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Evidential Reasoning   
 

 

S3 S2 S1 
 

 
In lesson 18 we saw that a situation model could enable reasoning with evidence to 
confirm partially observable narratives.   For example, let S1, S2 and S3 be a narrative 
composed of 3 situations in which S2 is not observable.  Recall that the situation S2 is 
a conjunction of N predicates {R}=(r1()∧...∧rN()) over the K entities in working 
memory.  The predicates rn(-) represent relations between entities (observable 
phenomena).  
 
To perform Bayesian reasoning, we must replace the Boolean predicates rn() with 
probabilistic predicates. Probabilistic predicates are predicate functions that return a 
probability as a truth-value instead of a Boolean {T, F},  
 
We can then use the probabilities of the predicates,  rn(),  to determine the probability 
of a situation. To simplify, we will note rn() as simply  rn. {R} is the conjunction of 
predicates that defines the situation. The probability of a situation given the 
probability of relations.  
 
 P(S | {R}) = P(S | rn )

rn∈{R}
∏  

This is made easier if we reason with odds.  Consider the probability of a Situation, 
S, given the probability for a relation, r.  
  
From Baye's Rule: 

€ 

P(r) ⋅P(S | r) = P(S) ⋅P(r | S) 
and  

€ 

P(r) ⋅P(¬S | r) = P(¬S) ⋅P(r |¬S)  
 
The ratio is P(r)

P(r)
⋅
P(S | r)
P(¬S | r)

=
P(S | r)
P(¬S | r)

=
P(S) ⋅P(r | S)
P(¬S) ⋅P(r |¬S)

 

 
This ratio is referred to as "odds" and used in betting:  
 
The a-priori odds of a situation S are defined as  

€ 

Odds(S :¬S) =
P(S)
P(¬S)

 

 
The conditional odds for the situation are  

€ 

Odds((S :¬S) | r) =
P(S | r)
P(¬S | r)
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Thus:  

€ 

Odds((S :¬S) | r) =Odds((S :¬S) ⋅ P(r | S)
P(r |¬S)

 

 
The ratio

€ 

P(r | S)
P(r |¬S)

   is called the conditional likelihood of r from S. 

 
 

€ 

Lr =
P(r | S)
P(r |¬S)

 

 
Written this way, the conditional odds for a situation are   
 

€ 

Odds((S :¬S) | r) =Odds((S :¬S) ⋅ Lr  
 
Products of probabilities are inconvenient as they tend toward very small numbers.  
We can reformulate evidence accumulation using addition in place of multiplication 
using logarithms. This is commonly done using Log-odds.  Thus allows us to convert 
the problem to  an additive process for accumulating evidence using logarithms.  
 

Log(Odds((S :¬S) | r)) = Log(Odds((S :¬S))+ Log(Lr )  
 
Evidence for S by r is then defined as the Log of the conditional likelihood.  
 

€ 

Er = Log(Lr ) = Log
P(r | S)
P(r |¬S)
" 

# 
$ 

% 

& 
' = Log(P(r | S))− Log(P(r |¬S)) 

 
This favors detection of relations that are unique to certain situations.  Discovery of 
such relations provides evidence that the situation occurred. Relations that occur in 
all  situations are dicarded.  
 
The problem is that relations may not be directly observable.   In many cases, the 
non-observable relations can be inferred using causal reasoning with Bayesian 
Networks.   The key is to model each relation as a Random Variable and to determine 
the probability of the variable using Bayesian Networks.  
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Bayesian Networks 
 
Bayesian Networks are graphical models for reasoning about random variables. 
 
In a Bayesian Network, the nodes represent random variables (discrete or continuous) 
and the arcs represent relations between variable. Arcs are often causal connections 
but can be other forms of association.  Bayesian networks allow probabilistic beliefs 
about random variables to be updated automatically as new information becomes 
available. 
 
The nodes in a Bayesian network represent the probability of random variables, X 
from the domain.  
 
Directed arcs (or links) connect pairs of nodes, 

€ 

X1→ X2 , representing the direct 
dependencies between random variables.  
 
For example: Fire causes Smoke. Let  F=Fire, S=Smoke 
 

  
We can use graphical models to represent causal relations.   
 
