
Support Vector Machine
Tutorial

Wu, Shih-Hung (Ph.D)
Dept. of CSIE, CYUT



References

• Book
– Duda etal. “pattern classification”, Ch5

• Slides
– Moore, Andrew (CMU)

• http://www.cs.cmu.edu/~awm/tutorials
– Lin, Chih-Jen (NTU)

• http://www.csie.ntu.edu.tw/~cjlin/talks.html



5.11 Support Vector Machines

• Popular, easy-to-use, available

• Support Vector
• Data is mapped to a high dimension
• SVM training

• Example 2 
– SVM for the XOR Problem



Optimal hyperplane



Mapping to higher dimensional 
space



SVM introduction

Example from Andrew Moor’s 
slides



















How to deal with Noisy Data?









Mapping to a higher Dimensional 
space

















SVM tool

Example from Lin, Chih-Jen’s
slides



Outline

Support vector classification
Two practical example
Support vector regression
Discussion and conclusions

. – p.2/73



Data Classification

Given training data in different classes (labels known)
Predict test data (labels unknown)
Examples

Handwritten digits recognition
Spam filtering
Text classification
Prediction of signal peptide in human secretory
proteins

Training and testing

. – p.3/73



Methods:
Nearest Neighbor
Neural Networks
Decision Tree

Support vector machines: a new method
Becoming more and more popular

. – p.4/73



Why Support Vector Machines

Existing methods:
Nearest neighbor, Neural networks, decision trees.
SVM: a new one
In my opinion, after careful data pre-processing
Appropriately use NN or SVM ⇒ similar accuracy
But, users may not use them properly
The chance of SVM

Easier for users to appropriately use it
The ambition: replacing NN on some applications

. – p.5/73



Support Vector Classification

Training vectors : xi, i = 1, . . . , l

Consider a simple case with two classes:
Define a vector y

yi =

{

1 if xi in class 1
−1 if xi in class 2,

A hyperplane which separates all data

. – p.6/73



w
T
x + b =

⎡

⎢

⎣

+1

0

−1

⎤

⎥

⎦

A separating hyperplane: w
T
x + b = 0

(wT
xi) + b > 0 if yi = 1

(wT
xi) + b < 0 if yi = −1

. – p.7/73



Decision function f(x) = sign(wT
x + b), x: test data

Variables: w and b : Need to know coefficients of a
plane
Many possible choices of w and b

Select w, b with the maximal margin.
Maximal distance between w

T
x + b = ±1

(wT
xi) + b ≥ 1 if yi = 1

(wT
xi) + b ≤ −1 if yi = −1

. – p.8/73



Distance between w
T
x + b = 1 and −1:

2/∥w∥ = 2/
√

wTw

max 2/∥w∥ ≡ minw
T
w/2

min
w,b

1

2
w

T
w

subject to yi((w
T
xi) + b) ≥ 1,

i = 1, . . . , l.

. – p.9/73



Higher Dimensional Feature Spaces

Earlier we tried to find a linear separating hyperplane
Data may not be linear separable
Non-separable case: allow training errors

min
w,b,ξ

1

2
w

T
w + C

l
∑

i=1

ξi

yi((w
T
xi) + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . , l

ξi > 1, xi not on the correct side of the separating plane
C: large penalty parameter, most ξi are zero

. – p.10/73



Nonlinear case: linear separable in other spaces ?

Higher dimensional ( maybe infinite ) feature space

φ(x) = (φ1(x),φ2(x), . . .).

. – p.11/73



Example: x ∈ R3,φ(x) ∈ R10

φ(x) = (1,
√

2x1,
√

2x2,
√

2x3, x
2
1,

x2
2, x

2
3,
√

2x1x2,
√

2x1x3,
√

2x2x3)

A standard problem [Cortes and Vapnik, 1995]:

min
w,b,ξ

1

2
w

T
w + C

l
∑

i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , l.

