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Notation 
 !
h (t )    The hidden recurrent activation vector of the network.   
   Note that in previous lectures we used 

!a (t ) for activation.  
f (−)    A process equation that computers 

!
h (t+1) from 

!
h (t )  

!
X (t )    A sequence of τ input vectors.  Equivalent to {

!
X1,...,

!
Xτ } in earlier  

   lectures.  
!
o (t )    The network output vector.   
U    a weight matrix from the input to the hidden unit.  
W   a hidden-to-hidden layer recurrent weight matrix 
V   a hidden-layer-to-output weight matrix !
b    bias vector for hidden units !c    bias vector for the output units.  !
Xm
(t )    A training set of M input sequences. 
!ym
(t )    A set of M  target output sequences for the training set.  

 
For LSTMs:  
ft   Forget gate activation vector.   ft =σ g(Wf

!
X (t ) +Uf ht−1 + bf )   

it   Input/update gate activation vector it =σ g(Wi

!
Xt +Uiht−1 + bi )  

ot   Output gate activation vector.   ot =σ g(Wo

!
Xt +Uoht−1 + bo )  

!ct    Cell Input activation vector.   !ct = tanhc (Wc

"
Xt +Ucht−1 + bc )  

ct   Cell state vector:     ct = ft !ct−1 + it ! "ct−1  
!
ht    Hidden State/Output activation vector:  

!
ht = ot "oh (ct )  
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Recurrent Neural Networks  
Recurrent Neural Networks (RNNs) are used to discriminate and generate data that 
have an intrinsic order relation (sequences).   Examples of sequences that may be 
discriminated and generated with RNNs include Speech, Music, Text, and Time 
Series data.    RNNs can be combined with convolutional networks to recognize and 
generate video sequences of actions.  RNNs have been traditionally used for natural 
language processing including for understanding written text and machine translation, 
although they are rapidly being replaced with Transformer using Self-Attention.    
 
Recurrent Networks are Turing Universal, which means that any function that can be 
computed by a Turing machine can be computed by a recurrent network.  
 

     
Copied from Andrej Karpathy, "The Unreasonable Effectiveness of Recurrent Neural Networks",  

http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 
 
History 
In the early days of neural networks (1980's), a frequent criticism was that networks 
have no memory, other than the parameter learning.  It was said that because 
networks did not maintain temporal state, they could not be suitable for tasks 
involving temporal or spatial sequences.  
 
In the late 1980s, Rumelhart addressed this question by building on a class of 
completely connected networks proposed by Hopfield, leading to the idea of 
"unfolding" the network over time. Such networks are now called recurrent neural 
networks.  
 
A recurrent neural network (RNN) is a neural network where connections between 
nodes form a directed graph along a temporal sequence. This enables the network to 
exhibit temporal dynamic behavior. RNNs can use internal state (memory) to process 
variable length sequences of inputs. This makes them applicable to tasks such as 
handwriting recognition or speech recognition. 
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Finite vs Infinite impulse networks 
The term “recurrent neural network” refers to two broad classes of networks finite 
impulse and infinite impulse. Both classes exhibit temporal dynamic behavior. 
 
Finite Impulse: A finite impulse recurrent network is a directed acyclic graph that 
can be unrolled and replaced with a strictly feed-forward neural network.  The 
temporal dynamics are similar to a Finite Impulse Response (FIR) digital filter. In 
digital signal processing, FIR filters are known to be easy to design, stable, but 
limited in the duration of their response.  
 
Infinite impulse: An infinite impulse recurrent network is a directed cyclic graph 
that cannot be unrolled because of internal feedback. These have similar temporal 
dynamics to Infinite Impulse Response (IIR) digital filters.  In digital signal 
processing, IIR filters are known to be difficult to design, unstable, but very powerful 
and efficient.  The classic Infinite Impulse Recurrent network is the LSTM (Long-
Short-Term Memory) architecture.  
 
Both finite impulse and infinite impulse recurrent networks can have additional 
states, and storage can be under direct control of the network. The storage can also be 
replaced by another network or graph. Such controlled states are referred to as gated 
states or gated memory, and are a key part of gated recurrent units including long 
short-term memory (LSTMs) networks.  
 

Finite Impulse Recurrent Networks 
The classic model for a dynamic process is a function, f (−) , that predicts the state, 
s(t)  of a system at time t, from the state s(t-1) at time t-1, using parameters !w .  Such 
as process is known as a "markov" process.   
 

