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Abstract

We propose a novel semantic segmentation algorithm by

learning a deep deconvolution network. We learn the net-

work on top of the convolutional layers adopted from VGG

16-layer net. The deconvolution network is composed of

deconvolution and unpooling layers, which identify pixel-

wise class labels and predict segmentation masks. We ap-

ply the trained network to each proposal in an input im-

age, and construct the final semantic segmentation map by

combining the results from all proposals in a simple man-

ner. The proposed algorithm mitigates the limitations of the

existing methods based on fully convolutional networks by

integrating deep deconvolution network and proposal-wise

prediction; our segmentation method typically identifies de-

tailed structures and handles objects in multiple scales nat-

urally. Our network demonstrates outstanding performance

in PASCAL VOC 2012 dataset, and we achieve the best ac-

curacy (72.5%) among the methods trained without using

Microsoft COCO dataset through ensemble with the fully

convolutional network.

1. Introduction

Convolutional neural networks (CNNs) are widely used
in various visual recognition problems such as image classi-
fication [17, 24, 25], object detection [8, 10], semantic seg-
mentation [7, 20], visual tracking [13], and action recog-
nition [15, 23]. The representation power of CNNs leads
to successful results; a combination of feature descriptors
extracted from CNNs and simple off-the-shelf classifiers
works very well in practice. Encouraged by the success
in classification problems, researchers start to apply CNNs
to structured prediction problems, i.e., semantic segmenta-
tion [19, 1], human pose estimation [18], and so on.

Recent semantic segmentation algorithms are often for-
mulated to solve structured pixel-wise labeling problems
based on CNN [1, 19]. They convert an existing CNN ar-
chitecture constructed for classification to a fully convolu-
tional network (FCN). They obtain a coarse label map from
the network by classifying every local region in image, and
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Figure 1. Limitations of semantic segmentation algorithms based

on fully convolutional network. (Left) original image. (Center)

ground-truth annotation. (Right) segmentations by [19]

perform a simple deconvolution, which is implemented as
bilinear interpolation, for pixel-level labeling. Conditional
random field (CRF) is optionally applied to the output map
for fine segmentation [16]. The main advantage of the meth-
ods based on FCN is that the network accepts a whole image
as an input and performs fast and accurate inference.

Semantic segmentation based on FCNs [1, 19] have a
couple of critical limitations. First, the network has a pre-
defined fixed-size receptive field. Therefore, the object that
is substantially larger or smaller than the receptive field may
be fragmented or mislabeled. In other words, label predic-
tion is done with only local information for large objects and
the pixels that belong to the same object may have inconsis-
tent labels as shown in Figure 1(a). Also, small objects are
often ignored and classified as background, which is illus-
trated in Figure 1(b). Although [19] attempts to sidestep this
limitation using skip architecture, this is not a fundamen-
tal solution since there is inherent trade-off between bound-
ary details and semantics. Second, the detailed structures
of an object are often lost or smoothed because the label
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map, input to the deconvolutional layer, is too coarse and
deconvolution procedure is overly simple. Note that, in the
original FCN [19], segmentation results are obtained from
the 16 × 16 label map through deconvolution to the orig-
inal input size using a single bilinear interpolation layer.
The absence of a deep deconvolution network trained on
a large dataset makes it difficult to reconstruct highly non-
linear structures of object boundaries accurately. However,
recent methods ameliorate this problem using CRF [16].

To overcome such limitations, we employ a completely
different strategy to perform semantic segmentation based
on CNN. Our main contributions are summarized below:

• We learn a deep deconvolution network, which is com-
posed of deconvolution, unpooling, and rectified linear
unit (ReLU) layers. Learning deep deconvolution net-
works for semantic segmentation is meaningful but no
one has attempted to do it yet to our knowledge.

• The trained network is applied to individual object pro-
posals to obtain instance-wise segmentations, which
are combined for the final semantic segmentation; it is
free from scale issues found in the original FCN-based
methods and identifies finer details of an object.

