) with numerical values or symbolic values with an intrinsic order.
CART methods apply a series of binary predicates (true-false tests) to progressively
partition a feature space into rectangular cuboid volumes that are populated with
relatively uniform examples from the training set. CART trees are invariant under
scaling and various other transformations of feature values.

When used for classification, the resulting cuboids should ideally be populated with
training samples that are predominately from a single class. We will usea measure
called Gini Impurity to measure this. When used for regression (functional
approximation), the cuboid regions should contain examples that permit an easy and
accurate functional approximation, such as an average or a linear interpolation.

Both Dichotomizers and CART Trees are robust to missing or irrelevant features, and
can be used to construct explanations for automatic reasoning. Both classes of
decision tree will determine automatically which of the possible features are the most
informative.

Dichotomizers, CART and Random Forests

4

Aggregations (large sets) of decision trees, known as random forests, have recently
been shown to provide classification performance similar to multi-layer perceptrons
for many practical problems. Unfortunately, random forests obtain this performance
at the cost of loss of interpretability, and can not easily be interpreted to provide
explanations.

Ensemble techniques, such as random forests, construct more than one decision tree.
A random forest classifier is a specific type of bootstrap aggregating tree learning
algorithm that uses multiple decision trees constructed by repeatedly resampling
training data with replacement. The output is a consensus obtained by voting. This is
sometimes called a committee of classifiers.
Boosted learning can be used with random forests to provide arbitrarily good
classifiers. Boosted trees incrementally building an ensemble (committee) of
classifiers by training each new instance to emphasize the training instances
mismodelled by previously constructed trees.

A rotation forest is a tree-learning algorithm that first applies principal component
analysis on a random subset of the input features, and then learns decision rules on
the principle axes.

Algorithms for constructing decision trees generally work top-down, by choosing a
feature or attribute of the training data at each step that best splits the training data
into subsets. The feature space is thus divided by a sequence of simple tests,
corresponding to the path from the root to a leaf of a tree. While traversing the tree,
each node provides a decision that further divides the feature space. Such processes
are similar to K-nearest neighbors, and a variant of decision trees, K-D trees, are
often used to implement KNN.

Different algorithms use different metrics for measuring "best". These generally
measure the homogeneity of the target variable within the subsets. The choice of
metric tends to depend on the nature of the features (discrete or continuous) and the
desired function (classification or regression).

Dichotomizers, CART and Random Forests

5

Some Background from Information Theory

Dichotomisers, CART trees and Random Forests rely on information theory to
determine the order in which to test the attributes of an observation. In this section
we review some basic concepts from information theory. We will then define the
Information Gain for using the values of an attribute to divide a set, and the Gini
impurity for the number of different classes in a set.

As in previous lectures, we will assume a labeled training set, S, of M samples of
feature vectors (observations)

!
Xm{ } , each with D features, along with indicator

variables

€

ym{ }. Each component, xd of {
!
Xm} is assumed to have Nd possible discrete

values. For simplicity, these may be normalized to the first N natural numbers, x:
[1,Nd].

!
X =

x1
x2
"
xD

!

"

#
#
#
#
#

$

%

&
&
&
&
&

In the literature on decision trees, the features of the vector
!
X are often referred to as

attributes. We will use the term attribute and feature interchangeably.

For classification, every training sample must belong to one and only one class from
the set of K classes {Ck}. The class indexes, k, are taken from the natural numbers in
the range [1, K]. In this case, the indicator variable, ym, represents an integer index,
k, for the target class, Ck. In the case of a regression, the target variable, ym, will be a
numerical value.

Entropy and Information Gain
Dichotomizers are most appropriate when the attributes, xd, can take on a discrete set
of Nd possible values. We will identify these values with Nd natural numbers in the
range xd ∈ [1, Nd].

For a set S of M training samples, of which Mk belong to class k, the probability that a
sample belongs to class Ck, P(

!
Xm ∈Ck) is often written simply as P(Ck). As we saw

in lecture 3:

 P(Ck) ≡ P(Xm ∈Ck) = P(ym = k) =

Mk

M

The tree bar symbol, ≡ , indicates definition.

