
M2R	
 MoSIG	

Computer	
 Vision	

Lecture	
 2	
 –	
 Part	
 3	
 –	
 Prac:cal	
 	

	
 Face	
 Detec:on	
 with	
 a	
 Pyramid	

Professor:	
 	
 James	
 Crowley,	
 	

Teaching	
 Assistants:	
 Dr.	
 Nachwa	
 Aboubakr,	
 Yangtao	
 Wang	

	

22	
 Oct.	
 2020	

1	

Confirma:on	
 of	
 Programming	
 Teams	

2	

First&Name Family&Name Team
Carla Puech 1
Baptiste Wagner 1
Clément Domps 2
Yidi Zhu 2
Alpha=Oumar Diallo 3
Marco Zanetti 3
Ana=Maria Granizo=Hidalgo 4
Piotr Handkowski 4
=Francisco Elias 5
Juan=Daniel Gomez=Campo 5
Jianning Deng 6
Milena Markovic 6
Christophe El=Zeinaty 7
Christopher Hunt=Rubinstein 7
Karthik=Subramanyam Chakka 8
Kumari Pooja 8
Youhana Mikhaiel 9
Mahmoud Ali 9
Amine Farhat 10
Oleksandr Firsov 10
Tarek Alsaka 11
Francesco Brusca 11
Belal Hmedan 12
Junyi ZHONG 12
Mohammed Almarakby
Dalia Hareb
Eslam Mohammed
Paritosh Sharma

First&Name Family&Name Team
Carla Puech 1
Baptiste Wagner 1
Clément Domps 2
Yidi Zhu 2
Alpha=Oumar Diallo 3
Marco Zanetti 3
Ana=Maria Granizo=Hidalgo 4
Piotr Handkowski 4
=Francisco Elias 5
Juan=Daniel Gomez=Campo 5
Jianning Deng 6
Milena Markovic 6
Christophe El=Zeinaty 7
Christopher Hunt=Rubinstein 7
Karthik=Subramanyam Chakka 8
Kumari Pooja 8
Youhana Mikhaiel 9
Mahmoud Ali 9
Amine Farhat 10
Oleksandr Firsov 10
Tarek Alsaka 11
Francesco Brusca 11
Belal Hmedan 12
Junyi ZHONG 12
Mohammed Almarakby
Dalia Hareb
Eslam Mohammed
Paritosh Sharma

First&Name Family&Name Team
Carla Puech 1
Baptiste Wagner 1
Clément Domps 2
Yidi Zhu 2
Alpha=Oumar Diallo 3
Marco Zanetti 3
Ana=Maria Granizo=Hidalgo 4
Piotr Handkowski 4
=Francisco Elias 5
Juan=Daniel Gomez=Campo 5
Jianning Deng 6
Milena Markovic 6
Christophe El=Zeinaty 7
Christopher Hunt=Rubinstein 7
Karthik=Subramanyam Chakka 8
Kumari Pooja 8
Youhana Mikhaiel 9
Mahmoud Ali 9
Amine Farhat 10
Oleksandr Firsov 10
Tarek Alsaka 11
Francesco Brusca 11
Belal Hmedan 12
Junyi ZHONG 12
Mohammed Almarakby
Dalia Hareb
Eslam Mohammed
Paritosh Sharma

Face	
 Detec:on	
 with	
 a	
 Pyramid	

3	

Computer Vision
James L. Crowley and Nachwa Aboubakr

MoSIG M2 Fall Semester
Project 3 22 October 2020

Face Detection with a sliding window detector at multiple scales.

The objective for this exercise is to use your best MLP face detector constructed last week to detect
faces at multiple scales using windows from a Gaussian Pyramid. You will first construct a sliding
window face detector using your best MLP, and then optimize this detector using a full octave
Gaussian Pyramid.

This exercise is composed of four parts.
1) Write a program to construct a scale-invariant Gaussian pyramid, using the algorithm shown in

section 3.2 of the course notes. Demonstrate the impulse response of your pyramid by creating a
512 x 512 image with a single non-zero pixel at the center position (256x256). Display the
contents of central 13 columns (cols 250 to 262) from row 256 from each channel of each level
of your pyramid. Do this for σ0=1 and σ0=√2 and compare the results.

2) Write a program to extract and flatten a sliding window from an image over a range of sizes
from 10 x 10 to 40 x 40 using a scale factor of 1.2. Each window must be transformed to the
standard size of input vector for your MLP face detector from last week. Use your best MLP to
label each window as face, or not face. Report precision, recall and computing time for
evaluation with the images in folds 9 and 10 of FDDB.

