

Intelligent Systems: Reasoning and Recognition

James L. Crowley

Ensimag 2 Winter Semester 2021
Lesson 11 17 March 2021

Convolutional Neural Networks
Outline

Notation ... 2	

The Mammalian Visual Cortex 3	
Receptive Fields in the Visual Cortex .. 3	

Convolutional Neural Networks. 6	
Fully-Connected Networks ... 6	
Early Convolutional Neural Networks: LeNet5 6	
Multiple Receptive Fields at each Layer 9	

Classic CNN Architectures .. 10	
Benchmark Data Sets for Object Detection 10	
AlexNet ... 12	
CNN Hyper-parameters .. 13	
Pooling .. 13	
VGG - Visual Geometry Group .. 14	

A Keras example of a simple CNN 15	

Convolutional Neural Networks

2

Notation

xd A feature. An observed or measured value.

€

!
X A vector of D features.
D The number of dimensions for the vector

€

!
X

€

{
!
X m}

€

{ym} Training samples for learning.
M The number of training samples.

€

aj
(l) The activation output of the jth neuron of the lth layer.

€

wij
(l) The weight from unit i of layer l–1 to the unit j of layer l.

€

bj
l The bias for unit j of layer l.

€

η A learning rate. Typically very small (0.01). Can be variable.
L The number of layers in the network.
δm
out = am

(L) − ym() Output Error of the network for the mth training sample

€

δ j,m
(l) Error for the jth neuron of layer l, for the mth training sample.

€

Δwij
(l) = ai

(l−1)δ j
(l) Update for weight from unit i of layer l–1 to the unit j of layer l.

€

Δbj
(l) = δ j

(l) Update for bias for unit j of layer l.

Convolution Equation: Convolution of a digital signal, s(n) with a digital filter, f(n)
composed of N coefficients. Note that the "*" symbol is reserved for convolution and
is not used for multiplication.

(f * s)(n) = f (m)s(n−m)

m=1

N

∑

2D convolution of a

f *P(i, j) = f (u,v)P(i −u, j − v)

u=1

N

∑
v=1

N

∑

Convolutional Neural Networks

3

The Mammalian Visual Cortex

The Visual Cortex of mammals is composed of multiple layers of retinotopic maps.

Each map is an image of the retina projected onto (convolved with) a receptive field
at different scales and different orientations.

Receptive Fields in the Visual Cortex

In 1968, Hubel and Wiesel probed the visual cortex of a cat with electrodes and
found layers of cells that responded to local patterns of stimulation. The discovered
that the visual cortex is composed of a series of layers. Each layer is a map of the
retina filtered by a “receptive field” that respond to a certain pattern over a narrow
range of sizes and orientations.

The patterns at the lowest level look like these:

Convolutional Neural Networks

4

Each layer is a specific pattern at a specific orientation and scale. It was discovered
that these patterns could be modeled as Gabor function at different scales and
orientations.

1st order Gaussian derivatives at 3 scales 2nd order Gaussian Derivatives at 3 scales

This figure shows first and second order Gaussian derivative features from 3 scales, computed using
sums and differences of adjacent samples in a half-octave Gaussian pyramid.

The first level receptive fields were found to be local filters that pass a narrow range
of spatial frequencies. The first layer receptive fields were found to be modeled by
Gabor functions (Gaussian modulated by a Cosine plus an imaginary Sin).

The first layer receptive fields can also be modeled multi-scale derivatives of
Gaussians functions. These two representations are very similar. However, Gabor
functions can be very expensive to convolve with an image. Multi-scale Gaussian
derivatives can convolved very efficiently because of a number mathematical
properties that are beyond the scope of this course.

As they moved up the visual cortex, Hubel and Wiesel found that these patters were
combined to form more complex patterns, such as corners, bars, crosses, etc. These
were named "complex" receptive field, and are similar to receptive field patterns
learned by convolutional neural networks.

Inspired by the results of Hubel and Wiesel, computer vision researchers have
explored the use of image description with receptive fields since the 1980's, although
this was never a dominant paradigm in computer vision, in part the computational
cost exceeded the computing power of early computers. Most such research explored
image description using image derivatives computed with receptive fields.

Convolutional Neural Networks

5

A Receptive Field for computing image derivative filter can be constructed by
sampling a Gaussian derivative function

€

Gx (x, y,σ) over a finite range of integer
values of x and y.