• We achieve outstanding performance using the decon-
volution network trained on PASCAL VOC 2012 aug-
mented dataset, and obtain the best accuracy through
the ensemble with [19] by exploiting the heteroge-
neous and complementary characteristics of our algo-
rithm with respect to FCN-based methods.

We believe that all of these three contributions help achieve
the state-of-the-art performance in PASCAL VOC 2012
benchmark.

The rest of this paper is organized as follows. We first
review related work in Section 2 and describe the architec-
ture of our network in Section 3. The detailed procedure
to learn a supervised deconvolution network is discussed
in Section 4. Section 5 presents how to utilize the learned
deconvolution network for semantic segmentation. Experi-
mental results are demonstrated in Section 6.

2. Related Work

CNNs are very popular in many visual recognition prob-
lems and have also been applied to semantic segmentation
actively. We first summarize the existing algorithms based
on supervised learning for semantic segmentation.

There are several semantic segmentation methods based
on classification. Mostajabi et al. [20] and Farabet et al. [7]
classify multi-scale superpixels into predefined categories
and combine the classification results for pixel-wise label-
ing. Some algorithms [3, 10, 11] classify region proposals
and refine the labels in the image-level segmentation map to
obtain the final segmentation.

Fully convolutional network (FCN) [19] has recently
driven breakthrough on deep learning based semantic seg-
mentation. In this approach, fully connected layers in the
standard CNNs are interpreted as convolutions with large
receptive fields, and segmentation is achieved using coarse
class score maps obtained by feedforwarding an input im-
age. An interesting idea in this work is that a single layer
interpolation is used for deconvolution and only the CNN
part of the network is fine-tuned to learn deconvolution in-
directly. The proposed network illustrates impressive per-
formance on the PASCAL VOC benchmark. Chen et al. [1]
obtain denser score maps within the FCN framework to pre-
dict pixel-wise labels and refine the label map using the
fully connected CRF [16]. Independently of our work and
[19], a shallow encoder-decoder model is studied [29] but
its performance improvement is marginal even compared to
the methods without deep learning.

In addition to the methods based on supervised learning,
several semantic segmentation techniques in weakly super-
vised settings have been proposed. When only bounding
box annotations are given for input images, [2, 21] refine the
annotations through iterative procedures and obtain accu-
rate segmentation outputs. On the other hand, [22] performs
semantic segmentation based only on image-level annota-
tions in a multiple instance learning framework. Our work
is extended to solving the semantic segmentation problem
with a small number of full annotations in [12].

Semantic segmentation involves deconvolution concep-
tually, but learning deconvolution network is not very com-
mon. Deconvolution network is discussed in [27] for image
reconstruction from its feature representation; it proposes
the unpooling operation by storing the pooled location to
resolve challenges induced by max pooling layers. This ap-
proach is also employed to visualize activated features in a
trained CNN [26] and update network architecture for per-
formance enhancement. This visualization is useful for un-
derstanding the behavior of a trained CNN model. Another
interesting work about deconvolution network is [5], which
generates chair images based only on a few parameters re-
lated to chair type, viewpoint, and transformation.

3. System Architecture

This section discusses the architecture of our deconvolu-
tion network, and describes the overall semantic segmenta-
tion algorithm.

3.1. Architecture

Figure 2 illustrates the detailed configuration of the en-
tire deep network. Our trained network is composed of two
parts—convolution and deconvolution networks. The con-
volution network corresponds to feature extractor that trans-
forms the input image to multidimensional feature represen-
tation, whereas the deconvolution network is a shape gen-
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Figure 2. Overall architecture of the proposed network. On top of the convolution network based on VGG 16-layer net, we put a multi-

layer deconvolution network to generate the accurate segmentation map of an input proposal. Given a feature representation obtained from

the convolution network, dense pixel-wise class prediction map is constructed through multiple series of unpooling, deconvolution and

rectification operations.

erator that produces object segmentation from the feature
extracted from the convolution network. The final output of
the network is a probability map in the same size to input
image, indicating probability of each pixel that belongs to
one of the predefined classes.

