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Face Detection with a sliding window detector at multiple scales. 

 
The objective for this exercise is to use your best MLP face detector constructed last week to detect 
faces at multiple scales using windows from a Gaussian Pyramid.   You will first construct a sliding 
window face detector using your best MLP, and then optimize this detector using a full octave 
Gaussian Pyramid.  
 
This exercise is composed of four parts.  
1) Write a program to construct a scale-invariant Gaussian pyramid, using the algorithm shown in 

section 3.2 of the course notes. Demonstrate the impulse response of your pyramid by creating a 
512 x 512 image with a single non-zero pixel at the center position (256x256). Display the 
contents of central 13 columns (cols  250 to 262) from row 256 from each channel of each level 
of your pyramid. Do this for  σ0=1 and σ0=√2 and compare the results.  

2) Write a program to extract and flatten a sliding window from an image over a range of sizes 
from 10 x 10 to 40 x 40 using a scale factor of 1.2. Each window must be transformed to the 
standard size of input vector for your MLP face detector from last week. Use your best MLP to 
label each window as face, or not face.  Report precision, recall and computing time for 
evaluation with the images in folds 9 and 10 of FDDB.  

3) Adapt your sliding window detector to extract and flatten windows of sizes from  10 x 10 to 40 
x 40  from each level of your scale invariant pyramid, using a scale factor of 1.2. Use this 
program to detect faces from all images in your pyramid.  

4) Compare precision, recall and computing time for the face detection from an image and from a 
pyramid using the images in folds 9 and 10 of FDDB 
 

Document your work in the Jupyter Notebook by commenting it and send the .ipynb file  to: 
James.Crowley@inria.fr,  Nachwa.Aboubakr@inria.fr, Yangtao.Wang@inria.fr. Results are due 
before class on Thursday 5 nov.  
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3.2. Scale Invariant Pyramid Algorithm 
 
To overcome the exponential growth, we can use each level in the pyramid to 
compute the next level. This yields a form of recursive algorithm referred to as 
“cascade convolution”.   

 P( x,y,k )= P( i, j ,k −1)* g( x,y,σk )= p( x − i , y − j ,k −1)g( i , j ,σk )
j=−Rk

Rk

∑
i=−Rk

Rk

∑  

  

 
 
However, the resulting algorithm does not have a scale invariant impulse response. 
To provide a scale invariant impulse response, we need to do an initial convolution 
with a Gaussian at σ=σ0, and then compute each successive level with a Gaussians of  
σ=σ0 and σ=√2σ0.   When σ0=1 this algorithm would look like this.  
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Face Detection with a sliding window detector at multiple scales. 

 
The objective for this exercise is to use your best MLP face detector constructed last week to detect 
faces at multiple scales using windows from a Gaussian Pyramid.   You will first construct a sliding 
window face detector using your best MLP, and then optimize this detector using a full octave 
Gaussian Pyramid.  
 
This exercise is composed of four parts.  
1) Write a program to construct a scale-invariant Gaussian pyramid, using the algorithm shown in 

section 3.2 of the course notes. Demonstrate the impulse response of your pyramid by creating a 
512 x 512 image with a single non-zero pixel at the center position (256x256). Display the 
contents of central 13 columns (cols  250 to 262) from row 256 from each channel of each level 
of your pyramid. Do this for  σ0=1 and σ0=√2 and compare the results.  

2) Write a program to extract and flatten a sliding window from an image over a range of sizes 
from 10 x 10 to 40 x 40 using a scale factor of 1.2. Each window must be transformed to the 
standard size of input vector for your MLP face detector from last week. Use your best MLP to 
label each window as face, or not face.  Report precision, recall and computing time for 
evaluation with the images in folds 9 and 10 of FDDB.  

3) Adapt your sliding window detector to extract and flatten windows of sizes from  10 x 10 to 40 
x 40  from each level of your scale invariant pyramid, using a scale factor of 1.2. Use this 
program to detect faces from all images in your pyramid.  