. – p.12/73



Finding the Decision Function

w: a vector in a high dimensional space ⇒ maybe
infinite variables
The dual problem

min
α

1

2
αTQα − e

T α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l

y
T α = 0,

where Qij = yiyjφ(xi)Tφ(xj) and e = [1, . . . , 1]T

w =
∑l

i=1 αiyiφ(xi)

. – p.13/73



Primal and dual : optimization theory. Not trivial.
Infinite dimensional programming.
A finite problem:
#variables = #training data
Qij = yiyjφ(xi)T φ(xj) needs a closed form
Efficient calculation of high dimensional inner products
Kernel trick, K(xi,xj) = φ(xi)T φ(xj)

. – p.14/73



Example: xi ∈ R3,φ(xi) ∈ R10

φ(xi) = (1,
√

2(xi)1,
√

2(xi)2,
√

2(xi)3, (xi)
2
1,

(xi)
2
2, (xi)

2
3,
√

2(xi)1(xi)2,
√

2(xi)1(xi)3,
√

2(xi)2(xi)3),

Then φ(xi)Tφ(xj) = (1 + x
T
i xj)2.

Popular methods: K(xi,xj) =

e−γ∥xi−xj∥
2

, (Radial Basis Function)
(xT

i xj/a + b)d (Polynomial kernel)

. – p.15/73



Kernel Tricks

Kernel: K(x,y) = φ(x)Tφ(y)

No need to explicitly know φ(x)

Common kernels K(xi,xj) =

e−γ∥xi−xj∥
2

, (Radial Basis Function)
(xT

i xj/a + b)d (Polynomial kernel)

They can be inner product in infinite dimensional space
Assume x ∈ R1 and γ > 0.

. – p.16/73



e−γ∥xi−xj∥
2

= e−γ(xi−xj)
2

= e−γx2

i +2γxixj−γx2

j

= e−γx2

i−γx2

j
(

1 +
2γxixj

1!
+

(2γxixj)2

2!
+

(2γxixj)3

3!
+ · · ·

)

= e−γx2

i−γx2

j
(

1 · 1 +

√

2γ

1!
xi ·

√

2γ

1!
xj +

√

(2γ)2

2!
x2

i ·
√

(2γ)2

2!
x2

j

+

√

(2γ)3

3!
x3

i ·
√

(2γ)3

3!
x3

j + · · ·
)

= φ(xi)
Tφ(xj),

where

φ(x) = e−γx2

[1,

√

2γ

1!
x,

√

(2γ)2

2!
x2,

√

(2γ)3

3!
x3, · · · ]T .

. – p.17/73



Decision function

w: maybe an infinite vector
At optimum

w =
∑l

i=1 αiyiφ(xi)

Decision function

w
Tφ(x) + b

=
l

∑

i=1

αiyiφ(xi)
T φ(x) + b

=
l

∑

i=1

αiyiK(xi,x) + b

No need to have w

. – p.18/73



> 0: 1st class, < 0: 2nd class
Only φ(xi) of αi > 0 used

αi > 0 ⇒ support vectors

. – p.19/73



Support Vectors: More Important Data

−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

. – p.20/73



A Toy Example

Two training data in R1:

△
0

⃝
1

What is the separating hyperplane ?

. – p.21/73



Primal Problem

x1 = 0,x2 = 1 with y = [−1, 1]T .
Primal problem

min
w,b

1

2
w2

subject to w · 1 + b ≥ 1, (1)
−1(w · 0 + b) ≥ 1. (2)

. – p.22/73



−b ≥ 1 and w ≥ 1 − b ≥ 2.
For any (w, b) satisfying two inequality constraints

w ≥ 2

We are minimizing 1
2w2

The smallest possibility is w = 2.
(w, b) = (2,−1) is the optimal solution.
The separating hyperplane 2x − 1 = 0
In the middle of the two training data:

△
0

⃝
1

•
x = 1/2

. – p.23/73



Dual Problem

Formula derived before

min
α∈Rl

1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjφ(xi)
T φ(xj) −

l
∑

i=1

αi

subject to αi ≥ 0, i = 1, . . . , l, and
l

∑

i=1

αiyi = 0.

Get the objective function

x
T
1 x1 = 0,xT

1 x2 = 0

x
T
2 x1 = 0,xT

2 x2 = 1

. – p.24/73



Objective function

1

2
α2

1 − (α1 + α2)

=
1

2

[

α1 α2

]

[

0 0

0 1

] [

α1

α2

]

−
[

1 1
]

[

α1

α2

]

.