We employ VGG 16-layer net [24] for convolutional part
with its last classification layer removed. Our convolution
network has 13 convolutional layers altogether, rectifica-
tion and pooling operations are sometimes performed be-
tween convolutions, and 2 fully connected layers are aug-
mented at the end to impose class-specific projection. Our
deconvolution network is a mirrored version of the convo-
lution network, and has multiple series of unpooing, decon-
volution, and rectification layers. Contrary to convolution
network that reduces the size of activations through feed-
forwarding, deconvolution network enlarges the activations
through the combination of unpooling and deconvolution
operations. More details of the proposed deconvolution net-
work is described in the following subsections.

3.2. Deconvolution Network for Segmentation

We now discuss two main operations, unpooling and de-
convolution, in our deconvolution network in details.

3.2.1 Unpooling

Pooling in convolution network is designed to filter noisy
activations in a lower layer by abstracting activations in a
receptive field with a single representative value. Although
it helps classification by retaining only robust activations in
upper layers, spatial information within a receptive field is
lost during pooling, which may be critical for precise local-
ization that is required for semantic segmentation.

To resolve such issue, we employ unpooling layers in de-
convolution network, which perform the reverse operation
of pooling and reconstruct the original size of activations as
illustrated in Figure 3. To implement the unpooling opera-
tion, we follow the similar approach proposed in [26, 27]. It

Figure 3. Illustration of deconvolution and unpooling operations.

records the locations of maximum activations selected dur-
ing pooling operation in switch variables, which are em-
ployed to place each activation back to its original pooled
location. This unpooling strategy is particularly useful to
reconstruct the structure of input object as described in [26].

3.2.2 Deconvolution

The output of an unpooling layer is an enlarged, yet sparse
activation map. The deconvolution layers densify the sparse
activations obtained by unpooling through convolution-like
operations with multiple learned filters. However, contrary
to convolutional layers, which connect multiple input ac-
tivations within a filter window to a single activation, de-
convolutional layers associate a single input activation with
multiple outputs, as illustrated in Figure 3. The output of
the deconvolutional layer is an enlarged and dense activa-
tion map. We crop the boundary of the enlarged activation
map to keep the size of the output map identical to the one
from the preceding unpooling layer.

The learned filters in deconvolutional layers correspond
to bases to reconstruct shape of an input object. Therefore,
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(f) (g) (h) (i) (j)

Figure 4. Visualization of activations in our deconvolution network. The activation maps from (b) to (j) correspond to the output maps from

lower to higher layers in the deconvolution network. We select the most representative activation in each layer for effective visualization.

The image in (a) is an input, and the rest are the outputs from (b) the last 14× 14 deconvolutional layer, (c) the 28× 28 unpooling layer,

(d) the last 28 × 28 deconvolutional layer, (e) the 56 × 56 unpooling layer, (f) the last 56 × 56 deconvolutional layer, (g) the 112 × 112

unpooling layer, (h) the last 112× 112 deconvolutional layer, (i) the 224× 224 unpooling layer and (j) the last 224× 224 deconvolutional

layer. The finer details of the object are revealed, as the features are forward-propagated through the layers in the deconvolution network.

Note that noisy activations from background are suppressed through propagation while the activations closely related to the target classes

are amplified. It shows that the learned filters in higher deconvolutional layers tend to capture class-specific shape information.

similar to the convolution network, a hierarchical structure
of deconvolutional layers are used to capture different level
of shape details. The filters in lower layers tend to cap-
ture overall shape of an object while the class-specific fine-
details are encoded in the filters in higher layers. In this
way, the network directly takes class-specific shape infor-
mation into account for semantic segmentation, which is
often ignored in other approaches based only on convolu-
tional layers [1, 19].

3.2.3 Analysis of Deconvolution Network

In the proposed algorithm, the deconvolution network is a
key component for precise object segmentation. Contrary
to the simple deconvolution in [19] performed on coarse ac-
tivation maps, our algorithm generates object segmentation
masks using deep deconvolution network, where a dense
pixel-wise class probability map is obtained by successive
operations of unpooling, deconvolution, and rectification.