S(t+3) S(t) S(t-2) S(t-1) fW(-) fW(-) fW(-) fW(-) fW(-) 

 
s(t ) = f !w (s

(t−1) )  
In the case of a recurrent network, the "state" is the activation (or vector of 
activations) of one or more "hidden" units. In previous lectures we represented the 
activation state of a cell with the symbol a. In the recurrent network literature, 
activation is generally represented with a state variable  h(t) 
 

h(t+2) h(t) h(t-1) h(t-1) fW(-) fW(-) fW(-) fW(-) fW(-) 

 
h(t ) = f !w (h

(t−1) )  



Recurrent Neural Networks  
 

5 

 
The time variable is traditionally represented with a superscript, to keep it apart from 
the unit indices at each level.  
 
We can model the effects of an external input by adding an additional term, x(t), to the 
temporal transition function.     
 

h(t+2) h(t) h(t-1) h(t-1) fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t) x(t+1) x(t+2) x(t-1) 

 
h(t ) = f !w (h

(t−1), x(t ) )  
 
The temporal duration of the network is typically represented the variable τ, so that 
the network is said to operate on a temporal sequence x(t) from t=1 to τ.   
 
Normally, the network generates an output represented by an output variable, o(t).  
 

h(t+2) h(t) h(t-1) h(t-1) fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t) x(t+1) x(t+2) x(t-1) 

o(t) o(t+1) o(t+2) o(t-1) 

 
 
For example, in a many-to-one network, the network would produce a single output 
after τ time steps.  For example, the following network assembles the words  "This", 
"is", "a", and "phrase", into a single output "This is a phrase".  In this case, t is the 
number of words in the phrase, 4.  

h(t+τ) h(t+1) h(t) fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t+1) x(t+τ) x(t) 

o(τ) 

… 

… This a phrase 

This is a phrase 

… 

 
 

A one-to-many network would produce a sequence of τ outputs from a single input.  
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For example, a single symbol for "This is a phrase" can be expanded into a sequence 
of outputs, where τ = 4. 

h(t+τ) h(t+1) fW(-) fW(-) fW(-) fW(-) fW(-) 

o(t+1) o(t+τ) O(t) 

h(t) 

x(t) 

… 

… 
… This is phrase 

This is a phrase  
 
Tokenizing Word Data 
In the above examples, RNNs are used for processing words.  RNNs are the widely 
used in Natural Language Processing (NLP).  In order to process words and text with 
a network, it is necessary to "tokenize" the text by substituting natural numbers for 
fundamental entities of the text.  These entities can be letters, syllables, word roots 
with prefixes and suffixes, or words and punctuation symbols or sequences of words. 
Generally a dictionary is created for a domain in which each word and punctuation 
mark are be given a unique integer ID.  
 
A tokenizer uses a word index to convert each sentence to a vector.  
 
For example, here is a text and its token table:  
 
Sentence: "This is an example of a sentence in English." 
 
Tokenized sentence: (1,2,3,4,5,6,7,8,9,10) 
 
Produced using the token table:  
 {'This':  1,  'is':  2,  'an':  3,  'example':  4,  'of':  5,  'a':  6,  'sentence':  7,  'in':  8,  
'English': 9, '.':10} 
 
Normally a token table is produced for an entire language and not a sample sentence.  
We can tokenize symbolic input from any domain.  
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Folding and Unfolding 
 
Recurrent networks are classically "folded" into a recurrent structure:  

h(t+2) h(t) h(t-1) h(t-1) 
fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t) x(t+1) x(t+2) x(t-1) 

o(t) o(t+1) o(t+2) o(t-1) 

!
!
!
⇔ !
!

!

h(t) 

x(t) 

o(t) 

  
 
Where the black square represents a time delay of 1 time unit.  The recurrent 
structure can be unfolded to see the network as a 2-D structure.  

h(t) 

x(t) 

o(t) 

 

!
!
!
⇔ !
!

!  

h(t+2) h(t) h(t-1) h(t-1) 
fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t) x(t+1) x(t+2) x(t-1) 

o(t) o(t+1) o(t+2) o(t-1) 

  
 

Forward Propagation Equations 
 
Networks parameters include:  

U  a weight matrix, 
W a hidden-to-hidden recurrent weight matrix 
V a hidden-to-output weight matrix !
b  bias vector for hidden units !c  bias vector for the output units.  