Constraints

α1 − α2 = 0, 0 ≤ α1, 0 ≤ α2.

. – p.25/73



α2 = α1 to the objective function,

1

2
α2

1 − 2α2

Smallest value at α1 = 2.
α2 as well
If smallest value < 0

clipped to 0

. – p.26/73



Let Us Try A Practical Example

A problem from astroparticle physics

1.0 1:2.617300e+01 2:5.886700e+01 3:-1.894697e-01 4:1.251225e+02

1.0 1:5.707397e+01 2:2.214040e+02 3:8.607959e-02 4:1.229114e+02

1.0 1:1.725900e+01 2:1.734360e+02 3:-1.298053e-01 4:1.250318e+02

1.0 1:2.177940e+01 2:1.249531e+02 3:1.538853e-01 4:1.527150e+02

1.0 1:9.133997e+01 2:2.935699e+02 3:1.423918e-01 4:1.605402e+02

1.0 1:5.537500e+01 2:1.792220e+02 3:1.654953e-01 4:1.112273e+02

1.0 1:2.956200e+01 2:1.913570e+02 3:9.901439e-02 4:1.034076e+02

Training and testing sets available: 3,089 and 4,000
Data format is an issue

. – p.27/73



SVM software: LIBSVM

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Now one of the most used SVM software
Installation
On Unix:
Download zip file and make
On Windows:

Download zip file and make
c:nmake -f Makefile.win

Windows binaries included in the package

. – p.28/73

http://www.csie.ntu.edu.tw/~cjlin/libsvm


Usage of LIBSVM

Training
Usage: svm-train [options] training_set_file [model_file]
options:
-s svm_type : set type of SVM (default 0)

0 -- C-SVC
1 -- nu-SVC
2 -- one-class SVM
3 -- epsilon-SVR
4 -- nu-SVR

-t kernel_type : set type of kernel function (default

Testing
Usage: svm-predict test_file model_file output_file

. – p.29/73



Training and Testing

Training
$./svm-train train.1
......*
optimization finished, #iter = 6131
nu = 0.606144
obj = -1061.528899, rho = -0.495258
nSV = 3053, nBSV = 724
Total nSV = 3053

Testing
$./svm-predict test.1 train.1.model
test.1.predict

Accuracy = 66.925% (2677/4000)

. – p.30/73



What does this Output Mean

obj: the optimal objective value of the dual SVM
rho: −b in the decision function
nSV and nBSV: number of support vectors and
bounded support vectors
(i.e., αi = C).
nu-svm is a somewhat equivalent form of C-SVM where
C is replaced by ν.

. – p.31/73



Why this Fails

After training, nearly 100% support vectors
Training and testing accuracy different
$./svm-predict train.1 train.1.model o
Accuracy = 99.7734% (3082/3089)

Most kernel elements:

Kij

{

= 1 if i = j,

→ 0 if i ̸= j.

. – p.32/73



Data Scaling

Without scaling
Attributes in greater numeric ranges may dominate
Example:

height sex
x1 150 F
x2 180 M
x3 185 M

and
y1 = 0, y2 = 1, y3 = 1.

. – p.33/73



The separating hyperplane

x1

x2x3

Decision strongly depends on the first attribute
What if the second is more important

. – p.34/73



Linearly scale the first to [0, 1] by:

1st attribute − 150

185 − 150
,

New points and separating hyperplane

x1

x2x3

. – p.35/73



Transformed to the original space,

x1

x2x3

The second attribute plays a role

. – p.36/73



After Data Scaling

A common mistake

$./svm-scale -l -1 -u 1 train.1 > train.1.scale
$./svm-scale -l -1 -u 1 test.1 > test.1.scale

. – p.37/73



Same factor on training and testing
$./svm-scale -s range1 train.1 > train.1.scale
$./svm-scale -r range1 test.1 > test.1.scale
$./svm-train train.1.scale
$./svm-predict test.1.scale train.1.scale.model
test.1.predict