Dichotomizers, CART and Random Forests

6

We can use the probability density of class labels to compute the entropy, H(S), of
the set S as

 H (S) = − P(Ck)log2 P(Ck)()
k=1

K

∑

This is also valid for any subset of S. Suppose we use of the Nd values of the attribute
(or feature) xd to divide the set S into Nd subsets, with one subset for each of the Nd
values of xd. We will refer to these Nd subsets as Sn. We note that the union of these
subsets is S. Let Mn represent the number of samples in the subset Sn.

 S = Sn
n=1

Nd

∪ and M = Mn
n=1

Nd

∑

The entropy of each subset, H(Sn), computed as explained above for H(S). The
probability that any training sample,

!
Xm , of S will be in subset Sn is equivalent to the

probability that an attribute xd of a vector
!
Xm from S will take on value n.

 P(

!
Xm ∈ Sn) = P(xd = n) =

Mn

M

We can use this to define the conditional entropy, H(S|xd), for using the values of the
attribute xd to divide the set S into Nd subsets, Sn:

 H (S | xd) = P(xd = n)
n=1

ND

∑ H (Sn)

The information gain of dividing S into Nd subsets using xd is thus defined as:

 IG(S, xd) = H (S)−H (S | xd)

ID3 uses the information gain for each feature, xd, with respect to the current subset
of the training data to select the next feature, xd, to be used to divide the training set
into Nd Subsets.

Dichotomizers, CART and Random Forests

7

GINI index or Gini Impurity

CART (classification and regression tree) algorithms use the Gini index or Gini
impurity to select the order of features for dividing a set S into subsets. This is
similar to the Gini coefficient used in economics to measure of the distribution of
income across a population, proposed by Corrado Gini in 1912. However, Gini
Impurity is not the same as the Gini coefficient used in economics. Gini impurity
measures how often an element from a set would be incorrectly labeled if it were
labeled using a random value taken from the distribution of labels from the set. The
Gini index is differentiable and can thus be used for learning using gradient descent.

As before, we will assume a labeled training set, S, of M samples of feature vectors
(observations)

!
Xm{ } , each with D features, along with indicator variables

€

ym{ }, where
the indicator variable is an integer index, k, for the target class, Ck, from the natural
numbers in the range [1, K]. In the case of CART the attributes may be Discrete or
continuous. In the case of a regression tree, the target variables will be a numerical
values.

Let ŷ be the output from a Discrimination function (Classifier) that maps a D
dimensional feature vector,

!
X into one of K classes {Ck}

 ŷ = D(

!
X)

The Gini index captures the effect of basing the predicted class on the probability
distribution of target variables from the training set, independent of the actual feature
vector. In this case P(ŷm) = P(Ck) .

The Gini index is computed from the probability distribution of the classes.

 IG (P(Ck)) = P(Ck) 1−P(Ck)()
k=1

K

∑

This reaches zero when all cases in the node fall into a single target category. CART
methods provide a decision tree that successively divides the training data into
uniform classes (or target values) by minimizing the Gini index.

Dichotomizers, CART and Random Forests

8

Comparison of Entropy, Gini , and Classification Error

Hastie et al, 2001, contains discusses a comparison of the use of Entropy, Gini Index
and Misclassification error (Sum of Squared Errors) as a loss function for learning
decision trees. This graph shows the value of Entropy, Gini Index and
Misclassification error as a function of the Probability distribution, P(Ck) for a K=2
class decision with class labels (P, N). The entropy, Gini index, and Misclassification
error as a function of probability that a sample is Negative would be

 P(CN) ≡ P(Xm ∈ N) = P(ym = N)

Node Impurity measures for two-class classification, as a function of the proposition p in class 2.

Taken from T. Hastie, R. Tibshirani and J. Friedman, Elements of Statistical Learning, Springer, 2001

We can note that all three have similar values, with all three having maximal values
when the data is completely balanced (50/50), zero when the training set is pure (all P
or all N).