€

Gx (x, y,σ) =
∂G(x, y,σ)

∂x
= – x

σ 2

$

%
&

'

(
) ⋅ e

−
(x2+y2)
2σ 2

Typically x, y are integer values over a range of –R ≤ x, y ≤ R where R = 3σ.
An image derivative can then be computed by convolution of the filter

€

Gx (x, y,σ)
with an image using the formula:

€

Px (x, y) = P *Gx (x, y,σ) = P(x −u, y− v)Gx (u,v,σ)
v=−R

R

∑
u=−R

R

∑

Convolutional Neural Networks (CNNs) replace the mathematical derivation of
receptive fields with filters learned from training data using back-propagation. The
filters are learned locally, by considering every possible NxN image window as input
to a network.

Convolutional Neural Networks

6

Convolutional Neural Networks.

Fully-Connected Networks
Towards the end of the first wave of popularity of Neural Networks in the late 80s,
several researchers began experimenting with networks composed of more than 3
layers. Most experiments explored fully connected networks, where each unit at
layer l+1 receives activations from all units at layer l. The result is a very rapid
growth in the number of parameters to learn, even for simple problems.

If there are N(l) units at layer l and N(l+1) units are layer l+1 then a fully connected
network requires learning N(l)·N(l+1) parameters for layer l. Reliable learning requires
that the number of data samples exceed the number of parameters. While this may be
tractable for small examples, it quickly becomes excessive for practical problems, as
found in computer vision or speech recognition.

For example, a typical image may have 1024 x 2048 = 221 pixels. If we assume, say
a 512 x 512 =218 hidden units we have 239 parameters to learn for a single class of
image pattern, requiring more than 239 training images. Clearly this is not practical
(and, in any case not necessary).

Early Convolutional Neural Networks: LeNet5
From 1988, Yann LeCunn began experimenting with a series of multi-layer
architectures, referred to as LeNet, for the task of recognizing handwritten characters.

LeCunn's first insight was to limit each neural unit to a connection to small window
of units in the previous level, and to learn the same weights for all units. This leads to
a technique where all possible, overlapping, image windows of size NxN provide
training data to train a small number of parameters for a receptive fields network.
The network then uses the same learned weights with every hidden cell. Recall that,
generally, the amount of training required for a network depends on the number of
parameters to be trained. Thus any technique that gives equivalent performance with
fewer parameters will scale to larger networks.

The resulting operation is equivalent to a “convolution” of the learned weights with
the input signal and the learned weights are referred to as “receptive fields” in the
neural network literature.

Convolutional Neural Networks

7

A second insight was to use several convolutional units in parallel to describe each
window. This lead to a map of features for each pixel with the number of units
referred to as "depth".

A third insight was to reduce the resolution of the image by resampling while
increasing the number of parallel receptive fields (depth) at each level. This can be
illustrated with the LeNet5 architecture shown here:

The LeNet5 architecture (1994)

In 1994 Yann LeCunn showed that LeNet5 provided the best performance for written
character recognition. Because processing power, memory and training data were
very limited at that time, many of the innovations in LeNet5 concerned methods to
reduce parameters and computing without degrading performance.

LeNet5 is composed of multiple repetitions of 3 operations: Convolution, Pooling,
Non-linearity. Convolution windows were of size 5x5 with a stride of 1, no zero
padding and a depth of 6. That is 6 receptive fields are learned for each pixel in the
first layer. Using 5x5 filters without zero padding reduced the input window of 32 x
32 pixels to a layer of composed of 6 sets of 28 x 28 units. A Sigmoid was used for
the activation function. Pooling was performed as a spatial averaging over 2x2
windows giving a second layer of 6 x 14 x 14. The output was then convolved with
16 5x5 receptive fields, yielding a layer with 16 x 10x10 units. Average pooling over
2x2 windows reduced this to a layer of 16x5x5 units. These were then fed to two
fully connected layers and then smoothed with a Gaussian filter to produce 10 output
units, one for each possible digit.

Despite the experimental success, LeCun found it very difficult to publish his results
in the computer vision and machine learning literatures, which were more concerned
with multi-camera geometry and Bayesian approaches to recognition. The situation
began to change around 2010, driven by the availability of GPUs, and planetary scale
data (continued exponential growth of the World Wide Web) and the emergence of
challenged based research in computer vision. During this period, computer vision

Convolutional Neural Networks

8

and machine learning were increasingly organized around open competitions for
Performance Evaluation on benchmark data sets.

