
Fast Computation of Scale Normalised
Gaussian Receptive Fields

James L. Crowley and Olivier Riff

Laboratoire GRAVIR, INRIA Rhône Alpes,
655 Ave de l’Europe, F-38330 Montbonnot, France

{Crowley, Riff}@inrialpes.fr
http://www-prima.imag.fr

Abstract . The characteristic (or intrinsic) scale of a local image pattern is
the scale parameter at which the Laplacian provides a local maximum.
Nearly every position in an image will exhibit a small number of such
characteristic scales. Computing a vector of Gaussian derivatives (a
Gaussian jet) at a characteristic scale provides a scale invariant feature
vector for tracking, matching, indexing and recognition. However, the
computational cost of directly searching the scale axis for the characteristic
scale at each image position can be prohibitively expensive. We describe a
fast method for computing a vector of Gaussian derivatives that are
normalised to the characteristic scale at each pixel. This method is based on
a scale equivariant half-octave binomial pyramid. The characteristic scale
for each pixel is determined by an interpolated maximum in the Difference of
Gaussian as a function of scale. We show that interpolation between pixels
across scales can be used to provide an accurate estimate of the intrinsic
scale at each image point. We present an experimental evaluation that
compares the scale invariance of this method to direct computation using
FIR filters, and to an implementation using recursive filters. With this
method we obtain a scale normalised Gaussian Jet at video rate for a 1/4 size
PAL image on a standard 1.5 Ghz Pentium workstation.

1 Introduction
The visual appearance of a neighborhood can be described by a local Taylor series [1].
The coefficients of this series constitute a feature vector that compactly represents the
neighborhood appearance for indexing[2] and matching[3]. The set of possible local
image neighborhoods that project to the same feature vector are referred to as the
"Local Jet". A key problem in computing the local jet is determining the scale at
which to evaluate the image derivatives.

Lindeberg [4] has described scale invariant features based on profiles of Gaussian
derivatives across scales. In particular, the profile of the Laplacian, evaluated over a
range of scales at an image point, provides a local description that is "equivariant" to
changes in scale. Equivariance means that the feature vector translates exactly with
scale and can thus be used to track, index and recognize structures in the presence of
changes in scale.

The problem with this approach is that a direct computation of the characteristic
scale at each image position appears to make real-time implementation unfeasible.
This paper presents a method to obtain the characteristic scale by interpolating the
samples of a half-octave Laplacian Pyramid along both the image and the scale axes.
The Laplacian for any image position is obtained by bi-linear interpolation between
adjacent sample pixels. Local maxima over scale are determined by a fitting a
parabolic function to samples in the scale direction at a pixel. However, not just any
multi-resolution pyramid can be used for such calculations. Scale-invariant image
description requires that the sampled impulse response be the same at every level of
the pyramid.

2 Fast Computation of Chromatic Receptive Fields
Multi-resolution methods have been used in computer vision since the 1970's. Early
work in multi-resolution image description was primarily motivated by a desire to
reduce the computational cost of methods for image description and image matching.
One of the earliest uses was a technique referred to as "planning'', in which image
resolution was reduced by summing pixels in non-overlapping 8x8 blocks [5]. The
results of edge detection at low resolution were used to select regions for edge
detection at high resolution.

Multi-resolution processing was soon generalized to computing multiple copies of
an image by repeatedly summing non-overlapping blocks of pixels and re-sampling
until the image reduced to a small number of pixels. Such a structure became known
as a multi-resolution pyramid [6]. In a typical early pyramid algorithm, non-
overlapping blocks of 4x4 pixels were summed at each level to produce the next
reduced resolution level. Such pyramid structures were used to construct fast
algorithms for image segmentation, edge detection, and to accelerate correlation for
stereo matching. Unfortunately, computing a pyramid by averaging non-overlapping
windows resulted in substantial aliasing. Such aliasing is most noticeable as a large
component of additive random noise generated by image translation. Such noise can
render most image analysis algorithms unreliable.

The problem of segmentation and classification of textures led a number of
researchers to look for general-purpose multi-resolution representations. Burt proposed
a multi-resolution pyramid algorithm using smoothing with overlapping windows [7].
Weights for the smoothing filters were obtained by postulating a set of four
principles. These principles resulted in the use of a mask that serves as a smoothing
filter for repeated re-sampling. While smoothing with these masks did reduce noise,
significant aliasing effects still remained. Moreover, Burt's pyramid was not scale
invariant.

