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5.11 Support Vector Machines

Popular, easy-to-use, available

Support Vector
Data is mapped to a high dimension
SVM training

Example 2
— SVM for the XOR Problem



Optimal hyperplane

Y2

4

FIGURE 5.19. Training a support vector machine consists of finding the optimal hyper-
plane, that is, the one with the maximum distance from the nearest training patterns.
The support vectors are those (nearest) patterns, a distance b from the hyperplane. The
three support vectors are shown as solid dots. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons,
Inc.



Mapping to higher dimensional
space
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The XOR problem in the original x; — x5 feature space is shown at the lett; the two
red patterns are in category wq and the two black ones in ws. These four training
patterns x are mapped to a six-dimensional space by 1, V221, v 2xs, V22129, 27 and
;r%. In this space, the optimal hyperplane is found to be g(xy,22) = 122 = 0 and the
margin is b = /2. A two-dimensional projection of this space 1s shown at the right.
The hyperplanes through the support vectors are /2z120 = +1, and correspond to
the hyperbolas ryxs = 41 in the original feature space, as shown.



SVM introduction

Example from Andrew Moor’s
slides



Linear Classifiers
X

QL

* denotes +1

f - yest

fix,w,b) = sign(w. x - b)

* denotes -1 . . )
. = i ) How would you
" classify this data?
—

Copyright & 2001, 2003, Andrew W. Moore
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Linear Classifiers
X

* denctes +1

* denotes -1

f

- yest

fix,w.b) = signfw. x - )

Copyright @ 2001, 2003, Andrew W. Moore

How would you
classify this data?
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L

Linear Classifiers ,
X - f . yE‘St

fix,w.b) = signfw. x - 1)

* denotes +1

¢ denotes -1

How would you
classify this data?

Copyright & 2001, 2003, Andraw W. Moore Supgort Vecmor Machines: Slide 4




Linear Classifiers |
X .

f : yE‘St

iy iy Y -’,} = S{CIH(W, X - -’J)
* denotes +1

* denotes -1 . .
. ° ) Any of these
J A/ would be fine..
7 - ..
f . °o .but which is
e best?

Copyright & 2001, 2003, Andrew W. Moore Support Vector Machines: Slids &




Classifier Margin -

f

. yE‘St

* denotes +1

* denotes -1

Copyright & 2001, 2003, Andraw W. Motre

fixw.b) = signfw. x - b)

Define the margin
of a linear
classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.

Support Vector Machines: Slids 7




L

Maximum Margin .
X - f - yE‘St

fix.w.h) = signfw. x - 1)

* denotes +1

The maximum
margin linear

= classifier is the
linear classifier
with the, um,
maximum margin.

This is the
simplest kind of

SVM (Called an
/ — LSVM)
Linear SV

Copyright & 2001, 2003, Andraw W. Moors Supgort Vector Machines: Slids 8
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Maximum Margin _
X

* denotes +1

* denotes -1

Support Vectors |
are those
datapoints that
the margin

pushes up
against

f

- yE‘St

/

Copyright & 2001, 2003, Andraw W. Moore

| Linear EIQM |

fix,w,/

1) = signfw. x - 5)

The maximum
margin linear
classifier is the
linear classifier
with the, um,
maximum margin.

This is the

simplest kind of
SVM (Called an
LSVM)

Supgport Vecoor Machines: Slids 5




Specifying a line and margin

V¢ Plus-Plane

-

1@%":"’? Classifier Boundary
AL e |
\m,g-:ﬂ"i* 1 /— Minus-Plane
*T_,_.,*-.. 1{.{_}’E::E- .
A e
o =
.qﬁf\a
q\?{l

¢ Plus-plane = {x:w.x+b=+1}
e Minus-plane= {x:w.x+b=-1}

Classify as.. +1 if w.x+b>=1
-1 if w.x+b<=-1
Universe if -I<w.x+b<l1
explodes

Copyright & 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 12




How to deal with Noisy Data?



Uh-oh!