→ Accuracy = 96.15%

We store the scaling factor used in training
and apply them for testing set

. – p.38/73



More on Training

Train scaled data and then prediction
$./svm-train train.1.scale
$./svm-predict test.1.scale train.1.scale.model
test.1.predict

→ Accuracy = 96.15%

Training accuracy now is
$./svm-predict train.1.scale train.1.scale.model
Accuracy = 96.439% (2979/3089) (classification)

Default parameter
C = 1, γ = 0.25

. – p.39/73



Different Parameters

If we use C = 20, γ = 400

$./svm-train -c 20 -g 400 train.1.scale
./svm-predict train.1.scale train.1.scale.model
Accuracy = 100% (3089/3089) (classification)

100% training accuracy but
$./svm-predict test.1.scale train.1.scale.model
Accuracy = 82.7% (3308/4000) (classification)

Very bad test accuracy
Overfitting happens

. – p.40/73



Overfitting and Underfitting

When training and predicting a data,
we should

Avoid underfitting: small training error
Avoid overfitting: small testing error

. – p.41/73



● and▲: training;⃝ and△: testing

. – p.42/73



Overfitting

In theory
You can easily achieve 100% training accuracy
This is useless
Surprisingly
Many application papers did this

. – p.43/73



Parameter Selection

Is very important
Now parameters are
C, kernel parameters
Example:

γ of e−γ∥xi−xj∥
2

a, b, d of (xT
i xj/a + b)d

How to select them ?
So performance better ?

. – p.44/73



Performance Evaluation

Training errors not important; only test errors count
l training data, xi ∈ Rn, yi ∈ {+1,−1}, i = 1, . . . , l, a
learning machine:

x → f(x,α), f(x,α) = 1 or − 1.

Different α: different machines
The expected test error (generalized error)

R(α) =

∫

1

2
|y − f(x,α)|dP (x, y)

y: class of x (i.e. 1 or -1)

. – p.45/73



P (x, y) unknown, empirical risk (training error):

Remp(α) =
1

2l

l
∑

i=1

|yi − f(xi,α)|

1
2 |yi − f(xi,α)| : loss, choose 0 ≤ η ≤ 1, with probability
at least 1 − η:

R(α) ≤ Remp(α) + another term

A good pattern recognition method:
minimize both terms at the same time
Remp(α) → 0
another term → large

. – p.46/73



Performance Evaluation (Cont.)

In practice
Available data ⇒ training and validation
Train the training
Test the validation
k-fold cross validation:

Data randomly separated to k groups.
Each time k − 1 as training and one as testing

. – p.47/73



CV and Test Accuracy

If we select parameters so that CV is the highest,
Does CV represent future test accuracy ?
Slightly different

If we have enough parameters, we can achieve 100%
CV as well

e.g. more parameters than # of training data
But test accuracy may be different

So
Available data with class labels
⇒ training, validation, testing

. – p.48/73



Using CV on training + validation
Predict testing with the best parameters from CV

. – p.49/73



A Simple Procedure

1. Conduct simple scaling on the data
2. Consider RBF kernel K(x, y) = e−γ∥x−y∥2

3. Use cross-validation to find the best parameter C and γ

4. Use the best C and γ to train the whole training set
5. Test

Best C and γ by training k − 1 and the whole ?
In theory, a minor difference
No problem in practice

. – p.50/73



Parameter Selection Procedure in LIBSVM

grid search + CV

$./grid.py train.1 train.1.scale

[local] -1 -7 85.1408 (best c=0.5, g=0.0078125, rate=85.1408)

[local] 5 -7 95.4354 (best c=32.0, g=0.0078125, rate=95.4354)

.

.

.

grid.py: a python script in the python directory of LIBSVM

. – p.51/73



Easy parallelization on a cluster
$./grid.py train.1 train.1.scale

[linux1] -1 -7 85.1408 (best c=0.5, g=0.0078125, rate=85.1408)

[linux7] 5 -7 95.4354 (best c=32.0, g=0.0078125, rate=95.4354)

.

.

.