 
The classic forward propagation equations are:  
  

!z (t ) =W  
!
h (t ) +U  

!
X (t ) +

!
b  !

h (t ) = f (!z (t ) ) = f (W  
!
h (t−1) +U  

!
X (t−1) +

!
b)  

  
!o(t ) =V  

!
h (t ) +

!c  

where 
!
X (t ) ,
!
h (t ) , 

!z (t ) and 
!
o (t )  are all vectors  U, V and W are matrices and  

!
b and 

!c  
are bias vectors.  Such networks typically use a tanh() (hyperbolic tangent) activation 
function. The equations should be read as expressing summations over as a set of 
units at the same level. For example for the i=1 to N units of h(t) and h(t-1):  
  



Recurrent Neural Networks  
 

8 

  
!z (t ) =W  

!
h (t ) +U  

!
X (t ) +

!
b  ⇔  zj

(t ) = Wij
(t )hi

(t−1)

i=1

N

∑ + Uij
(t )Xi

(t )

i=1

N

∑ + bj  

 
Classically recurrent networks are used to generate symbolic data such as words or 
characters. In this case, the output vector, !o (t ) , can be seen as an un-normalized log 
probability of each possible value of the discrete variable.   Softmax can then be used 
to obtain the vector ŷ(t ) of normalized probabilities for the output.  
 
 ŷ (t ) = softmax(

!
o (t ) )  

Forward propagation starts from an initial state 
!
h (0) , and then computes the recurrent 

states from t = 1 to  t = τ.  
 

Training   
As with classic networks, a recurrent network is trained to minimize the Loss (or 
cost) between a target vector 

!ym
(t ) , and an output vector 

!
om
(t ) generated from an input 

sequence 
!
Xm
(t ) .  This is represented as Lm

(t ) :  

h(t) 

x(t) 

o(t) 

L(t) 

Y(t) 

 
Where the Loss Lm

(t )  measures how far ŷm
(t ) = softmax(om

(t ) )  is from the target 
!ym
(t )  at 

each time (t).      The total loss L for each training sample is computed for an input 
sequence x(1),..., x(τ ){ } and the resulting output sequence y(1),..., y(τ ){ }  
 

 L
!
X (1),...,

!
X (τ ){ }, y(1),..., y(τ ){ }( ) = L(t )

t=1

τ

∑ = – Log p y(t ) |
!
X (1),...,

!
X (τ ){ }( )( )

t=1

τ

∑  

 
Computing the gradient of this loss function with respect to the parameters is an 
expensive operation.  
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The gradient computation involves performing a forward propagation pass moving 
left to right through the unfolded graph of τ units, followed by a backward 
propagation pass moving right to left through the graph.   
 
The algorithmic complexity is O(τ)  and cannot be reduced by parallelization because 
the forward propagation graph is inherently sequential. Each time step may only be 
computed after the previous one.  States computed in the forward pass must be stored 
until they are reused during the backward pass, so the memory cost is also O(τ) (O(-) 
is the order-of operator).  The back-propagation algorithm applied to the unfolded 
graph with O(τ) cost is called back-propagation through time or BPTT.  
 
In summary:  Computing the gradient of this loss function is expensive because 

1) The forward propagation followed by backward propagation operates on all τ 
samples in parallel.  

2) Run-time cost is O(τ) and can not be implemented in parallel. 
3) Memory cost is also O(τ).  
4) Back-propagation must be applied to the entire unfolded graph.  This is called 

"Back Propagation Through Time" (BPTT).  
 
To reduce the cost of training we can use a network where the recurrence relation is 
from output to hidden. 

 

h(t) 

x(t) 

o(t) 

L(t) 

Y(t) 

!
!
!
!
!
⇔ 

(unfold) !
!

!
!
!
!  

h(t) 

x(t) 

o(t) 

L(t) 

Y(t) 

h(t+1) 

x(t+1) 

o(t+1) 

L(t+1) 

Y(t+1) 

h(t+2) 

o(t-1) 

… 

… 

… 

… 

… 

… 

… 

…  
 
The equations for the above network are  
  

!z (t ) =W  !o (t−1) +U  
!
X (t ) +

!
b   !

h (t ) = tanh(!z (t ) ) = tanh(W  !o(t−1) +U  
!
X (t ) +

!
b)  

!o(t ) =V  
!
h (t ) +

!c  

ŷ (t ) = softmax(
!
o (t ) )  

Such a network is less powerful, then the general network described above, but easier 
to train because each time step can be trained in isolation of the others, allowing for 
greater parallelization during training.  
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Long Short-Term Memory (LSTM) 
 
In theory, RNNs can keep track of arbitrary long-term dependencies in an input 
sequences. However, this generally proves impractical because of a problem known 
as the "vanishing gradient" problem. When training a normal RNN using back-
propagation, the gradients which are back-propagated can tend to zero (vanish) or 
diverge to infinity (explode), because of the accumulation of errors resulting from 
computation with finite-precision numbers. Long short-term memory (LSTM) 
provide a solution to this problem.  
 