During this period, a half-octave scale-invariant pyramid algorithm was proposed
based on considerations from signal processing [8]. This algorithm was explicitly
designed to maintain the same sampled impulse response at each level. Images were
smoothed by a Gaussian filter designed to avoid aliasing effects. Unfortunately, the
use of large FIR Gaussian filters led to computing times on the order of an hour for a
single image.

By the mid-1980's, the multi-resolution pyramid had become a standard structure
for use in stereo matching and motion analysis [9]. The use of techniques from digital
signal processing provided mathematical tools to understand the effects of repeated
smoothing and sampling. By the late 1980's, pyramids were generally computed using
Gaussian filters of sufficiently large size so as to minimize the random noise dues to
aliasing. However, generally little attention was paid to the scale-invariant properties.

3 A scale invariant half octave pyramid
A scale-equivariant space can be constructed using any kernel function. Let x(t) be a
signal defined over a continuous variable t. A kernel function, k(t), can be scaled to
any scale factor, s, by dividing t by s. Thus for continuous variables, a scale-
equivariant "scale-space'' representation of a signal is easily defined, as

)(*)(),(
s
tktxstp =

Computing a sampled digital representation of such a space requires choosing the
appropriate sample rates for t and for s. The sample rate, To , for the t variable is
determined by the frequency content of the signal that should be preserved in the
sampled representation. For a scale-invariant representation, the variable s should be
sampled using an exponential series

k
k ss 0=

This is easily shown by taking the logarithm of t/s. The logarithm converts the 1/s
term into translation along the scale axis. Thus changes in scale are expressed as
translation in a logarithmic scale space.

The set of possible scales range from 1 to the number of samples. The desired
sample rate in scale will often depend on the smoothness of the kernel. The cost of
brute force sampling of such a space is the number of signal samples, N, times the
number of scale samples, LogN. Thus computational cost of such a space is, in
principle, O(N Log N) . Unless the bandwidth of x(t) is limited and the kernel is
properly chosen, the actual constants required for such a space are computationally
prohibitive.

A multi-resolution pyramid algorithm produces a sampled scale-space
representation of a signal, p(t,s), with a computational complexity of O(N). The
reduction in complexity is achieved by re-using each scale-sampled representation of
the signal as an intermediate result for producing the next. Strict scale equivariance
requires that convolution of a kernel filter with itself produce a scaled copy of the
kernel filter:

k(t
s0

) = k(t)* k(t)

The Gaussian function:

g(t,σ) = e
−

t 2

2σ 2

obeys this property, with a scale factor of s0 = 2 . More generally, the Gaussian
functions are closed under convolution. That is, the convolution of two Gaussians of
variance σ1

2
 and σ2

2 results in a Gaussian of variance σ3
2 = σ1

2
 + σ2

2. As a result, a
scale-invariant pyramid can be defined by cascaded convolution with a Gaussian kernel.

The Gaussian function has a number of other properties that make it ideally suited
for use as a kernel filter for computing a scale-invariant pyramid. Among these is the
fact that a circularly symmetric Gaussian is separable into a product of 1-D
components. This property allows us to compute the convolution of an NxN
Gaussian by a series of two 1-D convolutions. Thus the convolution with a Gaussian
remains O(N), even when applied to a 2-D NxN signal.

3 .1 The O(N) scale-invariant pyramid

A multi-resolution pyramid is an O(N) method for computing a sampled scale space.
The reduction in computation is achieved by reusing each level as an intermediate
result to compute the next level. This pyramid algorithm is scale equivariant. Each
level is resampled at a step size that exactly equals the increase in scale. Thus the ratio
of scale to sample rate is constant. Scaling a signal translates its response in the scale
axis.

The scale-equivariant pyramid algorithm shown in figure 4 is composed of an
initial convolution with the kernel filter followed by a series of processing stages, k=0
to K. For each stage, k, the pyramid is composed of three signals p0(n,k), p1(n,k) and
p2(n,k). The output of each stage is resampled to produce the input for the next stage.
Because of resampling, each stage is composed of Nk=N/2k samples (in the case of a 1-
D signal).