. – p.52/73



Parallel Parameter Selection

Specify machine names in grid.py
telnet_workers = []
ssh_workers = [’linux1’,’linux1’,’linux2’,
’linux3’]
nr_local_worker = 1

linux1: more powerful or two CPUs
A simple centralized control
Load balancing not a problem
We can use other tools
Too simple so not consider them

. – p.53/73



Contour of Parameter Selection
d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2     98.8

    98.6
    98.4
    98.2
      98
    97.8
    97.6
    97.4
    97.2
      97

1 2 3 4 5 6 7

lg(C)

-2

-1

0

1

2

3

lg(gamma)

. – p.54/73



Simple script in LIBSVM

easy.py: a script for dummies
$python easy.py train.1 test.1
Scaling training data...
Cross validation...
Best c=2.0, g=2.0
Training...
Scaling testing data...
Testing...
Accuracy = 96.875% (3875/4000)

. – p.55/73



Example: Engine Misfire
Detection

. – p.56/73



Problem Description

First problem of IJCNN Challenge 2001, data from Ford
Given time series length T = 50, 000

The kth data

x1(k), x2(k), x3(k), x4(k), x5(k), y(k)

y(k) = ±1: output, affected only by x1(k), . . . , x4(k)

x5(k) = 1, kth data considered for evaluating accuracy
50,000 training data, 100,000 testing data (in two sets)

. – p.57/73



Past and future information may affect y(k)

x1(k): periodically nine 0s, one 1, nine 0s, one 1, and so
on.
Example:

0.000000 -0.999991 0.169769 0.000000 1.000000
0.000000 -0.659538 0.169769 0.000292 1.000000
0.000000 -0.660738 0.169128 -0.020372 1.000000
1.000000 -0.660307 0.169128 0.007305 1.000000
0.000000 -0.660159 0.169525 0.002519 1.000000
0.000000 -0.659091 0.169525 0.018198 1.000000
0.000000 -0.660532 0.169525 -0.024526 1.000000
0.000000 -0.659798 0.169525 0.012458 1.000000

x4(k) more important

. – p.58/73



Background: Engine Misfire Detection

How engine works
Air-fuel mixture injected to cylinder
intact, compression, combustion, exhaustion
Engine misfire: a substantial fraction of a cylinder’s
air-fuel mixture fails to ignite
Frequent misfires: pollutants and costly replacement
On-board detection:
Engine crankshaft rational dynamics with a position
sensor
Training data: from some expensive experimental
environment

. – p.59/73



Encoding Schemes

For SVM: each data is a vector
x1(k): periodically nine 0s, one 1, nine 0s, one 1, ...

10 binary attributes
x1(k − 5), . . . , x1(k + 4) for the kth data
x1(k): an integer in 1 to 10
Which one is better
We think 10 binaries better for SVM

x4(k) more important
Including x4(k − 5), . . . , x4(k + 4) for the kth data
Each training data: 22 attributes

. – p.60/73



Training SVM

Selecting parameters; generating a good model for
prediction
RBF kernel K(xi,xj) = φ(xi)T φ(xj) = e−γ∥xi−xj∥

2

Two parameters: γ and C

Five-fold cross validation on 50,000 data
Data randomly separated to five groups.
Each time four as training and one as testing
Use C = 24, γ = 22 and train 50,000 data for the final
model

. – p.61/73



d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2d2     98.8
    98.6
    98.4
    98.2
      98
    97.8
    97.6
    97.4
    97.2
      97

1 2 3 4 5 6 7

lg(C)

-2

-1

0

1

2

3

lg(gamma)

. – p.62/73



Test set 1: 656 errors, Test set 2: 637 errors
About 3000 support vectors of 50,000 training data
A good case for SVM
This is just the outline. There are other details.
It is essential to do model selection.

. – p.63/73



Dual Problems for Other Formulas

So we think that for any optimization problem
Lagrangian dual exists
This is wrong
Remember we calculate

min
1

2
w

T
w −

l
∑

i=1

αi[yi(w
T φ(xi) − 1]

by
∂

∂w
L(w, b,α) = 0.

