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A Review on Generative Adversarial Networks:
Algorithms, Theory, and Applications

Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, Jieping Ye

Abstract—Generative adversarial networks (GANs) are a hot research topic recently. GANs have been widely studied since 2014, and
a large number of algorithms have been proposed. However, there is few comprehensive study explaining the connections among
different GANs variants, and how they have evolved. In this paper, we attempt to provide a review on various GANs methods from the
perspectives of algorithms, theory, and applications. Firstly, the motivations, mathematical representations, and structure of most GANs
algorithms are introduced in details. Furthermore, GANs have been combined with other machine learning algorithms for specific
applications, such as semi-supervised learning, transfer learning, and reinforcement learning. This paper compares the commonalities
and differences of these GANs methods. Secondly, theoretical issues related to GANs are investigated. Thirdly, typical applications of
GANs in image processing and computer vision, natural language processing, music, speech and audio, medical field, and data
science are illustrated. Finally, the future open research problems for GANs are pointed out.

Index Terms—Deep Learning, Generative Adversarial Networks, Algorithm, Theory, Applications.
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1 INTRODUCTION

GENERATIVE adversarial networks (GANs) have become
a hot research topic recently. Yann LeCun, a legend in

deep learning, said in a Quora post “GANs are the most
interesting idea in the last 10 years in machine learning.”
There are a large number of papers related to GANs accord-
ing to Google scholar. For example, there are about 11,800
papers related to GANs in 2018. That is to say, there are
about 32 papers everyday and more than one paper every
hour related to GANs in 2018.

GANs consist of two models: a generator and a dis-
criminator. These two models are typically implemented by
neural networks, but they can be implemented with any
form of differentiable system that maps data from one space
to the other. The generator tries to capture the distribution
of true examples for new data example generation. The
discriminator is usually a binary classifier, discriminating
generated examples from the true examples as accurately
as possible. The optimization of GANs is a minimax opti-
mization problem. The optimization terminates at a saddle
point that is a minimum with respect to the generator and
a maximum with respect to the discriminator. That is, the
optimization goal is to reach Nash equilibrium [1]. Then,
the generator can be thought to have captured the real
distribution of true examples.

Some previous work has adopted the concept of making
two neural networks compete with each other. The most
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relevant work is predictability minimization [2]. The connec-
tions between predictability minimization and GANs can be
found in [3], [4].

The popularity and importance of GANs have led to sev-
eral previous reviews. The difference from previous work is
summarized in the following.

1) GANs for specific applications: There are surveys of
using GANs for specific applications such as image
synthesis and editing [5], audio enhancement and
synthesis [6].

2) General survey: The earliest relevant review was
probably the paper by Wang et al. [7] which mainly
introduced the progress of GANs before 2017. Ref-
erences [8], [9] mainly introduced the progress of
GANs prior to 2018. The reference [10] introduced
the architecture-variants and loss-variants of GANs
only related to computer vision. Other related work
can be found in [11]–[13].

As far as we know, this paper is the first to provide a
comprehensive survey on GANs from the algorithm, theory,
and application perspectives which introduces the latest
progress. Furthermore, our paper focuses on applications
not only to image processing and computer vision, but also
sequential data such as natural language processing, and
other related areas such as medical field.

The remainder of this paper is organized as follows: The
related work is discussed in Section 2. Sections 3-5 introduce
GANs from the algorithm, theory, and applications perspec-
tives, respectively. Tables 1 and 2 show GANs’ algorithms
and applications which will be discussed in Sections 3 and
5, respectively. The open research problems are discussed in
Section 6 and Section 7 concludes the survey.

2 RELATED WORK
GANs belong to generative algorithms. Generative algo-
rithms and discriminative algorithms are two categories of
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TABLE 1: A overview of GANs’ algorithms discussed in Section 3

GANs’ Representative variants InfoGAN [14], cGANs [15], CycleGAN [16], f -GAN [17], WGAN [18], WGAN-GP [19],
LS-GAN [20]

Objective function LSGANs [21], [22], hinge loss based GAN [23]–[25], MDGAN [26], unrolled GAN [27],
SN-GANs [23], RGANs [28]

Skills ImprovedGANs [29], AC-GAN [30]
LAPGAN [31], DCGANs [32], PGGAN [33], StackedGAN [34], SAGAN [35], BigGANs [36],

GANs training StyleGAN [37], hybrids of autoencoders and GANs (EBGAN [38],
Structure BEGAN [39], BiGAN [40]/ALI [41], AGE [42]),

multi-discriminator learning (D2GAN [43], GMAN [44]),
multi-generator learning (MGAN [45], MAD-GAN [46]),

multi-GAN learning (CoGAN [47])
Semi-supervised learning CatGANs [48], feature matching GANs [29], VAT [49], �-GAN [50], Triple-GAN [51]