*g(n,σ)

po(n,0)

*g(n, 2 σ)

S{-}

po(n,1)

p1(n,0)

p2(n,0)

Figure4: First stage of the scale invariant pyramid algorithm.

The signal p0(n,k) serves as the input to the kth stage. This signal is convolved with
the kernel filter, g(n, σ), to provide p1(n,k):

p1(n,k) = p0(n,k)* g(n,σ)

The second stage is computed by convolution with a scaled copy of the kernel filter:
p2(n,k) = p1(n,k)* g(n, 2σ)

This scaled copy can be obtained by cascaded convolution with the kernel filter:
p2(n,k) = p1(n,k)* g(n,σ)* g(n,σ)

To demonstrate the scale equivariance, consider the impulse response for a scale-
invariant pyramid with a Gaussian kernel g(n,0) using a typical value of σ=1. Thus
the kernel filter is:

g(n,1) = e
−

n2

2

To have an impulse as input, assume an N-sample input signal s(n) = δ(n − N
2

)

composed of zero values, except at position N/2 where the value is set to 1. The
initialization step convolves the impulse with the kernel filter:

p0(n,0) = g(n,1)

Thus the variance and standard deviation at p0(n,k) are both 1.0. The next step is
p1(n,0) = p0 (n,0)* g(n,1)

Thus the variance at p1(n,k) is σ01
2 = 2 and the scale factor is σ01 = 2 . Continuing,

p2(n,0) = p1(n,0)* g(n,1) *g(n,1)

The variance of p2(n,k) is σ02
2 = 4, and thus σ02

 = 2. The result is resampled at T1 =2
to provide stage k=1. To show the effects of sampling, consider a change in variables,
m=2n, to obtain

p1(m,1) = p2 (2m,0)
Expressed in the original variable, n, resampling does not effect the variance or σ of
the signal. Thus σ01

2=2 and σ01=2. However, convolution with a resampled signal is
the same as scaling the kernel filter. Thus,

p1(m,1) = p0 (m,1)* g(m,1) = p2 (n,0)* g(2n,1)

By virtue of resampling, the Gaussian kernel has effectively been rescaled by a factor
of σ=2. This is equivalent to rescaling the variance of the Gaussian by 4. Thus

σ11
2 = 8 , and σ11 = 2 2 .

Continuing the stage,
p2(m,1) = p1(m,1)* g(m,1) *g(m,1)

which gives σ12
2 =16 , and σ12 = 4 . The result is resampled to provide the input to

the next stage and the process is repeated:
p0(m,3) = p2(2m,2)

The result is a sequence of signals in which both the sample rate and the scale factor
grow in powers of 2. At each stage, an intermediate result for p1(n,k) provides a

2 scaling of the impulse response.
The 1-D algorithm defined above is easily generalized to 2-D by replacing the

variable n with x, y. This input signal is changed from p(n) of size N sample to
p(x,y) of size N2. However, the Gaussian kernel is separable:

g(x, y,σ) = e
−

x2
+y2

2σ 2
= e

−
x2

2σ 2 * e
−

y2

2σ 2

Thus, convolution with the kernel with an NxN image can be computed as a series
of two O(N) 1-D convolutions. Thus the cost of convolution with a Gaussian remains
O(N) and the resulting pyramid is an O(N) algorithm.

4 Experimental comparison of fast Gaussian filters

4.1 Fast Gaussian filters

Digital filters can be designed using either a direct (FIR) or recursive (IIR) form. The
direct form is obtained as a finite number of samples of the desired impulse response.
The recursive form is designed as a ratio of polynomials in the z domain. Closure
under convolution provides a third method for designing Gaussian filters by cascade
convolution. The following section compares these three implementation methods for
a 1-D Gaussian filter.

4 .1 .1 The FIR implementation of a Gaussian

The simplest means to implement a digital Gaussian filter is to sample the Gaussian
function at integer multiples of To. For σ=1, a reasonably good approximation is
obtained using a kernel width of 9 pixels. This gives

G(x) = e
– x2

2

for integer values of x in the range x ∈ [-4, 4].