Dichotomizers, CART and Random Forests

9

Iterative Dichotomizers

(source unknown)

Dichotomizers are multi-branch decision trees that that apply a series of multiple-
choice questions to determine the most likely category (class) for an observation.
Dichotomizers are most appropriate for classification of observations (feature
vectors) with symbolic or qualitative values, particularly when the attributes have a
small number of possibly unordered symbolic values such as colors or nationalities.
The ID3 (Iterative Dichotomiser 3) algorithm was proposed by Ross Quinlan in 1979
as a formalization for induction tree learning algorithms.

The ID3 Algorithm

By Acoggins38 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49453541

The ID3 algorithm uses a top-down greedy approach to build a decision tree. The
ID3 algorithm begins with the original set of M training samples{

!
Xm} with target

variables{ym} as the root node.

The algorithm uses the information gain of the individual features from the current
training set to compose a tree of multivalued decision functions. As described above,
information gain is the reduction in entropy obtained by dividing a set into disjoint
subsets based on the values of a particular feature or attribute. Information gain is

Dichotomizers, CART and Random Forests

10

calculated by comparing the entropy of the dataset before and after a division into
subsets.

On each iteration, the algorithm iterates through the unused features of the current
subset, S, and calculates the conditional entropy, H(S | xd), for dividing the set S into
Nd subsets, using the values of each feature xd . The feature, xd, with the largest
information gain is then used to construct a multi-valued test, and the current subset
of the data is partitioned into Nd subsets, according to the values of the selected
feature. The algorithm continues recursively with each subset, considering only
features that have not been previously selected for a test.

Recursion on a subset will stop if one of the following cases occurs:

1) Every element in the subset has the same indicator variable (or target value); in
this case, the node is turned into a leaf node and labeled with the class given by
the indicator variable.

2) There are no more attributes to be selected. In this case, the node is made a leaf
node and labeled with the most frequent indicator variables of the samples in
the subset.

3) There are no training samples in the subset, which can happen when no sample
in the subset set was found to match a specific value of the selected attribute.
An example could be the absence of a person among the population with from
a specific country. In this case, a leaf node is created and labeled with the most
common class of the examples in the parent node's set.

Throughout the algorithm, the decision tree is constructed with each non-terminal
node (internal node) representing the selected attribute on which the data was split,
and terminal nodes (leaf nodes) representing the class label of the final subset of this
branch.

The resulting path through the tree can interpreted with a natural language
explanation for the decision. An example for such an explanation would be:

<X> is likely to be Danish because he is tall, has blond hair and blue eyes.

The ID3 algorithm will produce errors when there are examples in the training data
from different target classes that have identical feature vectors. When training on
identical feature vectors with different target values, the algorithm will select the
most likely target vector as a response.

Dichotomizers, CART and Random Forests

11

Summary of ID3:
1) Calculate the entropy for each attribute xd of with respect to the current subset of

training data.
2) Partition ("split") the current set into Nd subsets using the attribute for which the

information gain is greatest.
3) Create a decision tree node using the selected attribute as a test with one branch

for each possible value of the attribute.
4) Recursively repeat on the above steps using the remaining attributes for each

subset.

ID3 uses a greedy strategy by selecting the locally best attribute to split the dataset.
This does not guarantee an optimal solution and can converge to local optima. The
algorithm's optimality can be improved by using backtracking during the search for
the optimal decision tree at the cost of possibly taking longer.

ID3 will generally over-fit the training data. To avoid over-fitting, smaller decision
trees should be preferred over larger ones leading to the idea of an ensemble of trees
(a forest).

In order to use ID3 with continuous features it is necessary to partition the features
into a small set of bins such that the partition provides best information gain.
Determining the "best" split is generally expensive procedure for which there is no
established method.