Figure 4 visualizes the outputs from the network layer by
layer, which is helpful to understand internal operations of
our deconvolution network. We can observe that coarse-to-
fine object structures are reconstructed through the propaga-
tion in the deconvolutional layers; lower layers tend to cap-
ture overall coarse configuration of an object (e.g. location,
shape and region), while more complex patterns are discov-

ered in higher layers. Note that unpooling and deconvolu-
tion play different roles for the construction of segmentation
masks. Unpooling captures example-specific structures by
tracing the original locations with strong activations back
to image space. As a result, it effectively reconstructs the
detailed structure of an object in finer resolutions. On the
other hand, learned filters in deconvolutional layers tend to
capture class-specific shapes. Through deconvolutions, the
activations closely related to the target classes are amplified
while noisy activations from other regions are suppressed
effectively. By the combination of unpooling and deconvo-
lution, our network generates accurate segmentation maps.

Figure 5 illustrates examples of outputs from FCN-8s
and the proposed network. Compared to the coarse acti-
vation map of FCN-8s, our network constructs dense and
precise activations using the deconvolution network.

3.3. System Overview

Our algorithm poses semantic segmentation as instance-
wise segmentation problem. That is, the network takes
a sub-image potentially containing objects—which we re-
fer to as instance(s) afterwards—as an input and produces
pixel-wise class prediction as an output. Given our network,
semantic segmentation on a whole image is obtained by ap-
plying the network to each candidate proposals extracted
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(a) Input image (b) FCN-8s (c) Ours

Figure 5. Comparison of class conditional probability maps from

FCN and our network (top: dog, bottom: bicycle).

from the image and aggregating outputs of all proposals to
the original image space.

Instance-wise segmentation has a few advantages over
image-level prediction. It handles objects in various scales
effectively and identifies fine details of objects while the ap-
proaches with fixed-size receptive fields have troubles with
these issues. Also, it alleviates training complexity by re-
ducing search space for prediction and reduces memory re-
quirement for training.

4. Training

The entire network described in the previous section is
very deep (twice deeper than [24]) and contains a lot of as-
sociated parameters. In addition, the number of training ex-
amples for semantic segmentation is relatively small com-
pared to the size of the network—12031 PASCAL training
and validation images in total. Training a deep network with
a limited number of examples is not trivial and we train the
network successfully using the following ideas.

4.1. Batch Normalization

It is well-known that a deep neural network is very hard
to optimize due to the internal-covariate-shift problem [14];
input distributions in each layer change over iteration during
training as the parameters of its previous layers are updated.
This is problematic in optimizing very deep networks since
the changes in distribution are amplified through propaga-
tion across layers.

We perform the batch normalization [14] to reduce the
internal-covariate-shift by normalizing input distributions
of every layer to the standard Gaussian distribution. For
the purpose, a batch normalization layer is added to the out-
put of every convolutional and deconvolutional layer. We
observe that the batch normalization is critical to optimize
our network; it ends up with a poor local optimum without
batch normalization.

4.2. Two-stage Training

Although batch normalization helps escape local optima,
the space of semantic segmentation is still very large com-
pared to the number of training examples and the benefit
to use a deconvolution network for instance-wise segmen-
tation would be cancelled. Then, we employ a two-stage
training method to address this issue, where we train the
network with easy examples first and fine-tune the trained
network with more challenging examples later.

To construct training examples for the first stage training,
we crop object instances using ground-truth annotations so
that an object is centered at the cropped bounding box. By
limiting the variations in object location and size, we re-
duce search space for semantic segmentation significantly
and train the network with much less training examples suc-
cessfully. In the second stage, we utilize object proposals
to construct more challenging examples. Specifically, can-
didate proposals sufficiently overlapped with ground-truth
segmentations (≥ 0.5 in IoU) are selected for training. Us-
ing the proposals to construct training data makes the net-
work more robust to the misalignment of proposals in test-
ing, but makes training more challenging since the location
and scale of an object may be significantly different across
training examples.