4 .2 Binomial filters

Binomial filters are obtained with cascaded convolution of a kernel filter composed of
[1, 1]. The coefficients for the nth filter in the series, bn(m), are defined by:

bn (m) = [1,1]*n

where the exponent *n denotes n auto-convolutions. The set of filter coefficients is
well known as the binomial series, often computed using Pascal's triangle. This series
provide the best (least sum of squares error) approximation to a Gaussian function by
an integer coefficient sequence of finite duration. The properties of the binomial filters
are particularly easy to compute. For example, for the nth binomial bn(m), there are n
coefficients, whose sum is 2n. The midpoint (or center of gravity) is the coefficients at

m =
n
2

 and the variance is σ2 =
n
4

.

The binomial filters b2(m) (with coefficients [1, 2, 1]) and b4(m) (with coefficients
[1, 4, 6, 4, 1]) are of special interest. The Fourier transform of b2(m) is a single
period of a cosine on platform and thus is a monotonic low-pass filter with no ripples
in the stop band:

B2(ω) = 2 + 2cos ω()

Since the even-order binomials are auto-convolutions of this filter, their Fourier
transforms are powers of B2(ω) and thus have no ripples in the stop band. The filters
b2(m) and b4(m) have variances of 0.5 and 1, respectively. The filter is b4(m)
equivalent to b2(m) * b2(m). Thus, a σ=1 Gaussian filter can be computed by two
convolutions with the kernel [1, 2, 1] at a cost of two multiplications and 4 additions
per pixel.

4 .2 .1 Recursive filters

Recursive implementations of Gaussian filters have been proposed by Deriche [10] and
by Vliet, Young and Verbeek [11]. To maintain shift invariance (or zero phase), the
filter is implemented as a cascade of forward and backward difference equations with
real-valued coefficients b.

Backward: v[n] = αx[n]− biv[n − i]
i=1

N

∑

Forward: y[n] = αv[n]− biy[n + i]
i=1

N

∑

with. α =1+ bi
i=1

N

∑
An interesting property of recursive filters is that the number of operations is

independent of the variance of the filter. In the following we consider recursive filters
of size N=5.

4 .3 Laplacian as a difference of Gaussians

A difference of Gaussians (DoG) is widely used as an approximation for the Laplacian
of a Gaussian. A Gaussian low-pass pyramid is thus easily used to compute a
Laplacian pyramid. However, the precision of this approximation is rarely studied. In
radial form, the normalized Laplacian is a second derivative, given by:

∇ 2G(r,σ) =
r2 − σ2

σ4 2π
e
−

1
2

r2

σ 2

The difference of Gaussians is:

DOG(r,σdog) =
1

σ1 2π
e
−

1
2

r 2

σ 2 – 1
σdog 2π

e
−

1
2

r 2

σ dog
2

Approximating the Laplacian with a difference of Gaussians requires the
specification of the two parameters σ1 and σdog. Our Gaussian pyramid provides

Gaussians in scale step sizes of 2 so that σ1 = 2σdog . To determine the σ of the
corresponding Laplacian, we wrote a simple script search for the value of σ for which
the sum of squares of the difference is minimized. The minimum error energy was
obtained when σlap=1.18σdog. Figure 5 shows the difference between a Laplacian in
radial form and a difference of Gaussians.

Figure 5: Comparisons of real Laplacian versus real DoG and binomial DoG forσdog = 2
and σ1 = 2σdog and σ lap =1.7

Figure 6: Evaluation of accuracy of approximation of a Laplacian with a binomial DoG.

In Figure 6, a DoG computed with binomial coefficients and a DoG computed
using an FIR Gaussian are compared to a true Laplacian. The FIR DoG demonstrates a
constant error of approximately 3.6% at all scales. The Binomial DoG starts with an
error of 16% but rapidly descends to match the 3.6% error of the FIR implementation
by the third image of the pyramid.

The binomial pyramid based on the Kernel filter [1, 4, 6, 4, 1] provides the fastest
implementation of the methods tested. The experiments indicate that this method
provides sufficiently accurate approximation for a Laplacian.

5 Comparison of scale invariance
The scale invariance of the impulse response for a pyramid with σ0=1 was evaluated
on an image where the central pixel has a value of 100 and all others pixels are set to
zero. Gaussian Pyramids with σ0=1 were computed using the three filter methods: FIR
(N=9), Recursive (N=5) and Binomial. Two DoG images were computed at each level:

d01(i, j,k) = p1(i,j,k) − p0 (i, j,k)
d12(i, j,k) = p2(i,j,k) − p1(i,j,k)

All three filters exhibited rapid convergence to a scale-invariant impulse response.
For example, the percentage of change for the center pixel at levels k=1,2,3,4 are
shown for d01(i,j,k) and d12(i,j,k) in Figure 7. These are representative of the errors
observed at other pixel positions. One can note that the invariance error for d01 is
within 3%. The binomial, the recursive and the FIR filter implementations rapidly
converged to extremely small errors (less than 0.0001%).