DANN [52], CycleGAN [53], DiscoGAN [54], DualGAN [55], StarGAN [56],
Task driven GANs Transfer learning CyCADA [57], ADDA [58], [59], FCAN [60],

unsupervised pixel-level domain adaptation (PixelDA) [61]
Reinforcement learning GAIL [62]

TABLE 2: Applications of GANs discussed in Section 5

Field Subfield Method
Super-resolution SRGAN [63], ESRGAN [64], Cycle-in-Cycle GANs [65],

SRDGAN [66], TGAN [67]
DR-GAN [68], TP-GAN [69], PG2 [70], PSGAN [71],

Image synthesis and manipulation APDrawingGAN [72], IGAN [73],
Image processing and computer vision introspective adversarial networks [74], GauGAN [75]

Texture synthesis MGAN [76], SGAN [77], PSGAN [78]
Object detection Segan [79], perceptual GAN [80], MTGAN [81]

Video VGAN [82], DRNET [83], Pose-GAN [84], video2video [85],
MoCoGan [86]

Natural language processing (NLP) RankGAN [87], IRGAN [88], [89], TAC-GAN [90]
Sequential data Music RNN-GAN (C-RNN-GAN) [91], ORGAN [92],

SeqGAN [93], [94]

machine learning algorithms. If a machine learning algo-
rithm is based on a fully probabilistic model of the observed
data, this algorithm is generative. Generative algorithms
have become more popular and important due to their wide
practical applications.

2.1 Generative algorithms

Generative algorithms can be classified into two classes:
explicit density model and implicit density model.

2.1.1 Explicit density model

An explicit density model assumes the distribution and
utilizes true data to train the model containing the distri-
bution or fit the distribution parameters. When finished,
new examples are produced utilizing the learned model or
distribution. The explicit density models include maximum
likelihood estimation (MLE), approximate inference [95],
[96], and Markov chain method [97]–[99]. These explicit
density models have an explicit distribution, but have lim-
itations. For instance, MLE is conducted on true data and
the parameters are updated directly based on the true data,
which leads to an overly smooth generative model. The gen-
erative model learned by approximate inference can only
approach the lower bound of the objective function rather
than directly approach the objective function, because of
the difficulty in solving the objective function. The Markov
chain algorithm can be used to train generative models, but
it is computationally expensive. Furthermore, the explicit
density model has the problem of computational tractability.

It may fail to represent the complexity of true data distribu-
tion and learn the high-dimensional data distributions [100].

2.1.2 Implicit density model
An implicit density model does not directly estimate or
fit the data distribution. It produces data instances from
the distribution without an explicit hypothesis [101] and
utilizes the produced examples to modify the model. Prior
to GANs, the implicit density model generally needs to be
trained utilizing either ancestral sampling [102] or Markov
chain-based sampling, which is inefficient and limits their
practical applications. GANs belong to the directed implicit
density model category. A detailed summary and relevant
papers can be found in [103].

2.1.3 The comparison between GANs and other generative
algorithms
GANs were proposed to overcome the disadvantages of
other generative algorithms. The basic idea behind adver-
sarial learning is that the generator tries to create as real-
istic examples as possible to deceive the discriminator. The
discriminator tries to distinguish fake examples from true
examples. Both the generator and discriminator improve
through adversarial learning. This adversarial process gives
GANs notable advantages over other generative algorithms.
More specifically, GANs have advantages over other gener-
ative algorithms as follows:

1) GANs can parallelize the generation, which is im-
possible for other generative algorithms such as
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PixelCNN [104] and fully visible belief networks
(FVBNs) [105], [106].

2) The generator design has few restrictions.
3) GANs are subjectively thought to produce better

examples than other methods.

Refer to [103] for more detailed discussions about this.

2.2 Adversarial idea
The adversarial idea has been successfully applied to many
areas such as machine learning, artificial intelligence, com-
puter vision and natural language processing. The recent
event that AlphaGo [107] defeats world’s top human player
engages public interest in artificial intelligence. The interme-
diate version of AlphaGo utilizes two networks competing
with each other.

Adversarial examples [108]–[117] have the adversarial
idea, too. Adversarial examples are those examples which
are very different from the real examples, but are classified
into a real category very confidently, or those that are
slightly different than the real examples, but are classified
into a wrong category. This is a very hot research topic
recently [112], [113]. To be against adversarial attacks [118],
[119], references [120], [121] utilize GANs to conduct the
right defense.

Adversarial machine learning [122] is a minimax prob-
lem. The defender, who builds the classifier that we want
to work correctly, is searching over the parameter space to
find the parameters that reduce the cost of the classifier as
much as possible. Simultaneously, the attacker is searching
over the inputs of the model to maximize the cost.

The adversarial idea exists in adversarial networks, ad-
versarial learning, and adversarial examples. However, they
have different objectives.