For example add a third random variable, H=Heat.  
Then Fire causes Smoke and Heat would be expressed as:  

 
Graphical models can also express multiple possible causes for diagnostic reasoning. 
For example, Fire can be caused by an Electrical problem (E) or by a Cigarette (C) 

  

The strength of the relationship between variables is quantified by conditional 
probability distributions associated with each node. These are represented by 
Conditional Probability Tables.  
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Probability Distribution Tables 
 
Recall that a Probability Distribution Table gives the relative frequency of 
occurrence for all possible values for a random variable (or property or feature or 
attribute or probabilistic predicate) from a set of observations (training set).   Random 
variables can be Boolean, symbolic or numeric (natural, integer or real). The set of 
possible values for a variable must be   (1) Mutually Exclusive and (2) Complete. 
 
The Probability Distribution Table gives the relative frequency of occurrence for 
each value of the variable, and can be computed by simply counting the number of 
occurrences in the training set.  To be a valid probability, the values must be 
normalized to sum to 1.  
 

Joint Probability Distributions Tables 
 
Distribution tables can be easily generalized to multiple random variables.  For 
example consider a training set of observations,{

!
Xm}  of M observations of 2 random 

variables, Am, and Bm.  
 
 ∀m =1,M :   h(Am ,Bm )← h(Am ,Bm )+1;  
 
we commonly write this as 
 
 ∀m =1,M :   h(

!
Xm )← h(

!
Xm )+1;  

 

Then for any pair of values of A=a, B=b   P(a,b) = 1
M
h(a,b)  

 
The complete table must sum to 1.   P(

a,b
∑ a,b) =1 

We can eliminate a class from the table by summing a column:  
 
 P(A) = P(

x∈B
∑ A,x)  

 
All this can be generalized to multiple features. For three features A, B, C 
 
 P(A,B,C) = 1

M
h(A,B,C)  and  

€ 

P(A,B) = P(
x∈C
∑ A,B, x) 
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Graphically, probability distribution tables are displayed as a table:   
 

P(G,C) Brown Blue Green  
Male 0.4 0.1 0.0  
Female 0.3 0.1 0.1  

 

Conditional Probability Tables (CPT) 
 
Bayes Rule provides a definition of conditional probability tables.  
 
For a probability distribution P(A,B) the Conditional probability can be defined as 
 
  

€ 

P(A | B) =
P(A,B)
P(x,B)

x
∑

=
P(A,B)
P(B)

 

 
With multiple features;     

€ 

P(A,B |C) =
P(A,B,C)
P(A,B, x)

x∈C
∑

=
P(A,B,c)
P(A,B)

 

 
For example, consider the Boolean values   F=Fire and S=Smoke  
 
 P(Fire, Smoke) = P(Smoke|Fire) P(Fire) 
 

P(Smoke|Fire) Smoke ¬Smoke 
Fire 0.9 0.1 
¬Fire 0.001 0.999 

 
Each row sums to one. Columns are independent.  
 
Note that with Boolean features, some authors omit the columns for False. 
 
Suppose we know a joint table P(F, S, H) and we wish to compute P(F | S).  
 

P( F | S )=
P( F ,S ,x )

x∈H
∑

P( F ,x,y )
y∈H
∑

x∈S
∑

    This is clumsy and expensive. 
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The calculation is even worse if our table includes possible causes such as an 
electrical Fire (E) or a Cigarette fire (C):  P(F, S, H, E, C).   To compute P(F|S)  we 
first have to sum out all the other terms.  
 
Bayesian networks gives a way to simplify the calculation by factoring the 
distribution table P(F,S,H) into components.  
 

Conditional Independence 
 
Conditional independence allows us to factor a Probability Distribution Table into a 
product of much smaller Conditional Probability Tables.   
 

Independent Random Variables 
 
Two random variables are Independent if  

€ 

P(A,B) = P(A) ⋅P(B) 
This is written:  A ⊥ B.   A ⊥ B implies that P(A | B) = P(A) 
 
Demonstration:  

€ 

P(A | B) =
P(A,B)
P(B)

=
P(A)P(B)
P(B)

= P(A) 

 

Conditional Independence 
 
Conditional independence occurs when observations A and B are independent given 
a third observations C. Conditional independence tells us that when we know C, 
evidence of B does not change the likelihood of A.  
 
If  A and B are independent given C then    P(A | B, C) = P( A | C).  
Formally:    A ⊥ B | C  ⇔  P(A | B, C) = P(A | C) 
Note that   A ⊥ B | C  =  B ⊥ A | C ⇔  P(B | A, C) = P(B | C) 
 
A typical situation is that both A and B result from the same cause, C.     
For example, Fire causes Smoke and Heat.  
 