The percentage error for d12(i,j,k) are within 1% with the same rapid convergence.
The improvement in error rates is primarily due to the extra smoothing provided by a
larger ratio of σ to sample rate, which results in less error due to sampling. The
experiments also validate our choice of σ0=1.0 for our pyramid by showing that such
pyramid provides reasonably accurate scale invariance.

Figure 7a Scale invariance of d01(i,j,k) for FIR, Recursive and Binomial Laplacians

Figure 7b Scale invariance of d12 (i,j,k) for FIR, Recursive and Binomial Laplacians

Table 1 recapitulates the previous results in operations per pixel for filters g0 and g1
with the FIR (N=9), the binomial [1, 2, 1] and 2 recursive filters (N=3 and N=5). This
shows that a pyramid computed using the binomial filter has a lower cost than either
the recursive filter or the direct FIR filter.

Filter FIR N=9 Binomial IIR N=3 IIR N=5

g0(n) 36 16 28 44
g1(n) 72 32 28 44

g0(n)∗g1(n) 108 48 56 88
Table 1. Computational cost (Standard Ops) per pixel for different filter types.

6 Determining Intrinsic scale
Determining characteristic scale requires comparison of Laplacian values along the
scale axis. However, because the pyramid is computed on resampled images, Laplacian
values are not directly available at most pixels. These samples were eliminated with
minimal loss of information due to smoothing. Thus they can be recovered through
bi-linear interpolation.

Suppose that we seek the value at pixel i,j at level k, and that this pixel falls
between pixels (io, j0) and (i1, j1). Note that Tk =2k is the sample rate at level k. Given

k

k

k

T
kjipkjip

ac

T
kjipkjipb

T
kjipkjip

a

),,(),,(

),,(),,(

),,(),,(

1110

0010

0001

−
+=

−
=

−
=

the interpolated value at pixel i, j is
),,())(()()(),,(110000 kjipjjiicjjbiiakjip +−−+−+−=

6 .1 Computing characteristic scale

Let us refer to the difference of Gaussian images at each level k as l=0 for d01 and
l=1 for d12. We can define an integer scale index n=2k+l. For a typical 6-level pyramid,
n runs from 0 to 11. Using this index as a free variable, the Laplacian profile, at pixel
(i,j) is the series of interpolated Laplacian values, the d(n) determined for each pixel
i,j. The peak in this profile is equivariant with scale. We refer to the scale of this peak
as the characteristic scale of the signal at that image position.

The precision of the characteristic scale can be improved by interpolation using a
parabola for the three samples closest to the peak. Let)(0nd be a local peak in d(n).
The interpolated extremum is

σmax = n0 +1+
d(n0 −1)− d(n0 +1)

2(d(n0 −1)+ d(n0 +1)− 2d(n0)
Multiple characteristic scales correspond to concentric patterns in an image. The

half-octave pyramid limits discrimination of such patterns to concentric scale changes

of powers of 2. This is a fundamental limitation due to sampling scale at multiples of
2 . Fortunately denser concentric scales tend to be rare in real images.
The following graph (Figure 8) shows an example of Laplacian values as a

function of the characteristic scale on a 12-level pyramid (i.e., 6 stages). The
extremum of the curve in figure 9 is located around a characteristic scale of 10 pixels.
The interpolated curve is shown as a dashed line on this figure.

Figure 8. Interpolation of the Laplacian profile

6 .2 Estimating size from intrinsic scale

To evaluate the ability of intrinsic scale to recover size, we constructed an image set
containing uniform disks of radius from 1 to 100 pixels. Each image was processed
with a binomial pyramid, and the profile of Laplacian values was computed at the
center of the circle. This profile was interpolated using parabolic interpolation. The
interpolated values of the Laplacian at each extremum are compared in Figure 9 to an
ideal straight line. The constancy of these curves further confirms the scale invariance
of the pyramid.

