MoSIG M2R

2020-2021

Computer Vision Performance Evaluation for Recognition and Detection

Prof. James Crowley Dr. Nachwa Bakr Yangtao Wang

Introduction

Message from Prof. James Crowley

Introduction

 \bullet

- Email to <u>James.crowley@inria.fr</u>, <u>nachwa.aboubakr@inria.fr</u>, <u>yangtao.wang@inria.fr</u>
- Title: MoSIG M2R Computer Vision
- Body: [YOUR NAME]

Introduction

Choose a class partner and send us an email with his/her name by the end of this class.

Course Notes can be found on:

<u>http://crowley-coutaz.fr/jlc/Courses/Courses.html</u>

Performance Evaluation for Pattern Recognition

Pattern Recognition

• is the process of assigning observations to categories.

Pattern Recognition

Example of computer vision tasks:

Classification

• A classifier, R(X), maps the feature vector, X into a statement that the observation belongs to a class C_k from a set of K possible classes.

Discriminant and Decision Functions

- The classification function R(X) can typically be decomposed into two parts:
 - $\circ \quad R(X) \to d(g(X))$
 - where g(X) is a discriminant function and d(g(X)) is a decision function.
- g(X): A discriminant function that transforms: $X \to R^k$
 - \circ The discriminant function is typically learned from the data.
- d(g(X)): A non-linear decision function chosen by the system designer. $\circ \mathbb{R}^{K} \to \mathbb{C}_{k} \square \{\mathbb{C}_{k}\}$

Discriminant and Decision Functions

- For a pattern classifier that returns a yes/no decision. This is a special case of the classification task.
- Pattern classifier has 2 classes.
 - \circ K=2; C_k = {P, N}
 - Class 1 (C_1) is a positive detection (P).
 - Class 2 (C_2) is a negative detection (N).

Machine Learning for Pattern Recognition

Machine Learning for Pattern Recognition

- To estimate the discriminant function g(X), we can use:
 - Supervised learning: learns from a set of *training samples* which associated with ground-truth value.
 - Unsupervised learning: learns from unlabeled training samples.
 - Semi-supervised learning: learns from *partially labeled* training samples.
 - Hybrid methods.

Performance Evaluation for Pattern Recognition

ROC demo