When A is conditionally independent from B given C, we can also write:  
 
 P(A, B | C) = P(A | B, C) · P(B | C) = P(A |  C) · P(B | C) 
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Chain Rule 
 
Bayesian networks explicitly express conditional independencies in probability 
distributions and allows computation of probabilities distributions using the chain 
rule.   When  A and B are conditionally independent given  C,  
 
 P(A | B, C) = P(A | C)  and   P(A, B | C) = P(A | C) · P(B | C) 
 
When conditioned on C, the probability distribution table P(A, B)  factors into a 
product of marginal distributions, P(A|C) and P(B|C). 
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Factoring Distribution Tables with Bayesian Networks  
  
Bayesian Networks factor a large Probability Distribution Table (PDT) into a set of 
much smaller Conditional Probability Tables (CPTs).   
 

 

 

S 

F 

H 

P(F)  P(¬F) 
0.1     0.9 

P(S|F) P(S)  P(¬S) 

  F 
¬F 

P(H)    P(¬H) 

   0.99       0.01 
0.0001  0.9999 
 

0.9        0.1 
0.001    0.999 
 

  F 
¬F 

P(H|F) 

 
 
Factoring  a PDT requires that the variables be conditionally independent.  

 
Computing with Conditional Probability Tables 
 
Conditional independence allows us to factor a Probability Distribution into a product 
of much smaller Conditional Probability Tables.    
 
For example, let F=Fire, S=Smoke and H=Heat.  
 
 P(S, H, F) =  P(S | F) P(H | F) P(F) Factors into 
 P(S, F) =  P(S | F) P(F)  and P(H, F) =  P(H | F) P(F) 
 
Each factor is described by a Conditional Probability Table.   
 

 

S 

F 

H 

P(F)  P(¬F) 
0.1     0.9 

P(S|F) P(S)  P(¬S) 

  F 
¬F 

P(H)    P(¬H) 

   0.99       0.01 
0.0001  0.9999 
 

0.9        0.1 
0.001    0.999 
 

  F 
¬F 

P(H|F) 

 
 
Each row of the table must sum to 1. To simplify the table, most authors do not 
include the last column. The values for last column are determined by subtracting the 
sum of the other columns from 1. 
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Arcs link a "Parent node" to a "Child Node).    F →  S   Fire is Parent to Smoke 
 
This is written   Parent(S) = F 
The set of all parents of a node x is the function Parents(x).  
 
In General  P(X1,X2,!,XD ) = P(Xn | parents(Xn )

n
∏ )  

We can use the network to answer questions. For example: 
 
What is the probability of fire if we see smoke? 
 
 P(F | S) = P(F,S)

P(S)
 

 
For this we need the joint probability of fire and smoke, P(F,S) as well as P(S) 
 
If we use the full PDT, we would be required to compute the joint probability by 
summing out terms  H and F in the table P(F,S,H).  
 
 P(F,S) = P(F,S,H )

H
∑   and P( S )= P( F ,S ,H )

H
∑

F
∑  

 
The graph provides a direct solution using only P(F,S) 
 
 P( F ,S )= P( S | F )P( F )= 0.9 ⋅0.1= 0.09  
and  
 P( S )= P( F ,S )+ P(¬F ,S )= 0.9 ⋅0.1+0.001⋅0.9 = 0.0909  
 
Thus 
 

P( F | S )= P( F ,S )
P( S )

=
0.09
0.0909

= 0.99  

 
In a larger problem the full PDT would have been MUCH larger.  
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A Joint Distribution in Structured Form 
 
A Bayesian Network is a Joint Distribution in Structured form.  The network is an 
Acyclic Directed Graph.  
 
Dependence and independence are represented as a presence or absence of edges: 
 Node = random Variable   (equivalent to a probabilistic predicate).  
 Directed Edge = Conditional Dependence 
 Absence of an Edge = Conditional Independence.  
  
The graph shows conditional (and causal) relations.  When you specify a graph, you 
obtain a formula.  Common structures are:  
 
Marginal Independence:  

A B C 
 

P(A, B, C) = P(A)·P(B)·P(C) 
 

Markov Dependence (Causal Chain) 
 

A B C 
 

P(A,B,C)=P(C | B) · P(B | A) · P(A) 
 

Independence Causes:  (Common Effect) 
A B 

C  
P(A, B, C)=P(C | A, B)·P(A)·P(B) 

 
Common Cause 

A"

B" C"
 

P(A,B,C) = P(B | A)·P(C | A)·P(A) 
 
Arcs link a "Parent node" to a "Child Node).     A →  B    
A is the Parent of B.  This is written    Parent(B) = A 
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The set of all parents of a node x is the function Parents(x).  
 