* denotes +1

* denotes -1

9 g

This is going to be a problem!
What should we do?
Idea 1.1:

Minimize

w.w + C (#train errors)

. ‘ Tradeoff parameter ‘

. There’s a serious practical
problem that’s about to make
us reject this approach. Can

- youguess what it is?

Copyright & 2001, 2003, Andrew W. Moore
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Uh_ohl This is going to be a problem!

=]

denotes +1

denotes -1

What should we do?
Idea 2.0:
Minimize
w.w + C (distance of error

points to their
correct place)

Copyright & 2001, 2003, Andraw W. Moore Support Vector Machines: Slide 31




Learning Maximum Margin with Noise

Q% e NG f’-f=3 Given guess of w, b we can
N Nor v —* Compute sum of distances
of points to their correct

° zones
e Compute the margin width

Assume R datapoints, each
(X, V) Where y, = +/- 1

What should our quadratic How many constraints will we
optimization criterion be? have? R

Minimize 1 R What should they be?
Ew.ﬁur C‘Zak w.x, +b>=1-5ify, =1
w=l w.x, +b<=-1+c ify, = -1

Copyright & 2001, 2003, Andraw W. Moore Support Vector Machinas: Slid= 33




Mapping to a higher Dimensional
space



Suppose we're in 1-dimension

What would
SVMs do with
this data?

Copyright & 2001, 2003, Andraw W. Moore Support Vector Machines: Slids 40




Suppose we're in 1-dimension

Not a big surprise

IR

..r!—ul'“; l/'l

A

] it ol — \ . W "
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Harder 1-dimensional dataset

That's wiped the

smirk off SVM’s
face.
What can be
done about
.I this?
A"!—H

Copyright & 2001, 2003, Andrew W. Moore Support Vector Machines: Slids 42




Harder 1-dimensional dataset

Remember how
permitting non-
linear basis
functions made
linear regression
so much nicer?

N Let's permit them
. here too
* o] e 2
X=0 z, = (x;.x;)

Copyright & 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 43




Harder 1-dimensional dataset

Remember how
permitting non-
linear basis
functions made
inear regression
so much nicer?

Let’s permit them
here too

2
;r—_/ Z, :(x,qr-.»x,q-)

Copyright & 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 44




Common SVM basis functions

Z, = ( polynomial terms of x, of degree 1 to g)

z, = ( radial basis functions of x, )
[j1=0,(x;)=K 11:(|Kk_':"'|w
z.[j]=9,.(x;,)=KernelFn s

s

z, = ( sigmoid functions of x, )
This is sensible.
Is that the end of the story?

No...there's one more trick!

Copyright & 2001, 2003, Andrew W. Moore Support Viector Machines: Slide 45




P(x) =

1 | f Constant Term
V2x, )
"u'IE.T_-_\. Lo, .
_ ~ Linear Terms
W'IE.TJ L
- =
X
2 Pure
h ~Quadratic
. Terms
X
Fxx, | )
"-.I'IEX'_X;
S, ‘Quad ratic
S C}ﬂss—Terms
N 2xx,
|V 2xp x|

Copyright & 2001, 2003, Andrew \W. Moore

Quadratic
Basis Functions

Number of terms (assuming m input
dimensions) = (m+2)-choose-2

= (m+2)(m+1)/2

= (as near as makes no difference) m?/2

You may be wondering what those
2 's are doing.

«YYou should be happy that they do no
harm

«You'll find out why theyre there
SooN.

Support Vector Machines: Slide 48




SVM tool

Example from Lin, Chih-Jden’s
slides



-

Outline

#® Support vector classification
# [wo practical example

#® Support vector regression
# Discussion and conclusions

.—p.2/73



Data Classification

o N

# QGiven training data in different classes (labels known)
Predict test data (labels unknown)
# Examples
s Handwritten digits recognition
s Spam filtering
s Text classification
s Prediction of signal peptide in human secretory
proteins

# Training and testing

o |

.—p.3/73
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® Methods:
» Nearest Neighbor
» Neural Networks
» Decision Tree

#® Support vector machines: a new method
# Becoming more and more popular

. —p.4l73



°

Why Support Vector Machines
-

Existing methods:
Nearest neighbor, Neural networks, decision trees.