Improved ID3: The C4.5 algorithm

The C4.5 algorithm is an extension of ID3. C4.5 builds decision trees from a set of
training data in the same way as ID3, using the information gain to select the most
informative features to test. However, C4.5 improves on ID3 in the following
manner:
• C4.5 can accommodate continuous features by creating a threshold that defines a

predicate for dividing the training set.
• C4.5 allows can this accommodate features with missing values. Missing attribute

values are simply not used in the entropy calculations or for defining tests.
• C4.5 can use the cost of computing an attribute to prefer less expensive attributes,

for use in on-line data discovery techniques.
• Pruning: Once the tree has been created, C4.5 goes back through the tree and

attempts to remove branches that do not help by replacing them with leaf nodes.

Dichotomizers, CART and Random Forests

12

As with ID3, C4.5 chooses the attribute of the data that most effectively splits its set
of samples into subsets enriched in one class or the other. The splitting criterion is the
normalized information gain (difference in entropy). The attribute with the highest
normalized information gain is chosen to make the decision. The C4.5 algorithm is
then recalled recursively on the partitioned subsets of training data.

As with ID3, C4.5 has a few base cases.
• If all the samples in the list belong to the same class, C4.4 creates a leaf node for

the decision tree saying to choose that class.
• If none of the features provide any information gain, C4.5 creates a decision node

higher up the tree using the expected value of the class.
• If instances of a previously-unseen class are encountered, C4.5 creates a decision

node higher up the tree using the expected value.

Dichotomizers, CART and Random Forests

13

Classification and Regression Trees (CART)

The Classification and Regression Tree methodology, also known as the CART, was
proposed in 1984 by Leo Breiman et al. CART methods are commonly used for
regression as well as classification, and operate on features with continuous values
over an infinite range.

When used for classification, CART produces a decision tree that transforms a
feature vector,

!
X , into a target label ŷ from a finite set of K discrete target classes,

{Ck}. CART can also be used to estimate (or learn) a function that estimates a
numerical value (regression) from an observation. When used for regression the tree
acts as a function ŷ = f (

!
X) , that maps a feature vector, X into an estimated numerical

value (ŷ ∈ R).

CART constructs a binary tree, where each node is a binary predicate that makes a
yes/no (or T/F) decision by applying a threshold to one of the attributes. This requires
choosing the best feature and determining the best threshold, and can be performed
by exhaustively testing the features and computing the best threshold for the current
subset. This works much like the bias in an ROC curve, and "best" can be minimum
classification error or can depend on the constraints TN and TP imposed by the
problem.

The predicate splits the available set of the training data into two subsets. These
subsets are then passed to the next level of the tree where they are further divided
until a target "impurity" criteria is met for the remaining subset. When the resulting
subset is sufficiently pure, a leaf node is created that returns the most likely target
variable from the subset.

When the feature values (attributes) are real numbers, then the tree of binary
decisions can be seen as successively partitioning the D dimensional feature space
into cuboid volumes using thresholds. In the case of D=2 features, this can be easily
seen as dividing a plane into ever smaller rectangular regions.

Dichotomizers, CART and Random Forests

14

A
B

C
D E

1
2

3

4
x1

x2

T1

T2

T3

T4

A

1

C B

2 3

D E

4

For example, in the figure shown above node 1 would compare feature x1 with the
threshold T1. IF x1 < T1 then it would apply node 2 else it would apply node 3, etc.
For classification, the most likely class from each region would be returned. For
regression, the average value of the target variables can be returned or some other
form of interpolation can be used.

The resulting tree can be interpreted as a list of rules. For example:

If Height > 180 cm Then Male
If Height <= 180 cm AND Weight > 80 kg Then Male
If Height <= 180 cm AND Weight <= 80 kg Then Female

The tree can also be interpreted with an explanation such as

The gender subject <X> is most likely male because the height is > 180cm.

Classifying observations CART Models

As with Dichotomizers, learning a CART tree involves choosing the best features to
divide the data. Exhaustive search can be prohibitively expensive. The search is
typically performed using a recursive procedure which scans a subset of the data to
determine the best features and best split point (threshold) for each attribute. Unlike
ID3, CART uses a cost (or loss) function to determine which feature and threshold
value to use to split the data into two subsets.