In General  

  

€ 

P(X1,X2 ,!,XD ) = P(Xn | Parents(Xn )
n
∏ ) 

 
A series of arcs list ancestors and descendents A→ B→ C 
 
Node A is an ancestor of C.  Node C is a descendent of A.  

 

Reasoning with Bayesian networks 
 
Bayesian networks support several types of reasoning.  
 
Reasoning  (inference) occurs as a flow of information through the network.   
This is sometimes called propagation of evidence or belief updating.  
 
Note that information flow is not limited to the directions of the arcs.  
 

Diagnostic Reasoning 
Diagnostic reasoning is reasoning from symptoms to cause 
Diagnostic reasoning occurs in the opposite direction to the network arcs. 
 
Example: A fire (F) can be caused by an electrical problem (E) or a Cigarette (C) 
The fire causes smoke (S) and Heat (H).  
 

 

E C 

S H 

F 

Query 

Query 

Evidence 

Direction 
Of 

Reasoning 

Query 

Evidence  
Diagnostic Reasoning 
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Predictive reasoning 
 
If we discover an electrical problem, we can predict that it caused the fire.  
 

E C 

S H 

F Prediction 

Evidence 

Direction 
Of 

Reasoning 

Prediction 

Evidence 

Prediction    
Predictive Reasoning 

 
Note that “prediction” is not a statement about time, but about “estimation of 
likelihood”. Predictive reasoning is reasoning from new information about causes to 
new beliefs about effects, following the directions of the network arcs.   
 

Intercausal Reasoning 
 
Intercausal reasoning involves reasoning about the mutual causes of a common effect 
Suppose that there are exactly two possible causes of a particular effect, represented 
by a v-structure in the BN.  
 

 

E C 

F 

Query 

Evidence 

Evidence 

 
For example, a fire (F) could be caused an electrical problem (E) or a cigarette (C).  
 
Initially these two causes are independent. Suppose that we find evidence of a 
smoking.  This new information explains the fire, which in turn lowers the 
probability that the fire was caused by an electrical problem.  Even though the two 
causes are initially independent, with knowledge of one cause the alternative cause is 
explained away. 
 
The Parent nodes become dependent given information about the common effect. 
They are said to be conditionally dependent 
 
 P(E | F, C) ≠ P(E | F) ⇒ E ⟂ ̷C | F 
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For example, suppose that you observe that there is a traffic Jam.  This may be 
caused by a train-strike, or by roadwork. If you then discover that there is a 
demonstration of train workers. This confirms the trains are on strike, and explains 
away the possibility that roadwork has caused the traffic jam.   

Road%
Work%

SNCF%
Strike%

Manifesta4on% Traffic%
Jam%

 

 
Markov Blanket   
The Markov blanket of a node contains all the variables that shield the node from the 
rest of the network. This means that the Markov blanket of a node is the only 
knowledge needed to predict the behavior of that node.  The children's parents are 
included, because they can be used to explain away the node in question.    
 

A V 

D E 

C F G 

 
MB(C) 
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Constructing a Bayesian Network.  
 
Bayesian networks are generally constructed using object oriented programming. 
Common network patterns are coded as objects. The programmer then chains objects 
together.  However designing a network for real problems remains somewhat of an 
art, and is the subject of research.  

Most textbooks present only simple, pedagogically useful examples. Building real 
networks for practical applications is a difficult challenge. 

The problems of building a complete BN for a large problems involves solving two 
different problems.  

1) build the graph structure and  

2) define the node probability tables for each node of the graph. 

Building the graph structure is the hard part. This is partly because most conditional 
relations can be coded in several different ways.  There are no obvious rules about to 
structure the network.  

Once the network is defined, the probabilities can often be determined from statistics.   

To design the network structure,  researchers have assembled dictionaries of common 
network fragments, and expressed this using object oriented programming.  These 
fragments are called "idioms". They represent commonly found reasoning structures.  

Building a network is then reduced to assembling the objects that represent the 
appropriate idioms.  

Five popular idioms are: 

1. The Definitional/synthesis idiom 
2. The Cause-Consequence Idiom 
3. The Measurement idiom 
4. The Induction Idiom 
5. The Reconciliation Idiom 

 