SVM: a new one

In my opinion, after careful data pre-processing
Appropriately use NN or SVM =- similar accuracy

But, users may not use them properly

The chance of SVM

» Easier for users to appropriately use it

» The ambition: replacing NN on some applications

|

.—p.5/73



Support Vector Classification

-

# T[raining vectors : x;,i=1,...,1

# Consider a simple case with two classes:
Define a vector y

L 1 ifx;inclass 1
77 21 ifx; inclass 2,

# A hyperplane which separates all data

.—p.6/73



(WTXZ') +b>0
(WTXZ') +b6 <0

® A separating hyperplane: w!x +b =0

ifyi:1
ifyz':—l

.—p.7/73



» Decision function f(x) = sign(w!x + b), x: test data
Variables: w and b : Need to know coefficients of a
plane

Many possible choices of w and b

# Select w, b with the maximal margin.
Maximal distance between w'x + b= +1

(wix)+b>1 ify; =1
(wix)+b< -1 ify;=—1

.—p.8/73



# Distance between wix +b=1and —1:

2/|wl = 2/vw'w
® max?2/||w| = minw!w/2
1
min = —w!w

w,b

subjectto  yi((w'x;) +b) > 1,
i=1....1

.—p.9/73



Higher Dimensional Feature Spaces

o N

o Earlier we tried to find a linear separating hyperplane
Data may not be linear separable

# Non-separable case: allow training errors

1

z
vlfv%% §WTW +C ; &
yi(whx;) +0) > 1§,
>0, 1=1,....1
® & >1,x; of the separating plane

#® (' large penalty parameter, most &; are zero

o |

.—p.10/73



o N

#® Nonlinear case: linear separable in other spaces 7

# Higher dimensional ( maybe infinite ) feature space

d(x) = (P1(x), P2(x), - - ).

o |

—p.11/73



® Example: x ¢ R? ¢(x) € RY

$(x) = (1,V2x1, V2w, V213,27,
75, 75, V22179, V27173, V 22973)

# A standard problem [Cortes and Vapnik, 1995]:

L p
' & E
vrgléré 2W w + &

subjectto  y;(w! ¢(xi)+b)21—§i, >0 i=1,....1

|

.—p.12/73



Finding the Decision Function

-

#® w: a vector in a high dimensional space = maybe
infinite variables

#® The dual problem

, 1
min —al'Qa — el o
o 2

subjectto 0< o <C,i=1,...,1

yTa = 0,

where Qz’j = yiyj¢(x7;)T¢(Xj) and e = [1, Cee 1]T

W = 22:1 oY O (X;)

-

.—p.13/73



o N

# Primal and dual : optimization theory. Not trivial.
Infinite dimensional programming.

# A finite problem:
#variables = #training data

® Qi = yy,;o(x) ! ¢(x;) needs a closed form
Efficient calculation of high dimensional inner products
Kernel trick, K(XZ', Xj) — ¢(Xi)T¢(Xj)

o |

.—p.14/73
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® Example: x; € R?, ¢(x;) € RY

o(xi) = (1,V2(w:)1, V2(i)2, V2(w1)3, ()7,
(20)3: (20)3, V2(w:)1(x0)2, V2(2i)1 (2:)3, V2(i)2(2:)3

Then ¢(x;)" o(x;) = (1 +x/x;)*.
® Popular methods: K(x;,x;) =

e Ixi—x1”"  (Radial Basis Function)

(x!'x;/a + b)* (Polynomial kernel)



K
K
K

Kernel Tricks

Kernel: K(x,y) = ¢(x)" ¢(y)
No need to explicitly know ¢(x)

Common kernels K(x;,x;) =

e Ixi—x1”  (Radial Basis Function)

(x!'x;/a + b)* (Polynomial kernel)

They can be inner product in infinite dimensional space
Assume = € R' and v > 0.

|

.—p.16/73



—y||lzi—z;]? Y(@i—a;)* _ o=y 2Tz —ye;

€ =€
_ e_wg_wg(le 29T n (2ywix5)° . (2yziz;)°

1! 2! 3!