5. Inference

The proposed network is trained to perform semantic
segmentation for individual instances. Given an input im-
age, we first generate a sufficient number of candidate pro-
posals, and apply the trained network to obtain semantic
segmentation maps of individual proposals. Then we ag-
gregate the outputs of all proposals to produce semantic
segmentation on a whole image. Optionally, we take en-
semble of our method with FCN [19] to further improve
performance. We describe detailed procedure next.

5.1. Aggregating Instance-wise Segmentation Maps

Since some proposals may result in incorrect predictions
due to misalignment to object or cluttered background, we
should suppress such noises during aggregation. The pixel-
wise maximum or average of the score maps corresponding
all classes turns out to be sufficiently effective to obtain ro-
bust results.

Let gi ∈ RW×H×C be the output score maps of the ith
proposal, where W ×H and C denote the size of proposal
and the number of classes, respectively. We first put it on
image space with zero padding outside gi; we denote the
segmentation map corresponding to gi in the original image
size by Gi hereafter. Then we construct the pixel-wise class
score map of an image by aggregating the outputs of all
proposals by

P (x, y, c) = max
i

Gi(x, y, c), ∀i, (1)
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or

P (x, y, c) =
∑

i

Gi(x, y, c), ∀i. (2)

Class conditional probability maps in the original image
space are obtained by applying softmax function to the ag-
gregated maps obtained by Eq. (1) or (2). Finally, we apply
the fully-connected CRF [16] to the output maps for the fi-
nal pixel-wise labeling, where unary potential are obtained
from the pixel-wise class conditional probability maps.

5.2. Ensemble with FCN

Our algorithm based on the deconvolution network has
complementary characteristics to the approaches relying on
FCN; our deconvolution network is appropriate to capture
the fine-details of an object, whereas FCN is typically good
at extracting the overall shape of an object. In addition,
instance-wise prediction is useful for handling objects with
various scales, while fully convolutional network with a
coarse scale may be advantageous to capture context within
image. Exploiting these heterogeneous properties may lead
to better results, and we take advantage of the benefit of
both algorithms through ensemble.

We develop a simple method to combine the outputs of
both algorithms. Given two sets of class conditional prob-
ability maps of an input image computed independently by
the proposed method and FCN, we compute the mean of
both output maps and apply the CRF to obtain the final se-
mantic segmentation.

6. Experiments

This section first describes our implementation details
and experiment setup. Then, we analyze and evaluate the
proposed network in various aspects.

6.1. Implementation Details

Dataset We employ PASCAL VOC 2012 segmentation
dataset [6] for training and testing the proposed deep net-
work. For training, we use augmented segmentation anno-
tations from [9], where all training and validation images
are used to train our network. The performance of our net-
work is evaluated on test images. Note that only the im-
ages in PASCAL VOC 2012 augmented datasets are used
for training in our experiment, whereas some state-of-the-
art algorithms [2, 21] also employ Microsoft COCO to im-
prove performance.

Training Data Construction We employ a two-stage
training strategy and use a separate training dataset in each
stage. To construct training examples for the first stage,
we draw a tight bounding box corresponding to each an-
notated object in training images, and extend the box 1.2
times larger to include local context around the object. Then

we crop the square window tightly enclosing the extended
bounding box to obtain a training example. The class label
for each cropped region is provided based only on the ob-
ject located at the center while all other pixels are labeled
as background. In the second stage, each training example
is extracted from object proposal [28], where all relevant
class labels are used for annotation. We employ the same
post-processing as the one used in the first stage to include
context. For both datasets, we maintain the balance for the
number of examples across classes by adding redundant ex-
amples for the classes with limited number of examples.

Optmization We implement the proposed network based
on Caffe [30] framework. The standard stochastic gradi-
ent descent with momentum is employed for optimization,
where initial learning rate, momentum and weight decay are
set to 0.01, 0.9 and 0.0005, respectively. We initialize the
weights in the convolution network using VGG 16-layer net
pre-trained on ILSVRC [4] dataset, while the weights in the
deconvolution network are initialized with zero-mean Gaus-
sians. We remove the drop-outs due to batch normalization
as suggested in [14], and reduce learning rate in an order of
magnitude whenever validation accuracy does not improve.
Although our final network is learned with both training and
validation datasets, learning rate adjustment based on vali-
dation accuracy still works according to our experience.