3) Adapt your sliding window detector to extract and flatten windows of sizes from 10 x 10 to 40
x 40 from each level of your scale invariant pyramid, using a scale factor of 1.2. Use this
program to detect faces from all images in your pyramid.

4) Compare precision, recall and computing time for the face detection from an image and from a
pyramid using the images in folds 9 and 10 of FDDB

Document your work in the Jupyter Notebook by commenting it and send the .ipynb file to:
James.Crowley@inria.fr, Nachwa.Aboubakr@inria.fr, Yangtao.Wang@inria.fr. Results are due
before class on Thursday 5 nov.

1)	
 Scale	
 Invariant	
 Gaussian	
 Pyramid	

4	

 3-19

3.2. Scale Invariant Pyramid Algorithm

To overcome the exponential growth, we can use each level in the pyramid to
compute the next level. This yields a form of recursive algorithm referred to as
“cascade convolution”.

 P(x,y,k)= P(i, j ,k −1)* g(x,y,σk)= p(x − i , y − j ,k −1)g(i , j ,σk)
j=−Rk

Rk

∑
i=−Rk

Rk

∑

However, the resulting algorithm does not have a scale invariant impulse response.
To provide a scale invariant impulse response, we need to do an initial convolution
with a Gaussian at σ=σ0, and then compute each successive level with a Gaussians of
σ=σ0 and σ=√2σ0. When σ0=1 this algorithm would look like this.

S2{-}

…

Pyramid
Buffer

…

*g(x,y,σ)

S2{-}

*g(x,y,σ)

S2{-}

*g(x,y,σ)

P(i,j)

Pyramid
Buffer

…

*g(x,y,1)

512 x 512

128 x 128

P(i,j)

S2{-}

*g(x,y,1)

*g(x,y,√2)

S2{-}

*g(x,y,1)

*g(x,y,√2)

σ=1!

σ=1!

σ=√2!

σ=2!

σ=1!

1024x 1024

σ=√2!

σ=2!

Computer Vision
James L. Crowley and Nachwa Aboubakr

MoSIG M2 Fall Semester
Project 3 22 October 2020

Face Detection with a sliding window detector at multiple scales.

The objective for this exercise is to use your best MLP face detector constructed last week to detect
faces at multiple scales using windows from a Gaussian Pyramid. You will first construct a sliding
window face detector using your best MLP, and then optimize this detector using a full octave
Gaussian Pyramid.

This exercise is composed of four parts.
1) Write a program to construct a scale-invariant Gaussian pyramid, using the algorithm shown in

section 3.2 of the course notes. Demonstrate the impulse response of your pyramid by creating a
512 x 512 image with a single non-zero pixel at the center position (256x256). Display the
contents of central 13 columns (cols 250 to 262) from row 256 from each channel of each level
of your pyramid. Do this for σ0=1 and σ0=√2 and compare the results.

2) Write a program to extract and flatten a sliding window from an image over a range of sizes
from 10 x 10 to 40 x 40 using a scale factor of 1.2. Each window must be transformed to the
standard size of input vector for your MLP face detector from last week. Use your best MLP to
label each window as face, or not face. Report precision, recall and computing time for
evaluation with the images in folds 9 and 10 of FDDB.

3) Adapt your sliding window detector to extract and flatten windows of sizes from 10 x 10 to 40
x 40 from each level of your scale invariant pyramid, using a scale factor of 1.2. Use this
program to detect faces from all images in your pyramid.

4) Compare precision, recall and computing time for the face detection from an image and from a
pyramid using the images in folds 9 and 10 of FDDB

Document your work in the Jupyter Notebook by commenting it and send the .ipynb file to:
James.Crowley@inria.fr, Nachwa.Aboubakr@inria.fr, Yangtao.Wang@inria.fr. Results are due
before class on Thursday 5 nov.

 3-21

€

S 2{⋅}

° ° ° °
° ° ° °
° ° ° °
° ° ° °

° °
° °

° °
° °

€

P(x,y)

€

S 2{P(x,y)}

° °
° °

° °
° °

€

S 2 {S 2 {P(x, y)}}

° °

° °
€

S 2{⋅}

An impulse response is the output of a convolution when the input is a single impulse
(Dirac Delta function). The following figure show the “impulse response” for a Scale
Invariant pyramid at 6 different scales, computed using a fast O(N) algorithm. This
was taken from a half-octave pyramid algorithm using root-2 sampling, but the
principle is the same.

Part	
 2)	
 Sliding	
 Window	
 Extractor	

Face Detection in Images Lesson 1

1-4

1 Face Detection using a Sliding Window Detector

Faces can occur at many different positions, orientations and sizes (scales) in an
image. With sufficient computing power, we can test windows of all possible
positions, sizes and orientations in parallel for presence of a face. However, lacking a
massively parallel computer we can use a sliding window detector.