U S |2y /2y 27)? 27)?

(27)% 3 [(29)? 3
3\ T )

= o) p(zy),

where

_|_)

_|_

2 2 2v)2 2v)3
L ¢(£E) _ e—fy:v [1’ 1_737’ ( ;) 372, ( ;) $37._.]T' J
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Decision function

-

# w: maybe an infinite vector
#» At optimum

w =30 i (x;)

® Decision function

w! (%) + b

;
= > awid(xi) o(x) + b
i=1

l
= Y owiK(x;,x) +b
i=1

L No need to have w



-

® > (: 1stclass, < 0: 2nd class
N Only ¢(XZ) of a; > 0 used

a; > 0 = support vectors

o |

.—p.19/73



Support Vectors: More Important Data
- , , , , -

1.2
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A Toy Example

# Two training data in R':

JAN

)
= u
1

0

# What is the separating hyperplane ?



-

Primal Problem

® x1=0,x9=1withy =[-1,1] .
# Primal problem

. L 5
1min — W
w,b

subject to w-1+b2>1,

—1(w-0+0) > 1.



°

—b>landw>1—-0b>2.
For any (w, b) satisfying two inequality constraints

w > 2
We are minimizing w?
The smallest possibility is w = 2.

(w,b) = (2,—1) is the optimal solution.

The separating hyperplane 2z — 1 =0
In the middle of the two training data:

N o O
0 r=1/2 1

-

|

.—p.23/73



Dual Problem
-

® Formula derived before

Lo l
, 1
min D wogyiyio(x) o(x5) =
i=1

l
aeh i=1 j=1

z
subjectto ;> 0,i=1,...,1, and ) a;y; =0.
1=1

# Get the objective function

x1x1 =0,x1 %9 =0

ngl = O,X%Xz =1

-

|

.~ p.24/73



o N

# Obijective function

1

504%—(041+042)

1[ } _O O- _041_ [1 1} _041_
= —|la] « —

2 ! : 0 1 92 2

® Constraints

o |

.—p.25/73



ag = «aq to the objective function,

1 2
- - 2
20[1 a9

Smallest value at a; = 2.
o as well

If smallest value < 0
clippedto O

|

.~ p.26/73
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.

= T = T = N =Ry =
e e e e e o

Let Us Try A Practical Example

# A problem from astroparticle physics

OO O O O O O o

# Training and testing sets available: 3,089 and 4,000

e L e i

N OO NN R O DN

.617300e+01
.707397e+01
.725900e+01
.177940e+01
.133997e+01
.537500e+01
.956200e+01

N NN DN DNDNDDN
= o= N R = N O

.886700e+01
.214040e+02
.734360e+02
.249531e+02
.935699e+02
.792220e+02
.913570e+02

® Data format is an issue

w W w w w w w
(X ] (X ]

1
:1
9

.538853e-01
.423918e-01
.654953e-01
.901439%e-02

S

1
1
1
1

t-1.894697e-01 4:1.251225e+02
:8.607959e-02 4:1.229114e+02
t-1.298053e-01 4:1.250318e+02
:1

.527150e+02
.605402e+02
.112273e+02
.034076e+02

|
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°

°

°

SVM software: LIBSVM
-

http://www.csie.ntu.edu.tw/~cjlin/libsvm
Now one of the most used SVM software
Installation

On Unix:
Download zip file and make

On Windows:

s Download zip file and make
o c:nmake -f Makefile.win
» Windows binaries included in the package

|

.—p.28/73


http://www.csie.ntu.edu.tw/~cjlin/libsvm

Usage of LIBSVM

o N

# Training
Usage: svm-train [options] training set file
options:
-s svmm_type : set type of SVM (default 0)
0 -- C-SVC
1l -- nu-SVC
2 -- one-class SVM
3 —- epsilon-SVR
4 —-- nu-SVR
-t kernel type : set type of kernel function
# Testing

Usage: svm-predict test file model file OTETW

.