4) Compare precision, recall and computing time for the face detection from an image and from a 
pyramid using the images in folds 9 and 10 of FDDB 
 

Document your work in the Jupyter Notebook by commenting it and send the .ipynb file  to: 
James.Crowley@inria.fr,  Nachwa.Aboubakr@inria.fr, Yangtao.Wang@inria.fr. Results are due 
before class on Thursday 5 nov.  
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An impulse response is the output of a convolution when the input is a single impulse 
(Dirac Delta function).  The following figure show the “impulse response” for a Scale 
Invariant pyramid at 6 different scales, computed using a fast O(N) algorithm.  This 
was taken from a half-octave pyramid algorithm using root-2 sampling, but the 
principle is the same.  
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1 Face Detection using a Sliding Window Detector 
 
Faces can occur at many different positions, orientations and sizes (scales) in an 
image. With sufficient computing power, we can test windows of all possible 
positions, sizes and orientations in parallel for presence of a face. However, lacking a 
massively parallel computer we can use a sliding window detector.   
 
A sliding window detector is a brute force method to test if a pattern can be found in 
an image. This approach was made popular by the Viola-Jones face detector, now 
found in most smart phones.   
 

 
 

Assume an RGB color image, P(i,j).  Note that the origin is commonly in the upper 
left corner. A Region of Interest or ROI is a rectangular region of the image, This is 
sometimes called a window or an imagette. The ROI is a rectangle defined by the 
top-left and bottom-right corners. This may be represented by a vector (t, l, b, r).  
 
Generally a target pattern can occur at many different positions, orientations and 
sizes (scales) in an image. A common approach is to train a detection function with a 
standard size and orientation for the pattern. A sliding window process is then 
designed to extract (copy) the contents from every possible ROI for a range of 
positions, orientations and sizes (scales). ROIs are texture mapped to a standard size 
window to be processed by the recognizer. This transformation is easily performed 
by the "texture mapping" function found in OpenCV. 
  
A typical architecture for a sliding window detector looks like this:   
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Face Detection with a sliding window detector at multiple scales. 

 
The objective for this exercise is to use your best MLP face detector constructed last week to detect 
faces at multiple scales using windows from a Gaussian Pyramid.   You will first construct a sliding 
window face detector using your best MLP, and then optimize this detector using a full octave 
Gaussian Pyramid.  
 
This exercise is composed of four parts.  
1) Write a program to construct a scale-invariant Gaussian pyramid, using the algorithm shown in 

section 3.2 of the course notes. Demonstrate the impulse response of your pyramid by creating a 
512 x 512 image with a single non-zero pixel at the center position (256x256). Display the 
contents of central 13 columns (cols  250 to 262) from row 256 from each channel of each level 
of your pyramid. Do this for  σ0=1 and σ0=√2 and compare the results.  

2) Write a program to extract and flatten a sliding window from an image over a range of sizes 
from 10 x 10 to 40 x 40 using a scale factor of 1.2. Each window must be transformed to the 
standard size of input vector for your MLP face detector from last week. Use your best MLP to 
label each window as face, or not face.  Report precision, recall and computing time for 
evaluation with the images in folds 9 and 10 of FDDB.  

3) Adapt your sliding window detector to extract and flatten windows of sizes from  10 x 10 to 40 
x 40  from each level of your scale invariant pyramid, using a scale factor of 1.2. Use this 
program to detect faces from all images in your pyramid.  

4) Compare precision, recall and computing time for the face detection from an image and from a 
pyramid using the images in folds 9 and 10 of FDDB 
 

Document your work in the Jupyter Notebook by commenting it and send the .ipynb file  to: 
James.Crowley@inria.fr,  Nachwa.Aboubakr@inria.fr, Yangtao.Wang@inria.fr. Results are due 
before class on Thursday 5 nov.  
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1 Face Detection using a Sliding Window Detector 
 
Faces can occur at many different positions, orientations and sizes (scales) in an 
image. With sufficient computing power, we can test windows of all possible 
positions, sizes and orientations in parallel for presence of a face. However, lacking a 
massively parallel computer we can use a sliding window detector.   
 
A sliding window detector is a brute force method to test if a pattern can be found in 
an image. This approach was made popular by the Viola-Jones face detector, now 
found in most smart phones.   
 

 
 

Assume an RGB color image, P(i,j).  Note that the origin is commonly in the upper 
left corner. A Region of Interest or ROI is a rectangular region of the image, This is 
sometimes called a window or an imagette. The ROI is a rectangle defined by the 
top-left and bottom-right corners. This may be represented by a vector (t, l, b, r).  
 
Generally a target pattern can occur at many different positions, orientations and 
sizes (scales) in an image. A common approach is to train a detection function with a 
standard size and orientation for the pattern. A sliding window process is then 
designed to extract (copy) the contents from every possible ROI for a range of 
positions, orientations and sizes (scales). ROIs are texture mapped to a standard size 
window to be processed by the recognizer. This transformation is easily performed 
by the "texture mapping" function found in OpenCV. 
  