Many of the insights of LeNet5 continued to be relevant as more training data, and
additional computing power enabled larger and deeper networks, because they
allowed more effective performance for a given amount of training data and
parameters.

The Convolution Equation
For a digital signal, s(n), the equation for convolution of a Finite Impulse Response
(FIR) digital filter, w(n) composed of N coefficients is:

 (w* s)(n) = w(m)s(n−m)
m=1

N

∑

For image processing, the signal and filter are generally 2D: To avoid overloading the
symbols x and y, we will refer to the image columns and rows as i and j. Thus the
image is P(i, j). The formula for 2D convolution of an NxN filter w(i,j) with an
image is:

 w*P(i, j) = w(u,v)P(i −u, j − v)

u=1

N

∑
v=1

N

∑

The value at each position i, j is the sum of the product of a filter (kernel, or receptive
field) w(u,v) with a neighborhood of the image placed at i,j. Note that a 2D
convolution can easily be re-expressed as a 1D convolution by mapping successive
rows of the NxN filter w(u,v) into 1 long column with N2 coefficients, f(n), using:
n = (v−1) ⋅N +u

The use of i–u and j–v is rather than i+u and j+v is purely to assure equivalence with
the classical signal processing operation of convolution. In convolution, the filter is
“flipped” around the center pixel. In reality, many implementations simply use i+u
and j+v. Technically, in signal processing, this would be called a “cross-correlation”.

a(i, j) = f (z(i, j)) = f w(u,v)P(i−u, j − v)+ bk
u,v

N

∑
#

$
%%

&

'
((

Convolutional Neural Networks

9

Multiple Receptive Fields at each Layer
A second innovation was to learn multiple NxN receptive fields at each layer, as was
observed by David Hubel and Torsten Wiesel and used in Computer Vision. The
number of receptive fields is called the “depth” at that layer. We will use the symbol
d from 1 to D as an index for the depth (number of receptive fields) at each level.

ad (i, j) = f (zd (i, j)) = f Wd (u,v)P(i−u, j − v)+ bd
u,v
∑
#

$
%%

&

'
((

For each NxN window, the CNN will compute the product with a vector of K
receptive fields, Wk(u,v) with a bias bk.

 zd = Wd (u,v)Xi, j (u,v)
u,v
∑ + bd = Wd (u,v)P(i−u, j − v)+ bd

u,v
∑

The weighted sum is then processed with a non-linear activation function, f(),
typically a relu or sigmoid of the sum of the product.

€

ak = f (zk) = f Wk (u,v)Xi, j (u,v)+bk
u,v
∑

$
% %

&

'
((

Because a vector of activations !ad =
a1
!
aD

!

"

#
#
##

$

%

&
&
&&
 is computed for each image position, this

should properly be written as ad (i, j) = f (zd) = f Wd (u,v)Xi, j (u,v)+ bd
u,v
∑
"

#
$$

%

&
''

The result is a “feature map” of d features at each position ad(i,j), with d values at
each image position (i,j).

The receptive fields,

€

Wk (u,v) can be learned using back-propagation, from a training
set where each window is labeled with a target class, using an “indicator” image
y(i,j). For multiple target classes, the indicator image can be represented as a vector
image,

€

! y (i, j). More classically, y(i, j) is a binary image with 1 at each location that
contains the target class and 0 elsewhere.

Convolutional Neural Networks

10

Classic CNN Architectures
CNN network architectures continues to be a very popular area of research with
innovations published nearly every month. Very often, researchers will run a script to
automatically compare results for variations in hyper-parameters for a benchmark
data set. The winning set of hyper-parameters (number of layers, depth etc.) define a
new architecture!

The emergence of the internet and the world-wide web made it possible to assemble
massively large data sets of training data, and to issue global challenges for computer
vision techniques to compete on these challenges. Many of the most famous CNN
architectures have been established by winning large scale image classification
challenges. The parameters of the challenge often explain the choice of parameters
for the network, such as the size of the input image and the number of output
categories.

The following are several key data sets that have influenced the evolution of the
domain. Many of the popular architectures were designed specifically to address
research challenges based on these data sets.