.- p.29/73



Training and Testing

f # Training T

S./svm-train train.l

optimization finished, #iter = 6131
nu = 0.606144
obj = -1061.528899, rho = -0.495258

nSvV = 3053, nBSV = 724
Total nSV = 3053

# Testing

S./svm-predict test.l train.l.model
test.l.predict

Accuracy = 66.925% (2677/4000)

o |

.~ p.30/73



L

What does this Output Mean
-

obj: the optimal objective value of the dual SVM
rho: —b in the decision function

nSV and nBSV: number of support vectors and
bounded support vectors

(i.e., a; = O)

nu-svm is a somewhat equivalent form of C-SVM where
C is replaced by v.

.—p.31/73



Why this Fails
- -

# After training, nearly 100% support vectors
# Training and testing accuracy different

$./svm-predict train.l train.l.model o
Accuracy = 99.7734% (3082/3089)

® Most kernel elements:

1 ifi=j
Kij . 2
— 0 if7#£ 7.

o |

.—p.32/73



Data Scaling
f o Without scaling T

Attributes in greater numeric ranges may dominate

# Example:
height sex
X1 150 F
X9 180 M
X3 185 M
and

y1 =0,y =1,y3 = 1.

o |

.—p.33/73



f #® The separating hyperplane

# Decision strongly depends on the first attribute
# What if the second is more important

.—p.34/73



-

# Linearly scale the first to [0, 1] by:

1st attribute — 150
185 — 150 ’

#® New points and separating hyperplane

A .
X1 e
/
/
/
/
/
/
/
/
7/

OO
X2X3

o |

.—p.35/73
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# Transformed to the original space,

—
—
—
—
—
—
—
—
—
—
—
—
-—
—

#® The second attribute plays a role

o |

.~ p.36/73



After Data Scaling

o N

S./svm-scale -1 -1 -u 1 train.l > train.l.scale
S./svm-scale -1 -1 -u 1 test.l > test.l.scale

® A common mistake

.—p.37/73



o N

$./svm-scale -s rangel train.l > train.l.sca

$./svm-scale -r rangel test.l > test.l.scale

$./svm-train train.l.scale

S./svm-predict test.l.scale train.l.scale.mo
test.l.predict

— Accuracy = 96.15%

# Same factor on training and testing

#® We store the scaling factor used in training
and apply them for testing set

o |

.~ p.38/73



More on Training

o N

# Train scaled data and then prediction

$./svm-train train.l.scale

$S./svm-predict test.l.scale train.l.scale.mo
test.l.predict

— Accuracy = 96.15%

# Training accuracy now is

S./svm-predict train.l.scale train.l.scale.m
Accuracy = 96.439% (2979/3089) (classificati:

o Default parameter
® (=1,v=0.25

o |

.—p.39/73
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Different Parameters

-

# If we use C = 20,~ =400

$./svm-train -c 20 -g 400 train.l.scale
. /svm-predict train.l.scale train.l.scale.mo
Accuracy = 100% (3089/3089) (classification)

#® 100% training accuracy but

S./svm-predict test.l.scale train.l.scale.mo
Accuracy = 82.7% (3308/4000) (classification

# Very bad test accuracy

o Overfitting happens

|
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Overfitting and Underfitting

# When training and predicting a data,
we should

» Avoid underfitting: small training error
s Avoid overfitting: small testing error

-



@® and A: training; () and A\: testing




Overfitting
- -

# Intheory
You can easily achieve 100% training accuracy

#® Thisis useless
# Surprisingly
Many application papers did this

.~ p.43/73



°

Parameter Selection

Is very important
Now parameters are
C, kernel parameters
Example:

— % —x;||?

~v of e
a,b,d of (x! x;/a+ b)

How to select them ?
So performance better ?

|
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Performance Evaluation

o N

# Training errors not important; only test errors count

® [training data, x; € R™,y; € {+1,—-1},:=1,...,l,a
learning machine:

r— f(x,a), f(x,a)=10r —1.