Dichotomizers, CART and Random Forests

15

For regression problems, where the objective is to approximate a numerical estimate,
the the sum of squared errors can be used as a loss function. For a CART tree, f(),
the loss for a training set S of M samples would be:

 L(f (−) | S) = (f (
!
Xm)− ym)

2

m=1

M

∑

For classification, CART uses the most likely indicator variable from a subset to label
samples from the subset and uses the GINI index to choose the attribute to be used to
progressively divide the training set into subset. Given a subset S of M samples

 L(f (−) | S) = IG (P(Ĉk)) = P(Ĉk) 1−P(Ĉk)()
m=1

M

∑

where Ĉk = f (

!
Xm) is the predicted class provided by the decision tree.

As discussed above, for a set S composed of M samples of which Mk samples
belonging to each of K classes, the probability distribution of class labels is P(Ck),
and the GINI index for the subset S under consideration by the current node of the
tree is

 IG (P(Ck) | S) = P(Ck) 1−P(Ck)()
k=1

K

∑

The CART learning Algorithm

Classification and Regression Tree learning is a form of greedy recursive splitting of
the training data. Given a set, S, composed of M training samples, {

!
Xm} with {ym}

indicator (or target) variables.

Given a subset S of the training data
 For each feature xd, in {

!
Xm}, from d=1 to D,

1. Test the stopping Condition. If the stopping condition is not met then,
2. Determine a threshold value for xd that minimizes a cost function for two

subsets, S1, and S2 (S1 U S2 = S).
3. Select the feature xd with the lowest Cost, and use the threshold value to define

a the test for the node. Then divide the training set S into two subset and call
the algorithm recursively with each of the subsets.

Dichotomizers, CART and Random Forests

16

The most common stopping procedure is to use a minimum count on the number of
training samples in the remining subset. If the number of samples is less than some
minimum then the split is not accepted and the node is taken as a leaf node.

The stopping criteria is tuned to the problem and dataset, with typical values ranging
from 5 or 10, as we saw with histograms.

This minimum number of samples per leaf node defines how specific to the training
data the tree should be. If the number is too small, then the tree is too specific, and
the model will over-fit the training data and likely have poor performance on the test
set.

For classification, an alternative stopping condition for a classification tree is when
the Gini index is 0 (all of the samples are from the same class). For a regression tree,
and equivalent condition would be that the variance if of the target values are zero (or
very small).

Dichotomizers, CART and Random Forests

17

Random Forests

Random forests are an ensemble learning method for classification, regression and
other tasks. Random forest learning operates by constructing a large number of
decision trees, and correct for the tendency of decision trees to over-fit to the training
set. Random forests generally outperform decision trees, and are frequently used as
blackbox models for data-mining in businesses, as they can be used to generate
reasonable predictions across a wide range of data while requiring little configuration
(and minimal understanding).

Deep decision trees tend to learn highly irregular patterns: they over-fit their training
sets. Random forests are a way of averaging multiple deep decision trees, trained on
different parts of the same training set, with the goal of reducing the over fit. This
comes at the loss of interpretability, but generally greatly boosts the performance in
the final model.

Assume a training set {

!
Xm} of M samples with indicator variables {ym} where the

indicator variables are coded as the integer indices for K target classes. Bagging
repeatedly (B times) selects a random sample {

!
X s} of the training samples with

indicator variables {ys} from the training set and fits trees to these S samples.

 fb(

!
X)⇐ DT ({

!
X s},{ys})

After training, the predicted class for a new observation,

!
X , can be determined by

voting over the B trees:
 Allocate a table h(k) of K cells initially 0.
 ∀

b
: h(fb(

!
X))← h(fb(

!
X))+1

 ŷ = arg−max
k

{h(k)}

A probability distribution table for the K classes can be obtained using soft-max over
the h(k) predictions.

In the case of a regression forest, the predicted estimated value, ŷ , is determined
averaging the predictions from all the individual regression trees on the observation !
X .

 ŷ = 1

B
fb

b=1

B

∑ (
!
X)