Figure 9: Scale invariance: The characteristic scale was estimated at the center pixel for
100 images containing each containing disks of radius from 1 to 100 pixels.

7 Invariance to rotation
Figure 10 demonstrates the invariance to rotation of the characteristic scales. In

this experiment, the characteristic scale was computed at every pixel of an image
containing a Dirac impulse. The resulting image of characteristic scales, encoded as
gray levels, is displayed together with a set of level curves. Note the slight deviations
from perfect radial symmetry.

Figure 10: Rotational invariance of Intrinsic Scale

8 Synthesis of Normalized Receptive Fields
Receptive fields at canonical (row and column) directions can be directly computed
from differences of adjacent pixels at level of the binomial pyramid. Such derivative
filters are close approximations to Gaussian derivatives at the same scale. In this
section we explain how to calculate such receptive fields from the binomial pyramid,
how to steer the receptive fields to the intrinsic orientation, and demonstrate that the
impulse response has a scale invariance that is similar to the value demonstrated above
for the binomial filters.

For each image point in a logo or ROI, a local feature vector can be produced by
using the binomial pyramid to compute a vector of 9 chromatic receptive fields [12].
This vector can be computed in a manner that is normalized to the intrinsic scale and
orientation at that point. Such normalization provides a vector for robust matching
invariant to transformations scale and orientation.

The receptive field vector is based on computing the product with a vector of image
differences in the row and column directions of the luminance and chrominance
images. The luminance (L) and chrominance (C1, C2) images can be obtained by

L =R+G+B, C1 =
1
2

(R − B) C2 =
1
3

(R + B−G)

A first derivative along the row or column direction is obtained by convolution with
the mask [1, 0, –1] in that direction. For position (x, y) at sampled pyramid image k,
this is equivalent to computing the differences of adjacent pixels

Px(x, y, k) = P(x – 1, y, k) – P(x+1, y, k)

Py(x, y, k) = P(x, y – 1, k) – P(x, y+1, k)

The second difference is computed by a convolution of the mask [1, –2, 1]. For the
rows and columns at pyramid level k, this is equivalent to.

Pxx(x, y, k) = P(x – 1, y, k) + P(x + 1, y, k) – 2·P(x, y, k)

Pyy(x, y, k) = P(x, y – 1, k) + P(x, y + 1, k) – 2·P(x, y, k)

The mixed derivative is

Pxy(x,y,k) = P(x–1,yk) + P(x+1,y,k) + P(x,y–1,k) + P(x,y+1,k)– 4·P(x,y,k)

Image differences computed over the L, C1, and C2 images compose the vector.

),,,,,,,,,,,(222111 C
y

C
x

CC
y

C
x

CL
yy

L
xy

L
xx

L
y

L
x

L PPPPPPPPPPPPP =
r

This vector gives an un-oriented feature vector at each point equivalent to
>=<),(),(yxpGP

rr

where
),,,,,,,,,,,(222111 C

y
C
x

CC
y

C
x

CL
yy

L
xy

L
xx

L
y

L
x

L GGGGGGGGGGGGG =
r

is the vector of Gaussian derivatives at the intrinsic scale.
The differences in row and column directions can be steered to the intrinsic

orientation, θ, at pixel (x, y) using the steerable filter formulas of Freeman and
Adelsen [13]:

V1 = Px cos() + Py sin()

V2 = Pxx cos()2 + Pxy cos() sin() + Py sin()2

where the intrinsic orientation for each pixel is provided by :

θ = tan−1(
Py

Px
)

The steered local feature vector for luminance and chrominance at the intrinsic scale
and orientation can be written as

),,,,,,,,(),(222111
212121
CCCCCCLLL VVVVVVVVVyxV =

r

where the subscript 1 represents a first derivative and the subscript 2 represents a
second derivative

Figure 11a and 11b show the impulse response obtained from such a calculation.
White pixels represent positive values and purple negative values. A second derivative
can be obtained from a convolution of [1, –2, 1]. Figure 11c and 11d show examples
of the resulting impulse response. The mixed impulse responses can be obtained by
convolving the row directions with [1, 0, –1] followed by convolving the column
directions with this filter. Figure 11e shows an example of the resulting impulse
response. Synthetic filters at any desired angle can be computed from these filters
using a weighted sum of the derivatives.

a) Gx(x,y) b) Gy(x,y) c) Gxx(x,y) d) Gyy(x,y) e) Gxy(x,y)
Figure 11. The impulse responses for receptive fields computed from the pyramid at level 2.