Different «: different machines
#® The expected test error (generalized error)

Ro) = [ 5ly = fxa)ldPx.g)

y: class of x (i.e. 1 or -1)

o |

.— p.45/73



o R N

® P(x,y) unknown, empirical risk (training error):

emp 2l Z ‘yz — X’u

® 2|y — f(xi, )| : loss, choose 0 < 5 < 1, with probability
atleast 1 — n:

R(a) < Remp(a) + another term

» A good pattern recognition method:
minimize both terms at the same time

» Reppla) — 0
L another term — large J

.~ p.46/73



Performance Evaluation (Cont.)

o N

# |n practice
Available data = training and validation
# Train the training
# Test the validation
# k-fold cross validation:

s Data randomly separated to £ groups.
s Eachtime k£ — 1 as training and one as testing



CV and Test Accuracy
f # If we select parameters so that CV is the highest, T
» Does CV represent future test accuracy ?
s Slightly different

# If we have enough parameters, we can achieve 100%
CV as well

s €.g. more parameters than # of training data
s But test accuracy may be different

® So

o Available data with class labels
s = training, validation, testing

o |
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-

# Using CV on training + validation
# Predict testing with the best parameters from CV

o |

.- p.49/73



. Conduct simple scaling on the data

°

o &~ WD

A Simple Procedure

-

Consider RBF kernel K (z,y) = e~ le—4l’

Use cross-validation to find the best parameter C' and ~
Use the best C and ~ to train the whole training set
Test

Best C' and ~ by training £ — 1 and the whole ?
In theory, a minor difference

No problem in practice

|
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Parameter Selection Procedure in LIBSVM

o N

# grid search + CV

$./grid.py train.l train.l.scale
[local] -1 -7 85.1408 (best ¢=0.5, g=0.0078125, rate=85.1408)
[local] 5 -7 95.4354 (best ¢=32.0, g=0.0078125, rate=95.4354)

# grid.py: a python script in the python directory of LIBSVM

o |
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-

# Easy parallelization on a cluster T

$./grid.py train.l train.l.scale

[linux1l] -1 -7 85.1408 (best c=0.5, g=0.0078125, rate=85.1408)
[linux7] 5 -7 95.4354 (best ¢=32.0, g=0.0078125, rate=95.4354)

o |
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Parallel Parameter Selection

-

# Specify machine names in grid.py

telnet workers = []

ssh workers = ['linuxl’,’linuxl’,’linux2’,
linux3’]
nr local worker = 1

linux1: more powerful or two CPUs
A simple centralized control

Load balancing not a problem

We can use other tools

Too simple so not consider them

|
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Contour of Parameter Selection
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Simple script in LIBSVM
- -

# easy.py: a script for dummies

Spython easy.py train.l test.l
Scaling training data...

Cross validation...

Best ¢=2.0, g=2.0

Training...

Scaling testing data...
Testing...

Accuracy = 96.875% (3875/4000)

o |
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Example: Engine Misfire
Detection



o o

°

Problem Description

.

First problem of [JCNN Challenge 2001, data from For
Given time series length 7' = 50, 000
The kth data

21(k), x2(k), 23(k), 24(k), x5(k), y (k)

y(k) = +1: output, affected only by z1(k), ..., z4(k)
rs(k) = 1, kth data considered for evaluating accuracy
50,000 training data, 100,000 testing data (in two sets)

|
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-

® z1(k): periodically nine Os, one 1, nine 0s, one 1, and so

f # Past and future information may affect y(%)

on.

o Example:
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® 14(k) more important

.
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Background: Engine Misfire Detection

-

9

°

-

How engine works
Air-fuel mixture injected to cylinder
intact, compression, combustion, exhaustion

Engine misfire: a substantial fraction of a cylinder’s
air-fuel mixture fails to ignite

Frequent misfires: pollutants and costly replacement
On-board detection:

Engine crankshaft rational dynamics with a position
sensor

Training data: from some expensive experimental
environment

|
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Encoding Schemes

f For SVM: each data is a vector

°

® 11(k): periodically nine 0s, one 1, nine Os, one 1, ...

s 10 binary attributes
LEl(/{ — 5), e ,:Cl(k + 4) for the kth data

s z1(k): anintegerin 1to 10
» Which one is better
» We think 10 binaries better for SVM
® 14(k) more important
Including z4(k — 5),...,x4(k + 4) for the kth data

# Each training data: 22 attributes

|
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°

Training SVM
-

Selecting parameters; generating a good model for
prediction

RBF kernel K (x;,x;) = ¢(x;)Tp(x;) = e Vxi=xil’
Two parameters: v and C

Five-fold cross validation on 50,000 data

Data randomly separated to five groups.

Each time four as training and one as testing

Use C = 2% ~ = 22 and train 50,000 data for the final
model

|
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-

-

#® Test set 1: 656 errors, Test set 2: 637 errors

# About 3000 support vectors of 50,000 training data
A good case for SVM

#® This is just the outline. There are other details.

# |t is essential to do model selection.

|
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Dual Problems for Other Formulas

o N

# So we think that for any optimization problem
Lagrangian dual exists

# This is wrong

® Remember we calculate

[
1
min 5WTW - 2 o[y (Wl o(x;) — 1]

0
a—wL(W, b, a) = 0.



-

# Note that
f'(z) = 0 & 2z minimum

IS wrong

® Example
f(z) = 2°, 2z = 0 not minimum
# This function must satisfy certain conditions
#® Some papers wrongly derived the dual of their
new formulations without checking conditions

|
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-

» [2,2]! satisfies constraints 0 < a1 and 0 < s
t is optimal

® Primal-dual relation

w = Y1a1T] + Y2029
= 2

® The same as solving the primal

|
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Multi-class Classification

-

® [ classes
# One-against-all: Train & binary SVMs:

Istclass vs. (2— k)thclass
2nd class vs. (1,3 — k)th class

® Lk decision functions



-

» Select the index with the largest (w?)! ¢(x) + b;

|
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Multi-class Classification (Cont.)

o N

# One-against-one: train k(k — 1)/2 binary SVMs
(1,2),(1,3),...,(1,k),(2,3),(2,4),...,(k—1,k)
Select the one with the largest vote

# This is the method used by LIBSVM

# Try a 4-class problem
6 binary SVMs



.

Slibsvm-2.5/svm-train bsvm-2.05/vehicle.scale

optimization finished,
obj = -142.552559, rho
nSvV = 194, nBSV = 183

optimization finished,
obj = -149.912202, rho
nSvV = 227, nBSV = 217

optimization finished,
obj = -139.655613, rho
nSvV = 186, nBSV = 177

optimization finished,
obj = -185.161735, rho
nSvV = 253, nBSV = 244

optimization finished,
obj = -378.264371, rho
nSvV = 405, nBSV = 394

optimization finished,
obj = -186.182860, rho
nSvV = 261, nBSV = 247

Total nSV = 739

#iter = 173
= 0.748453

#iter = 330
= -0.786410

#iter = 169
= 0.998277

#iter = 268
= =-0.674739

#iter = 477
= 0.177314

#iter = 337
= 1.104943

-

|
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-

#® There are many other methods
A comparison in [Hsu and Lin, 2002]
o For a software

We select one which is generally good but not always
the best

# Finally | chose 1 vs. 1
Similar accuracy to others
Shortest training
A bit longer on testing than 1 vs. all

o |
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Why Shorter Training Time
-

1vs. 1

k(k —1)/2 problems, each 2//k data on average
1 vs. all

k problems, each [ data

If solving the optimization problem:

polynomial of the size with degree d

Their complexities

H6=00( (%)) e, sot




Conclusions

-

# Dealing with data is interesting
especially if you get good accuracy

#® Some basic understandings are essential when
applying methods

e.g. the importance of validation
#® No method is the best for all data
Deep understanding of one or two methods very helpful

o |
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