Inference We employ edge-box [28] to generate object
proposals. For each testing image, we generate approxi-
mately 2000 object proposals, and select top 50 proposals
based on their objectness scores. We observe that this num-
ber is sufficient to obtain accurate segmentation in practice.
To obtain pixel-wise class conditional probability maps for
a whole image, we compute pixel-wise maximum to aggre-
gate proposal-wise predictions as in Eq. (1).

6.2. Evaluation on Pascal VOC

We evaluate our network on PASCAL VOC 2012 seg-
mentation benchmark [6], which contains 1456 test images
and involves 20 object categories. We adopt comp6 eval-
uation protocol that measures scores based on Intersection
over Union (IoU) between ground truth and predicted seg-
mentations.

The quantitative results of the proposed algorithm and
the competitors are presented in Table 1, where our method
is denoted by DeconvNet. The performance of DeconvNet
is competitive to the state-of-the-art methods. The CRF [16]
as post-processing enhances accuracy by approximately 1%
point. We further improve performance through an ensem-
ble with FCN-8s. It improves mean IoU about 10.3% and
3.1% point with respect to FCN-8s and our DeconvNet, re-
spectively, which is notable considering relatively low accu-
racy of FCN-8s. We believe that this is because our method
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Table 1. Evaluation results on PASCAL VOC 2012 test set. (Asterisk (∗) denotes the algorithms that also use Microsoft COCO for training.)

Method bkg areo bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mean

Hypercolumn [11] 88.9 68.4 27.2 68.2 47.6 61.7 76.9 72.1 71.1 24.3 59.3 44.8 62.7 59.4 73.5 70.6 52.0 63.0 38.1 60.0 54.1 59.2
MSRA-CFM [3] 87.7 75.7 26.7 69.5 48.8 65.6 81.0 69.2 73.3 30.0 68.7 51.5 69.1 68.1 71.7 67.5 50.4 66.5 44.4 58.9 53.5 61.8

FCN8s [19] 91.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2
TTI-Zoomout-16 [20] 89.8 81.9 35.1 78.2 57.4 56.5 80.5 74.0 79.8 22.4 69.6 53.7 74.0 76.0 76.6 68.8 44.3 70.2 40.2 68.9 55.3 64.4

DeepLab-CRF [1] 93.1 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

DeconvNet 92.7 85.9 42.6 78.9 62.5 66.6 87.4 77.8 79.5 26.3 73.4 60.2 70.8 76.5 79.6 77.7 58.2 77.4 52.9 75.2 59.8 69.6
DeconvNet+CRF 92.9 87.8 41.9 80.6 63.9 67.3 88.1 78.4 81.3 25.9 73.7 61.2 72.0 77.0 79.9 78.7 59.5 78.3 55.0 75.2 61.5 70.5

EDeconvNet 92.9 88.4 39.7 79.0 63.0 67.7 87.1 81.5 84.4 27.8 76.1 61.2 78.0 79.3 83.1 79.3 58.0 82.5 52.3 80.1 64.0 71.7
EDeconvNet+CRF 93.1 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5

* WSSL [21] 93.2 85.3 36.2 84.8 61.2 67.5 84.7 81.4 81.0 30.8 73.8 53.8 77.5 76.5 82.3 81.6 56.3 78.9 52.3 76.6 63.3 70.4
* BoxSup [2] 93.6 86.4 35.5 79.7 65.2 65.2 84.3 78.5 83.7 30.5 76.2 62.6 79.3 76.1 82.1 81.3 57.0 78.2 55.0 72.5 68.1 71.0

Figure 6. Benefit of instance-wise prediction. We aggregate the proposals in a decreasing order of their sizes. The algorithm identifies

finer object structures through iterations by handling multi-scale objects effectively.

and FCN have complementary characteristics as discussed
in Section 5.2. Our ensemble method denoted by EDecon-
vNet achieves the state-of-the-art accuracy among the meth-
ods trained only on PASCAL VOC 2012 augmented dataset.

