
M2R	 MoSIG	
Computer	 Vision	

Lecture	 2	 –	 Part	 3	 –	 Prac:cal	 	

	 Face	 Detec:on	 with	 a	 Pyramid	

Professor:	 	 James	 Crowley,	 	
Teaching	 Assistants:	 Dr.	 Nachwa	 Aboubakr,	 Yangtao	 Wang	

	
22	 Oct.	 2020	

1	

Face	 Detec:on	 with	 a	 Pyramid	

The objective for this exercise is to use your best MLP face detector constructed last week to detect faces at
multiple scales using windows from a Gaussian Pyramid. You will first construct a sliding window face
detector using your best MLP, and then optimize this detector using a full octave Gaussian Pyramid. 	

 	

This exercise is composed of three parts. 	

1.  Write a program to construct a scale-invariant full-octave Gaussian pyramid, using the algorithm shown in

section 3.1 of the Lecture 4 course notes. Demonstrate the impulse response of your pyramid by creating a
512 x 512 image with a single non-zero pixel at the center position (256x256). Display the contents of
central 13 columns (cols 250 to 262) from row 256 from each channel of each level of your pyramid. Do
this for σ0=1 and σ0=√2 and compare the results. 	

2.  Use the best MLP from project 2 to detect faces at multiple scales from a full octave pyramid with σ0=1.
Write a program to extract and flatten a sliding window from an image over a range of sizes from 16x16 to
100x100 using a scale factor of 1.2. Each window should be transformed to the standard size of input vector
for your MLP face detector. Report, accuracy, precision, recall and computing time for evaluation with the
images in folds 9 and 10 of FDDB. 	

3.  Use the same MLP to detect faces from each level of your pyramid over a range of sizes from 16x16 to
33x33 using a scale factor of 1.2. Each window should be transformed to the standard size of input vector
for your MLP face detector. Report, accuracy, precision, recall and computing time for evaluation with the
images in folds 9 and 10 of FDDB. 	

	

2	

1)	 Scale	 Invariant	 Gaussian	 Pyramid	

3	

Computer Vision
James L. Crowley and Nachwa Aboubakr

MoSIG M2 Fall Semester
Project 3 22 October 2020

Face Detection with a sliding window detector at multiple scales.

The objective for this exercise is to use your best MLP face detector constructed last week to detect
faces at multiple scales using windows from a Gaussian Pyramid. You will first construct a sliding
window face detector using your best MLP, and then optimize this detector using a full octave
Gaussian Pyramid.

This exercise is composed of four parts.
1) Write a program to construct a scale-invariant Gaussian pyramid, using the algorithm shown in

section 3.2 of the course notes. Demonstrate the impulse response of your pyramid by creating a
512 x 512 image with a single non-zero pixel at the center position (256x256). Display the
contents of central 13 columns (cols 250 to 262) from row 256 from each channel of each level
of your pyramid. Do this for σ0=1 and σ0=√2 and compare the results.

2) Write a program to extract and flatten a sliding window from an image over a range of sizes
from 10 x 10 to 40 x 40 using a scale factor of 1.2. Each window must be transformed to the
standard size of input vector for your MLP face detector from last week. Use your best MLP to
label each window as face, or not face. Report precision, recall and computing time for
evaluation with the images in folds 9 and 10 of FDDB.

3) Adapt your sliding window detector to extract and flatten windows of sizes from 10 x 10 to 40
x 40 from each level of your scale invariant pyramid, using a scale factor of 1.2. Use this
program to detect faces from all images in your pyramid.

4) Compare precision, recall and computing time for the face detection from an image and from a
pyramid using the images in folds 9 and 10 of FDDB

Document your work in the Jupyter Notebook by commenting it and send the .ipynb file to:
James.Crowley@inria.fr, Nachwa.Aboubakr@inria.fr, Yangtao.Wang@inria.fr. Results are due
before class on Thursday 5 nov.

 3-21

€

S 2{⋅}

° ° ° °
° ° ° °
° ° ° °
° ° ° °

° °
° °

° °
° °

€

P(x,y)

€

S 2{P(x,y)}

° °
° °

° °
° °

€

S 2 {S 2 {P(x, y)}}

° °

° °
€

S 2{⋅}

An impulse response is the output of a convolution when the input is a single impulse
(Dirac Delta function). The following figure show the “impulse response” for a Scale
Invariant pyramid at 6 different scales, computed using a fast O(N) algorithm. This
was taken from a half-octave pyramid algorithm using root-2 sampling, but the
principle is the same.

Pyramid
Buffer

…

P(x,y)!

S2{-}!

*G(x,y,√2σ0)!

S2{-}!

σ=σ0!

σ=σ0!

σ=√2σ0!

σ=2σ0!

*G(x,y, σ0)!

*G(x,y, σ0)!

*G(x,y, σ0)!

*G(x,y,√2σ0)!

σ=√2σ0!

σ=2σ0!

σ=σ0!