A sliding window detector is a brute force method to test if a pattern can be found in
an image. This approach was made popular by the Viola-Jones face detector, now
found in most smart phones.

Assume an RGB color image, P(i,j). Note that the origin is commonly in the upper
left corner. A Region of Interest or ROI is a rectangular region of the image, This is
sometimes called a window or an imagette. The ROI is a rectangle defined by the
top-left and bottom-right corners. This may be represented by a vector (t, l, b, r).

Generally a target pattern can occur at many different positions, orientations and
sizes (scales) in an image. A common approach is to train a detection function with a
standard size and orientation for the pattern. A sliding window process is then
designed to extract (copy) the contents from every possible ROI for a range of
positions, orientations and sizes (scales). ROIs are texture mapped to a standard size
window to be processed by the recognizer. This transformation is easily performed
by the "texture mapping" function found in OpenCV.

A typical architecture for a sliding window detector looks like this:

Face
Detection

Clustering

Face Hypotheses
(Position, Size, orientation)

Image
WIndow

Window
Extractor

Color
Image

Prediction

Face Hypothesis Generation (Scanning Window)

Faces

Tracking process
assumes a video sequence

Positive Face
Detections

5	

Computer Vision
James L. Crowley and Nachwa Aboubakr

MoSIG M2 Fall Semester
Project 3 22 October 2020

Face Detection with a sliding window detector at multiple scales.

The objective for this exercise is to use your best MLP face detector constructed last week to detect
faces at multiple scales using windows from a Gaussian Pyramid. You will first construct a sliding
window face detector using your best MLP, and then optimize this detector using a full octave
Gaussian Pyramid.

This exercise is composed of four parts.
1) Write a program to construct a scale-invariant Gaussian pyramid, using the algorithm shown in

section 3.2 of the course notes. Demonstrate the impulse response of your pyramid by creating a
512 x 512 image with a single non-zero pixel at the center position (256x256). Display the
contents of central 13 columns (cols 250 to 262) from row 256 from each channel of each level
of your pyramid. Do this for σ0=1 and σ0=√2 and compare the results.

2) Write a program to extract and flatten a sliding window from an image over a range of sizes
from 10 x 10 to 40 x 40 using a scale factor of 1.2. Each window must be transformed to the
standard size of input vector for your MLP face detector from last week. Use your best MLP to
label each window as face, or not face. Report precision, recall and computing time for
evaluation with the images in folds 9 and 10 of FDDB.

3) Adapt your sliding window detector to extract and flatten windows of sizes from 10 x 10 to 40
x 40 from each level of your scale invariant pyramid, using a scale factor of 1.2. Use this
program to detect faces from all images in your pyramid.

4) Compare precision, recall and computing time for the face detection from an image and from a
pyramid using the images in folds 9 and 10 of FDDB

Document your work in the Jupyter Notebook by commenting it and send the .ipynb file to:
James.Crowley@inria.fr, Nachwa.Aboubakr@inria.fr, Yangtao.Wang@inria.fr. Results are due
before class on Thursday 5 nov.

3)	
 Apply	
 your	
 sliding	
 window	
 to	
 the	
 pyramid	

6	

Face Detection in Images Lesson 1

1-4

1 Face Detection using a Sliding Window Detector

Faces can occur at many different positions, orientations and sizes (scales) in an
image. With sufficient computing power, we can test windows of all possible
positions, sizes and orientations in parallel for presence of a face. However, lacking a
massively parallel computer we can use a sliding window detector.

A sliding window detector is a brute force method to test if a pattern can be found in
an image. This approach was made popular by the Viola-Jones face detector, now
found in most smart phones.

Assume an RGB color image, P(i,j). Note that the origin is commonly in the upper
left corner. A Region of Interest or ROI is a rectangular region of the image, This is
sometimes called a window or an imagette. The ROI is a rectangle defined by the
top-left and bottom-right corners. This may be represented by a vector (t, l, b, r).

Generally a target pattern can occur at many different positions, orientations and
sizes (scales) in an image. A common approach is to train a detection function with a
standard size and orientation for the pattern. A sliding window process is then
designed to extract (copy) the contents from every possible ROI for a range of
positions, orientations and sizes (scales). ROIs are texture mapped to a standard size
window to be processed by the recognizer. This transformation is easily performed
by the "texture mapping" function found in OpenCV.