Benchmark Data Sets for Object Detection

Pascal VOC (Visual Object Challenge)
PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning) was
a European Network of Excellence launched in 2003. In 2005, the network launched
its first Visual Object Challenge (VOC), challenging research groups to recognize 4
classes (bicycles, cars, motorbikes, people) using a data set of 1578 images
containing 2209 annotated objects. In 2006 the challenge was extended to 10 classes
(bicycle, bus, car, cat, cow, dog, horse, motorbike, person, sheep) in 2618 images
containing 4754 annotated objects, but including the images from flickr and from
Microsoft Research Cambridge (MSRC) dataset. In 2007 this was extended 20
classes organized as a 2 level hierarchy in 9,963 images containing 24,640 annotated
objects. The competition continued annually, with refinements to performance
metrics and increasing number of labeled images. By 2012 the data set had 11,530
images containing 27,450 ROI annotated objects and 6,929 segmentations.

The Pascal VOC helped establish the popularity of such techniques as SIFT, HoG,
SVM, Kernel Methods, and GMM for computer vision prior.

Convolutional Neural Networks

11

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J. and Zisserman, A., The PASCAL Visual Object
Classes (VOC) Challenge, International Journal of Computer Vision, 88(2), 303-338, 2010

ImageNet
ImageNet is an image database organized according to the nouns in the WordNet
hierarchy. Each node of the WordNet hierarchy is depicted by hundreds of images in
ImageNet. In 2006, Fei-Fei Li began working on the idea for ImageNet based on the
word-database of WordNet and using many of its features. In 2007, Li was appointed
as assistant professor at Princeton, where she assembled a team of researchers to
work on ImageNet. They used the Amazon Mechanical Turk to help with the
classification of images. They presented their database for the first time as a poster
at the 2009 Conference on Computer Vision and Pattern Recognition (CVPR) in
Florida.

Most state-of-the-art object detection networks pre-train on ImageNet and then rely
on transfer learning to adapt the learned recognition system to a specific domain.

ILSVRC
In 2010 Fei-Fei Li joined with the PASCAL VOC team to create a joint research
challenge where research teams compete to achieve higher accuracy on several visual
recognition tasks. The resulting annual competition is known as the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC). The ILSVRC uses a "trimmed" list
of only 1000 image categories or "classes", including 90 of the 120 dog breeds
classified by the full ImageNet schema. In 2010 and 2011, a good score for the
ILSVRC top-5 classification error rate was 25%.

75
163

AlexNet ISI

OXFORD_VGG

XRCE/IN
RIA

Amste
rdam

XRCE/IN
RIA

LEAR-XRCE
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

To
p

5
er

ro
rs

1990 1995 2000 2005 2010 2015 2020

0

2 000

4 000

6 000

8 000

10 000

12 000

14 000

16 000

18 000

SVM

DNN

P
u
b
lic
a
ti
o
n
s

Publications SVM vs DNN1

1 Web of Science [WOS1][WOS2]
2 AlexNet [ALEX]
3 ImageNet Large Scale Visual Recognition [ILSVRC]

AlexNet2

A. Krizhevsky,
I. Sutskever,
G. Hinton
2012 ILSVRC
Top5 error�: 26�% 15�%

Images classi7cation
Top 5 error at ILSVRC 20123,4

DNN

Real
human2nd Winter

(For DL)

The Revenge

of th
e Neurons

4 Similar evolution in Natural language processing, translation, board games, etc.
See�: DeepL.com, AlphaGo, AlphaZero, ...

Without mathematical
guarantee, DNN have proven to
be more eSective in the face of
the complexity of the real
world�!

Real
humans

The big

Contro
versy

Initial champions were statistical recognition techniques using techniques such as
SIFT and HoG. However, in 2012, Alex Krizhevsky won the competition with a deep
convolutional neural net based on LeNet5 called AlexNet. AlexNet achieved and
error rate of 16% (accuracy of 84%). This dramatic quantitative improvement marked

Convolutional Neural Networks

12

the start of the rapid shift to techniques based on Deep Learning using Neural
Networks. By 2014, more than fifty institutions participated in the ILSVRC, almost
exclusively with different forms of Network Architectures. In 2017, 29 of 38
competing teams demonstrated error rates less than 5% (better than 95% accuracy).

AlexNet
AlexNet, is a deeper and larger variation of LeNet5.

AlexNet Architecture (2010)

Innovations in AlexNet include:

1. The use of relu instead of sigmoid or tanh. Relus provided a 6 times speed up with

the same accuracy, allowing more training.
2. A technique called “dropout” in which randomly chosen units are temporarily

removed during learning. This regularizes the network preventing over-fitting to
training data.