. – p.64/73



Note that
f ′(x) = 0 ⇔ x minimum

is wrong
Example

f(x) = x3, x = 0 not minimum
This function must satisfy certain conditions
Some papers wrongly derived the dual of their
new formulations without checking conditions

. – p.65/73



[2, 2]T satisfies constraints 0 ≤ α1 and 0 ≤ α2

It is optimal
Primal-dual relation

w = y1α1x1 + y2α2x2

= 1 · 2 · 1 + (−1) · 2 · 0
= 2

The same as solving the primal

. – p.66/73



Multi-class Classification

k classes
One-against-all: Train k binary SVMs:

1st class vs. (2 − k)th class
2nd class vs. (1, 3 − k)th class

...

k decision functions

(w1)Tφ(x) + b1

...
(wk)Tφ(x) + bk

. – p.67/73



Select the index with the largest (wj)T φ(x) + bj

. – p.68/73



Multi-class Classification (Cont.)

One-against-one: train k(k − 1)/2 binary SVMs
(1, 2), (1, 3), . . . , (1, k), (2, 3), (2, 4), . . . , (k − 1, k)

Select the one with the largest vote
This is the method used by LIBSVM

Try a 4-class problem
6 binary SVMs

. – p.69/73



$libsvm-2.5/svm-train bsvm-2.05/vehicle.scale
optimization finished, #iter = 173
obj = -142.552559, rho = 0.748453
nSV = 194, nBSV = 183
optimization finished, #iter = 330
obj = -149.912202, rho = -0.786410
nSV = 227, nBSV = 217
optimization finished, #iter = 169
obj = -139.655613, rho = 0.998277
nSV = 186, nBSV = 177
optimization finished, #iter = 268
obj = -185.161735, rho = -0.674739
nSV = 253, nBSV = 244
optimization finished, #iter = 477
obj = -378.264371, rho = 0.177314
nSV = 405, nBSV = 394
optimization finished, #iter = 337
obj = -186.182860, rho = 1.104943
nSV = 261, nBSV = 247
Total nSV = 739 . – p.70/73



There are many other methods
A comparison in [Hsu and Lin, 2002]
For a software
We select one which is generally good but not always
the best
Finally I chose 1 vs. 1
Similar accuracy to others
Shortest training
A bit longer on testing than 1 vs. all

. – p.71/73



Why Shorter Training Time

1 vs. 1
k(k − 1)/2 problems, each 2l/k data on average
1 vs. all
k problems, each l data
If solving the optimization problem:
polynomial of the size with degree d

Their complexities

k(k − 1)

2
O

((

2l

k

)d)

vs. kO(ld)

. – p.72/73



Conclusions

Dealing with data is interesting
especially if you get good accuracy
Some basic understandings are essential when
applying methods
e.g. the importance of validation
No method is the best for all data
Deep understanding of one or two methods very helpful

. – p.73/73


	SVM20050401Lin.pdf
	
	Outline
	Data Classification
	
	Why Support Vector Machines
	Support Vector Classification
	
	
	
	Higher Dimensional Feature Spaces
	
	
	Finding the Decision Function
	
	
	Kernel Tricks
	
	Decision function
	
	Support Vectors: More Important Data
	A Toy Example
	Primal Problem
	
	Dual Problem
	
	
	Let Us Try A Practical Example
	SVM software: libsvm 
	Usage of libsvm 
	Training and Testing
	What does this Output Mean
	Why this Fails
	Data Scaling
	
	
	
	After Data Scaling
	
	More on Training
	Different Parameters
	Overfitting and Underfitting
	 ding {108} and ding {115}: training; $ igcirc $ and $ igtriangleup $: testing
	Overfitting
	Parameter Selection
	Performance Evaluation
	
	Performance Evaluation (Cont.)
	CV and Test Accuracy
	
	A Simple Procedure
	Parameter Selection Procedure in libsvm 
	
	Parallel Parameter Selection
	Contour of Parameter Selection
	Simple script in libsvm 
	
	Problem Description
	
	Background: Engine Misfire Detection
	Encoding Schemes
	Training SVM
	
	
	Dual Problems for Other Formulas
	
	
	Multi-class Classification
	
	Multi-class Classification (Cont.)
	
	
	Why Shorter Training Time
	Conclusions