Figure 6 demonstrates effectiveness of instance-wise
prediction for accurate segmentation. We aggregate the pro-
posals in a decreasing order of their sizes and observe the
progress of segmentation. As the number of aggregated pro-
posals increases, the algorithm identifies finer object struc-
tures, which are typically captured by small proposals.

The qualitative results of DeconvNet, FCN and their en-
semble are presented in Figure 7. Overall, DeconvNet pro-
duces fine segmentations compared to FCN, and handles
multi-scale objects effectively through instance-wise pre-
diction. FCN tends to fail in labeling too large or small ob-
jects (Figure 7(a)) due to its fixed-size receptive field. Our
network sometimes returns noisy predictions (Figure 7(b)),
when the proposals are misaligned or located at background
regions. The ensemble with FCN-8s produces much bet-
ter results as observed in Figure 7(a) and 7(b). Note that
inaccurate predictions from both FCN and DeconvNet are
sometimes corrected by ensemble as shown in Figure 7(c).
Adding CRF to ensemble improves quantitative perfor-
mance, although the improvement is not significant.

7. Conclusion

We proposed a novel semantic segmentation algorithm
by learning a deconvolution network. The proposed de-
convolution network is suitable to generate dense and pre-
cise object segmentation masks since coarse-to-fine struc-
tures of an object is reconstructed progressively through
a sequence of deconvolution operations. Our algorithm
based on instance-wise prediction is advantageous to han-
dle object scale variations by eliminating the limitation of
fixed-size receptive field in the FCN. We further proposed
an ensemble approach, which combines the outputs of the
proposed algorithm and FCN-based method, and achieved
substantially better performance thanks to complementary
characteristics of both algorithms. Our network demon-
strated the state-of-the-art performance in PASCAL VOC
2012 segmentation benchmark.
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(a) Examples that our method produces better results than FCN [19].

(b) Examples that FCN produces better results than our method.

(c) Examples that inaccurate predictions from our method and FCN are improved by ensemble.

Figure 7. Example of semantic segmentation results on PASCAL VOC 2012 validation images. Note that the proposed method and FCN

have complementary characteristics for semantic segmentation, and the combination of both methods improves accuracy through ensemble.

Although CRF removes some noises, it does not improve quantitative performance of our algorithm significantly.
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[16] P. Krähenbühl and V. Koltun. Efficient inference in fully

connected crfs with gaussian edge potentials. In NIPS, 2011.

1, 2, 6

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

classification with deep convolutional neural networks. In

NIPS, 2012. 1

[18] S. Li and A. B. Chan. 3D human pose estimation from

monocular images with deep convolutional neural network.

In ACCV, 2014. 1

[19] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 1, 2,

4, 5, 7, 8

[20] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feed-

forward semantic segmentation with zoom-out features. In

CVPR, 2015. 1, 2, 7

[21] G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille.

Weakly-and semi-supervised learning of a DCNN for seman-

tic image segmentation. In ICCV, 2015. 2, 6, 7

[22] P. O. Pinheiro and R. Collobert. Weakly supervised semantic

segmentation with convolutional networks. In CVPR, 2015.

2

[23] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In NIPS, 2014. 1

[24] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1, 3, 5

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 1

[26] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In ECCV, 2014. 2, 3

[27] M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive decon-

volutional networks for mid and high level feature learning.

In ICCV, 2011. 2, 3

[28] C. L. Zitnick and P. Dollár. Edge boxes: Locating object

proposals from edges. In ECCV, 2014. 6

[29] V. Badrinarayanan, A. Handa, and R. Cipolla. Seg-

Net: a deep convolutional encoder-decoder architecture

for robust semantic pixel-wise labelling. arXiv preprint

arXiv:1505.07293, 2015. 2

[30] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014. 6

1528