A long short-term memory (LSTM) is a form of RNN with a recursive memory 
structure. LSTM networks are well suited to classifying, processing and making 
predictions based on time series data, including series with lags of unknown duration 
between important events.  LSTM are appropriate for long temporal sequences of 
such as speech or video, and have been used to build systems for unsegmented, 
connected handwriting recognition,  speech recognition  and anomaly detection in 
network traffic . 
 
 LSTMs use feedback connections. As with a recursive digital filter feedback enable 
design of a compact, powerful structure that can represent an arbitrarily long  
(potentially infinite) temporal duration, but can easily result in instability. A common 
LSTM unit is composed of a cell, an input gate, an output gate and a forget gate. The 
cell remembers values over arbitrary time intervals and the three gates regulate the 
flow of information into and out of the cell. 
 
LSTMs were developed to deal with the vanishing gradient problem that can be 
encountered when training traditional RNNs. Relative insensitivity to gap length is an 
advantage of LSTM over RNNs, hidden Markov models and other sequence learning 
method.  RNNs using LSTM units partially solve the vanishing gradient problem, 
because LSTM units allow gradients to also flow unchanged. However, LSTM 
networks can still suffer from the exploding gradient problem. 
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LSTM with a forget gate 

Figures are taken from: Understanding LSTM Networks - Christopher Olah 
(https://colah.github.io/posts/2015-08-Understanding-LSTMs/) 

 
In the above diagram, each line carries an entire vector, from the output of one node 
to the inputs of others. The pink circles represent point-wise operations, like vector 
addition, while the yellow boxes are learned neural network layers. Merging lines 
denote concatenation, while a forking line denotes copies of the vector going to 
different locations. 
 
The compact forms of the equations for the forward pass of an LSTM unit with a 
forget gate are: 
 
Input vector to the LSTM unit:   

!
X (t )  

Forget gate activation vector:    ft = σ g (Wf

!
X (t ) +U f

!
ht−1 +bf )  

Input/update gate activation vector:  
!
it = σ g (Wi

!
Xt +Ui

!
ht−1 +bi )  

Output gate activation vector:   !
ot = σ g (Wo

!
Xt +Uo

!
ht−1 +bo )  

Cell Input activation vector:    !ct = tanhc (Wc

"
Xt +Uc

"
ht−1 +bc )  

Cell state vector:      
!ct = ft "

!ct−1 + it " #ct−1  
Hidden State/Output activation vector:  

!
ht = ot "oh (ct )  

 
where the operator ∘ denotes element-wise vector product (inner-product).  
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The Four layers of an LSTM unit 
 
An LSTM unit can be seen as four interacting layers:  

 
 The horizontal line running through the top of the diagram represents the cell state. 
The cell state is kind of like a conveyor belt. It runs straight down the entire chain, 
with only some minor linear interactions. It’s very easy for information to just flow 
along it unchanged. 
 
The LSTM has the ability to remove or add information to the cell state, using  gates. 
Gates are a way to optionally pass or block information.  Gates use a sigmoid 
activation followed by point-wise multiplication.   
  

 
 
The sigmoid layer outputs numbers between zero and one, describing how much of 
each component should be let through.    
 
The first step in a LSTM is a sigmoid layer called the forget gate. The forget gate 
uses 

!
ht−1  and 

!
X (t )  to determine whether to transmit, attenuate or block an element of 

the cell state.  

 
ft = σ g (Wf

!
X (t ) +U f

!
ht−1 +bf )  
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The next part determines information to be added to the cell state.  

 
it = σ g (Wi

!
Xt +Ui

!
ht−1 +bi )  

!ct = tanhc (Wc

"
Xt +Uc

"
ht−1 +bc )  

 
This has two parts. First, an “input gate layer” uses a sigmoid to determine which 
values to update. Then, a tanh layer creates a vector of new candidate values, C ̃ t that 
may be added to the state.  

 !ct = ft "
!ct−1 +

!
it " #ct−1  

 
The cell state is then updated by multipling the previous state by ft to determine how 
much to forget (attentuate) the previous state, followed by the addition of the new 
state ct . 

 !
ot = σ g (Wo

!
Xt +Uo

!
ht−1 +bo )  

!
ht =
!
ot "oh (

!
ct )  

The output is then based on the a filtered version of the cell state, A sigmoid layer 
which decides what parts of the cell state to output. This is then modulated by a tanh 
to set scale the value between -1 and +1.  