Part	 2)	 Sliding	 Window	 Extractor	

4	

A typical architecture for a sliding window detector looks like this: 	

	

Face
Detection

Clustering

Face Hypotheses
(Position, Size, orientation)

Image
WIndow

Window
Extractor

Color
Image

Prediction

Face Hypothesis Generation (Scanning Window)

Faces

Tracking process
assumes a video sequence

Positive Face
Detections

Window Extraction Operations: 	

1)  Crop the window at each scale	

2)  Resample (map) the window to the required input size for your detector	

3)  Flatten the window to a Vector	

Part	 2)	 Sliding	 Window	 Extractor	

5	

2.  Use the best MLP from project 2 to detect faces at multiple scales from a full octave pyramid
with s0=1. Write a program to extract and flatten a sliding window from an image over a range
of sizes from 16x16 to 100x100 using a scale factor of 1.2. Each window should be transformed
to the standard size of input vector for your MLP face detector. Report, accuracy, precision,
recall and computing time for evaluation with the images in folds 9 and 10 of FDDB. 	

Window Window'Size
1 16
2 19
3 23
4 28
5 33
6 40
7 48
8 57
9 69
10 83
11 99

3)	 Sliding	 window	 dector	 with	 	 a	 Pyramid	 	

6	

3) 	
Compute a Full Octave Pyramid for each image and detect faces from each level
of your pyramid over a range of sizes from 16x16 to 33x33 using a scale factor of 1.2.
Each window should be transformed to the standard size of input vector for your MLP
face detector. Report, accuracy, precision, recall and computing time for evaluation
with the images in folds 9 and 10 of FDDB. 	

Window	 Window	 Size	

1	 16	

2	 19	

3	 23	

4	 28	

3)	 Evaluate	 the	 results	

7	

3 Results

The opencv method to detect faces in images is :

detectMultiScale(image, scaleFactor = 1.3, minNeighbors = 3)

The parameters scaleFactor and minNeighbors are the one we will focus
on. scaleFactor specifies how much the image will be downscaled at each step,
and minNeighbors is the number of adjacent detections needed for the detector
to yield a face at this place.

3.1 Scale factor

We tested the scaleFactor parameter by taking the default value of minNeighbors,
3, and evaluating the detection within a range of values.

Figure 2: Metrics on Kaggle dataset for scale factor parameter

We can see on these plots that the influence of scale factor on precision and
recall is the following. An increasing scale factor makes the recall decrease,
because the e↵ect of scale factor on the detector is to control the number of
steps, the number of times the image will be downscaled. Thus, when scale
factor increases, there are less steps in the algorithm and there are less chances
for detections to be made. The number of detections decreases, and the chances
to retrieve all the truths in the database are smaller : the recall decreases. On
the other hand, the precision increases because there is less false positive (and
less positives overall).

4

Compare	 results	 from	 image	 and	 from	 pyramid	 by	 compu:ng,	 precision,	 recall	 and	
compu:ng	 :me	 for	 evalua:on	 with	 the	 images	 in	 folds	 9	 and	 10	 of	 FDDB	

Intersec:on	 over	 Union	 (IOU)	

8	

Face Detection in Images Lesson 1

1-9

The number of positive images is MP (or #P) for FDDB will be 5171. For a balanced
data set, we need a similar number of Negative examples, Mn (#N). We can do this by
using a random number generator to choose the upper left corner for Mn candidates
for Negative ROIs. Normally, most ROIs are Negative. However, occasionally a
random ROI will overlap a Face. Thus we need to set a criteria for when ROI can be
considered as a candidate ROI is a False Negative.

Intersection over Union (IOU)
A Rectangular ROI is typically considered to be true detection when it has sufficient
overlap with a Ground Truth Bounding Box. Overlap is measured as the ratio of
Intersection over Union (IOU).

Ground'Truth'

ROI'

Intersec1on'

i"

j"

IOU is area of intersection divide by the area of Union of the rectangles: IOU =

AI
AU

Assume image coordinates with the origin at the top left corner, the area of a
rectangle,

!
R is: A = w ⋅h = (l − r +1) ⋅ (b− t +1)

For two rectangles:

!
R1 and

!
R2 , the area of the intersection of two rectangles is

(ti, li, bi, ri)
where li =max(l1, l2) ri =min(r1, r2) ti =max(t1, t2) bi =min(b1,b2)

The area of intersection is AI = (li − ri +1) ⋅ (bi − ti +1)

Area of the Union of two rectangles is: AU = A1 + A2 − AI

A typical threshold for a True Positive is IOU > 0.5. A True Negative requires an
IOU ≤ 0.5. We can then evaluate the detection function using this test set. We can
also use such the set as a training set.

IOU12 =
AI12
AU12

=
AI12

A1+ A2 − AI12

A typical threshold for TRUE Positive is IOU ≥ 0.5 . Note that a small window inside a
larger window will likely have a small IOU. IOU test both for position and for scale. 	