3. Overlap pooling, in which pooling is performed on overlapping windows.

The architecture is composed of 5 convolutional layers followed by 3 fully connected
layers. Relu is used after each convolution and in each fully connected layer. The
input image size of 224 x 224 is dictated by the number of layers in the architecture.
Larger images are generally texture mapped to this size.

A good implementation can be found in PyTorch. The network has 62.3 million
parameters, and needs 1.1 billion computations in a forward pass. The convolution
layers account for 6% of all the parameters, and consume 95% of the computation.
The network is commonly trained in 90 epochs, with a learning rate 0.01, momentum
0.9 and weight decay 0.0005. The learning rate is divided by 10 once the accuracy
reaches a plateau.

Convolutional Neural Networks

13

CNN Hyper-parameters

CNNs are typically configured with a number of “hyper-parameters”:

Spatial Extent: This is the size of the filter, NxN. Early networks followed computer
vision theory and used 11x11 or 9x9 filters. Experimentation has shown that 3x3
filters can work well with multi-layer networks.

Depth: This is the number D of receptive fields for each position in the feature map.
For a color image, the first layer depth at layer 0 would be D=3. If described with 32
image descriptors, the depth would be D=32 at layer 1. Some networks will use
NxNxD receptive fields, including 1x1xD.

Stride: Stride is the step size, S, between window positions. By default it generally
1, but for larger windows, it is possible define larger step sizes.

Zero-Padding: Size of region at the border of the feature map that is filled with zeros
in order to preserve the image size (typically N).

Pooling

Pooling is a form of down-sampling that partitions the image into non-overlapping
regions and computes a representative value for each region. The feature map is
partitioned into small non-overlapping rectangles, typically of size 2x2 or 4x4, and a
single value it determined for each rectangle. The most common pooling operators
are average and max. Median is also sometimes used. The earliest architectures used
average, creating a form of multi-resolution pyramid. Max pooling was soon shown
to work better.

Convolutional Neural Networks

14

VGG - Visual Geometry Group

The VGG Architecture (2014)

In 2014, Karen Simonyan and Andrew Zisserman of the Visual Geometry Group at
the Univ of Oxford demonstrated a series of networks referred to as VGG. An
important innovation was the use of very many small (3x3) convolutional receptive
fields. The also introduced the idea of a 1x1 convolutional filter.

For a layer with a depth of D receptive fields, a 1x1 convolution performs a weighted
sum of the D features, followed by non-linear activation. The weights can be learned
with back-propagation.

A stack of convolutional layers is followed by three Fully-Connected layers: the first
two have 4096 channels each, the third performs classification and thus contains one
channel for each class (1000 channels for ILSVRC). The final layer is the soft-max
layer. The configuration of the fully connected layers is the same in all networks. All
layers use Relu activation.

Convolutional Neural Networks

15

A Keras example of a simple CNN

The MNIST (Modified National Institute of Standards and Technology) database is a
large collection of handwritten digits. The MNIST database contains 60,000 training
images and 10,000 testing images. The database was created by "re-mixing" samples
of digits from NIST's original datasets taken from American Census Bureau
employees and American high school students. The black and white images from
NIST were normalized to fit into a 28x28 pixel bounding box and anti-aliased, which
introduced gray-scale levels.

The following is a simple Keras example of to detect MNIST digits, provided by
Frank Cholet of Google. This example processes 28x28 pixel imagettes with a
convolutional layer of 32 3x3 filters using relu, followed by 2x2 max pooling, a
convolutional layer of 64 3x3 filters, using relu, followed by 2x2 max pooling, a
flatten layer, dropout of 0.5 and a fully connected layer.

model = keras.Sequential(
 [
 keras.Input(shape=input_shape),
 layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
 layers.MaxPooling2D(pool_size=(2, 2)),
 layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
 layers.MaxPooling2D(pool_size=(2, 2)),
 layers.Flatten(),
 layers.Dropout(0.5),
 layers.Dense(num_classes, activation="softmax"),
]
)

conv2d (Conv2D) (None, 26, 26, 32) 320

max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0

conv2d_1 (Conv2D) (None, 11, 11, 64) 18496

max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0

flatten (Flatten) (None, 1600) 0

dropout (Dropout) (None, 1600) 0

dense (Dense) (None, 10) 16010