Because the sampled impulse response of the pyramid is the same at every level
(beyond the first), the impulse responses of the derivatives are also equivalent at all
levels. As with the Laplacian, these derivative impulse responses are "equivariant"
with scale. As a demonstration of the invariance of the impulse response, Figure 12
shows the impulse responses from filter Gx(i, j, k) and Gxx(i, j, k) computed at the
first image in each of the stages of the binomial pyramid. That is, these impulse
responses are

Gx(i, j, k) = [–1,0,1] * po(i, j, k)

Gxx(i, j, k) = [1, –2, 1] * p1(i, j, k)

for k = 0, 1, 2, 3, 4, 5. It can be seen from figure 12 that after the first level of the
pyramid, the impulse response is invariant to scale.

a) Scale invariance for Gxo(x,y,k) b) Scale invariance of Gxx0(x,y,k)
Figure 12. Comparison of impulse response for first and second Gaussian

derivatives for pyramid stages k=0,1,2,3,4,5.

9 Summary and conclusion
The binomial pyramid gives a simple and fast method to evaluate characteristic

scales at any pixel in an image. This method is based on the computation of
differences of Gaussians obtained by binomial filtering in a pyramid. The experiments
described above demonstrate that a scale-invariant half-octave pyramid computed with a
binomial kernel can provide an efficient and precise means to compute characteristic
scales. At first glance, it may seem surprising that a relatively crude Gaussian
approximation such as a 1-2-1 binomial filter yields reliable estimates of characteristic
scale. However, this kernel allows video rate calculation of intrinsic scale for 1/4 PAL
images on a standard 1.5 GHz personal computer.

Acknowledgment
 This work has been partially funded by project IST DETECT under the European

IST Cognitive Vision Program.

References
1. J. J. Koenderink and A. J. van Doorn, "Representation of local geometry in the

visual system", Biological Cybernetics , 55:367-375, 1987.
2. D. G. Lowe, "Object Recognition from local scale-invariant features", in 1999

International Conference on Computer Vision (ICCV-99), Corfu Greece, pp 1150-
1157, Sept. 1999.

3. C. Schmid and R. Mohr. "Local greyvalue invariants for image retrieval", IEEE
Transactions on PAMI , PAMI Vol 19, No. 5, pages 530-534, 1997.

4. T. Lindeberg, "Feature detection with automatic scale selection",
International Journal of Computer Vision , IJCV 30(2):77-116, 1998.

5. M. D. Kelly, "Edge detection by computer in pictures using planning",
Machine Intelligence , 6:379-409, 1971.

6. S. L. Tanimoto and T. Pavlidis, "A hierarchical data structure for picture
processing", Computer Graphics and Image Processing , 4:104-119, 1975.

7. P. J. Burt and E. H. Adelson, "The Laplacian pyramid as a compact image code",
IEEE Transactions on Communications , 31:532-540, 1983.

8. J. L. Crowley, " A Representation for Visual Information ", Doctoral Dissertation,
Carnegie-Mellon University, 1981.

9. P. Anandan, "Measuring Visual Motion from Image Sequences",
PhD thesis, Computer Science Department , Doctoral Thesis, University of
Massachusetts, 1987.

10. R. Deriche. Recursively implementing the Gaussian and its derivatives.
Rapport de Recherche 1893, INRIA, Sophia Antipolis, France, Apr. 1993.

11. L. J. van Vliet, I. T. Young, and P. W. Verbeek. Recursive Gaussian derivative
filters. In Proc. 14th International Conference on Pattern Recognition (ICPR'98),
volume 1, pages 509-514. IEEE Computer Society Press, Aug. 1998.

12. D. Hall, V. Colin de Verdiere and J. L. Crowley, "Object Recognition using
Coloured Receptive Field", 6th European Conference on Computer Vision,
Springer Verlag, Dublin, pp 164-178, June 2000.

13. W.T. Freeman, E.H. Adelson, "The Design and Use of Steerable Filters",
Transactions on Pattern Analysis and Machine Intelligence , (PAMI), Vol 13, No.
9, pp 891-906, September 1991.