A typical architecture for a sliding window detector looks like this:   
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Face Detection with a sliding window detector at multiple scales. 

 
The objective for this exercise is to use your best MLP face detector constructed last week to detect 
faces at multiple scales using windows from a Gaussian Pyramid.   You will first construct a sliding 
window face detector using your best MLP, and then optimize this detector using a full octave 
Gaussian Pyramid.  
 
This exercise is composed of four parts.  
1) Write a program to construct a scale-invariant Gaussian pyramid, using the algorithm shown in 

section 3.2 of the course notes. Demonstrate the impulse response of your pyramid by creating a 
512 x 512 image with a single non-zero pixel at the center position (256x256). Display the 
contents of central 13 columns (cols  250 to 262) from row 256 from each channel of each level 
of your pyramid. Do this for  σ0=1 and σ0=√2 and compare the results.  

2) Write a program to extract and flatten a sliding window from an image over a range of sizes 
from 10 x 10 to 40 x 40 using a scale factor of 1.2. Each window must be transformed to the 
standard size of input vector for your MLP face detector from last week. Use your best MLP to 
label each window as face, or not face.  Report precision, recall and computing time for 
evaluation with the images in folds 9 and 10 of FDDB.  

3) Adapt your sliding window detector to extract and flatten windows of sizes from  10 x 10 to 40 
x 40  from each level of your scale invariant pyramid, using a scale factor of 1.2. Use this 
program to detect faces from all images in your pyramid.  

4) Compare precision, recall and computing time for the face detection from an image and from a 
pyramid using the images in folds 9 and 10 of FDDB 
 

Document your work in the Jupyter Notebook by commenting it and send the .ipynb file  to: 
James.Crowley@inria.fr,  Nachwa.Aboubakr@inria.fr, Yangtao.Wang@inria.fr. Results are due 
before class on Thursday 5 nov.  
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Face Detection with a sliding window detector at multiple scales. 

 
The objective for this exercise is to use your best MLP face detector constructed last week to detect 
faces at multiple scales using windows from a Gaussian Pyramid.   You will first construct a sliding 
window face detector using your best MLP, and then optimize this detector using a full octave 
Gaussian Pyramid.  
 
This exercise is composed of four parts.  
1) Write a program to extract and flatten a sliding window from an image over a range of sizes 

from W x H to 8W x 8H. Each window must be transformed to the standard size of input vector 
for your MLP face detector from last week . Use your best MLP to label each window as face, 
or not face.  Report precision, recall and computing time for evaluation with the images in folds 
9 and 10 of FDDB.  

2) Write a program to construct a Gaussian pyramid that transforms an image from FDDB into a 
full octave pyramid.  

3) Adapt your sliding window detector to extract and flatten windows of sizes from W x H to 2W 
x 2H from each level of a pyramid. Use this program to detect faces from all images in your 
pyramid.  

4) Compare precision, recall and computing time for the face detection from an image and from a 
pyramid using the images in folds 9 and 10 of FDDB 
 

Document your work in the Jupyter Notebook by commenting it and send the .ipynb file  to: 
James.Crowley@inria.fr,  Nachwa.Aboubakr@inria.fr, Yangtao.Wang@inria.fr. Results are due 
before class on Thursday 5 nov.  

3 Results

The opencv method to detect faces in images is :

detectMultiScale(image, scaleFactor = 1.3, minNeighbors = 3)

The parameters scaleFactor and minNeighbors are the one we will focus
on. scaleFactor specifies how much the image will be downscaled at each step,
and minNeighbors is the number of adjacent detections needed for the detector
to yield a face at this place.

3.1 Scale factor

We tested the scaleFactor parameter by taking the default value of minNeighbors,
3, and evaluating the detection within a range of values.

Figure 2: Metrics on Kaggle dataset for scale factor parameter

We can see on these plots that the influence of scale factor on precision and
recall is the following. An increasing scale factor makes the recall decrease,
because the e↵ect of scale factor on the detector is to control the number of
steps, the number of times the image will be downscaled. Thus, when scale
factor increases, there are less steps in the algorithm and there are less chances
for detections to be made. The number of detections decreases, and the chances
to retrieve all the truths in the database are smaller : the recall decreases. On
the other hand, the precision increases because there is less false positive (and
less positives overall).
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