A typical architecture for a sliding window detector looks like this:

Face
Detection

Clustering

Face Hypotheses
(Position, Size, orientation)

Image
WIndow

Window
Extractor

Color
Image

Prediction

Face Hypothesis Generation (Scanning Window)

Faces

Tracking process
assumes a video sequence

Positive Face
Detections

Computer Vision
James L. Crowley and Nachwa Aboubakr

MoSIG M2 Fall Semester
Project 3 22 October 2020

Face Detection with a sliding window detector at multiple scales.

The objective for this exercise is to use your best MLP face detector constructed last week to detect
faces at multiple scales using windows from a Gaussian Pyramid. You will first construct a sliding
window face detector using your best MLP, and then optimize this detector using a full octave
Gaussian Pyramid.

This exercise is composed of four parts.
1) Write a program to construct a scale-invariant Gaussian pyramid, using the algorithm shown in

section 3.2 of the course notes. Demonstrate the impulse response of your pyramid by creating a
512 x 512 image with a single non-zero pixel at the center position (256x256). Display the
contents of central 13 columns (cols 250 to 262) from row 256 from each channel of each level
of your pyramid. Do this for σ0=1 and σ0=√2 and compare the results.

2) Write a program to extract and flatten a sliding window from an image over a range of sizes
from 10 x 10 to 40 x 40 using a scale factor of 1.2. Each window must be transformed to the
standard size of input vector for your MLP face detector from last week. Use your best MLP to
label each window as face, or not face. Report precision, recall and computing time for
evaluation with the images in folds 9 and 10 of FDDB.

3) Adapt your sliding window detector to extract and flatten windows of sizes from 10 x 10 to 40
x 40 from each level of your scale invariant pyramid, using a scale factor of 1.2. Use this
program to detect faces from all images in your pyramid.

4) Compare precision, recall and computing time for the face detection from an image and from a
pyramid using the images in folds 9 and 10 of FDDB

Document your work in the Jupyter Notebook by commenting it and send the .ipynb file to:
James.Crowley@inria.fr, Nachwa.Aboubakr@inria.fr, Yangtao.Wang@inria.fr. Results are due
before class on Thursday 5 nov.

4)	
 Evaluate	
 the	
 results	

7	

Computer Vision
James L. Crowley and Nachwa Aboubakr

MoSIG M2 Fall Semester
Project 3 22 October 2020

Face Detection with a sliding window detector at multiple scales.

The objective for this exercise is to use your best MLP face detector constructed last week to detect
faces at multiple scales using windows from a Gaussian Pyramid. You will first construct a sliding
window face detector using your best MLP, and then optimize this detector using a full octave
Gaussian Pyramid.

This exercise is composed of four parts.
1) Write a program to extract and flatten a sliding window from an image over a range of sizes

from W x H to 8W x 8H. Each window must be transformed to the standard size of input vector
for your MLP face detector from last week . Use your best MLP to label each window as face,
or not face. Report precision, recall and computing time for evaluation with the images in folds
9 and 10 of FDDB.

2) Write a program to construct a Gaussian pyramid that transforms an image from FDDB into a
full octave pyramid.

3) Adapt your sliding window detector to extract and flatten windows of sizes from W x H to 2W
x 2H from each level of a pyramid. Use this program to detect faces from all images in your
pyramid.

4) Compare precision, recall and computing time for the face detection from an image and from a
pyramid using the images in folds 9 and 10 of FDDB

Document your work in the Jupyter Notebook by commenting it and send the .ipynb file to:
James.Crowley@inria.fr, Nachwa.Aboubakr@inria.fr, Yangtao.Wang@inria.fr. Results are due
before class on Thursday 5 nov.

3 Results

The opencv method to detect faces in images is :

detectMultiScale(image, scaleFactor = 1.3, minNeighbors = 3)

The parameters scaleFactor and minNeighbors are the one we will focus
on. scaleFactor specifies how much the image will be downscaled at each step,
and minNeighbors is the number of adjacent detections needed for the detector
to yield a face at this place.

3.1 Scale factor

We tested the scaleFactor parameter by taking the default value of minNeighbors,
3, and evaluating the detection within a range of values.

Figure 2: Metrics on Kaggle dataset for scale factor parameter

We can see on these plots that the influence of scale factor on precision and
recall is the following. An increasing scale factor makes the recall decrease,
because the e↵ect of scale factor on the detector is to control the number of
steps, the number of times the image will be downscaled. Thus, when scale
factor increases, there are less steps in the algorithm and there are less chances
for detections to be made. The number of detections decreases, and the chances
to retrieve all the truths in the database are smaller : the recall decreases. On
the other hand, the precision increases because there is less false positive (and
less positives overall).

4