3 ALGORITHMS

In this section, we first introduce the original GANs. Then,
the representative variants, training, evaluation of GANs,
and task-driven GANs are introduced.

3.1 Generative Adversarial Nets (GANs)
The GANs framework is straightforward to implement
when the models are both neural networks. In order to learn
the generator’s distribution p

g

over data x, a prior on input
noise variables is defined as p

z

(z) [3] and z is the noise vari-
able. Then, GANs represent a mapping from noise space to
data space as G (z, ✓

g

), where G is a differentiable function
represented by a neural network with parameters ✓

g

. Other
than G, the other neural network D (x, ✓

d

) is also defined
with parameters ✓

d

and the output of D (x) is a single scalar.
D (x) denotes the probability that x was from the data
rather than the generator G. The discriminator D is trained
to maximize the probability of giving the correct label to
both training data and fake samples generated from the
generator G. G is trained to minimize log (1�D (G (z)))

simultaneously .

3.1.1 Objective function
Different objective functions can be used in GANs.

3.1.1.1 Original minimax game:
The objective function of GANs [3] is

min

G

max

D

V (D,G) = E

x⇠p

data

(x) [logD (x)]

+E

z⇠p

z

(z) [log (1�D (G (z)))] .

(1)

logD (x) is the cross-entropy between [1 0]

T and
[D (x) 1�D (x)]

T . Similarly, log (1�D (G (z)))

is the cross-entropy between [0 1]

T and
[D (G (z)) 1�D (G (z))]

T . For fixed G, the optimal
discriminator D is given by [3]:

D

⇤
G

(x) =

p

data

(x)

p

data

(x) + p

g

(x)

. (2)

The minmax game in (1) can be reformulated as:

C(G) = max

D

V (D,G)

= E

x⇠p

data

[logD

⇤
G

(x)]

+E

z⇠p

z

[log (1�D

⇤
G

(G (z)))]

= E

x⇠p

data

[logD

⇤
G

(x)] + E

x⇠p

g

[log (1�D

⇤
G

(x))]

= E

x⇠p

data

h
log

p

data

(x)
1
2 (pdata

(x)+p

g

(x))

i

+E

x⇠p

g

h
p

g

(x)
1
2 (pdata

(x)+p

g

(x))

i
� 2 log 2.

(3)

The definition of KullbackLeibler (KL) divergence and
Jensen-Shannon (JS) divergence between two probabilistic
distributions p (x) and q (x) are defined as

KL(pk q) =
Z

p (x) log

p (x)

q (x)

dx, (4)

JS(pk q) = 1

2

KL(pk p+ q

2

) +

1

2

KL(qk p+ q

2

). (5)

Therefore, (3) is equal to

C(G) = KL(p

data

k p

data

+p

g

2 ) +KL(p

g

k p

data

+p

g

2 )

�2 log 2

= 2JS(p

data

k p
g

)� 2 log 2.

(6)

Thus, the objective function of GANs is related to both KL
divergence and JS divergence.

3.1.1.2 Non-saturating game:
It is possible that the Equation (1) cannot provide sufficient
gradient for G to learn well in practice. Generally speak-
ing, G is poor in early learning and samples are clearly
different from the training data. Therefore, D can reject the
generated samples with high confidence. In this situation,
log (1�D (G (z))) saturates. We can train G to maximize
log (D (G (z))) rather than minimize log (1�D (G (z))).
The cost for the generator then becomes

J

(G)
= E

z⇠p

z

(z) [� log (D (G (z)))]

= E

x⇠p

g

[� log (D (x))] .

(7)

This new objective function results in the same fixed point
of the dynamics of D and G but provides much larger
gradients early in learning. The non-saturating game is
heuristic, not being motivated by theory. However, the
non-saturating game has other problems such as unstable
numerical gradient for training G. With optimal D

⇤
G

, we
have

E

x⇠p

g

[� log (D

⇤
G

(x))] + E

x⇠p

g

[log (1�D

⇤
G

(x))]

= E

x⇠p

g

h
log

(1�D

⇤
G

(x))
D

⇤
G

(x)

i
= E

x⇠p

g

h
log

p

g

(x)
p

data

(x)

i

= KL(p

g

k p
data

).

(8)
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Therefore, E
x⇠p

g

[� log (D

⇤
G

(x))] is equal to

E

x⇠p

g

[� log (D

⇤
G

(x))]

= KL(p

g

k p
data

)� E

x⇠p

g

[log (1�D

⇤
G

(x))] .

(9)

From (3) and (6), we have

E

x⇠p

data

[logD

⇤
G

(x)] + E

x⇠p

g

[log (1�D

⇤
G

(x))]

= 2JS(p

data

k p
g

)� 2 log 2.

(10)

Therefore, E
x⇠p

g

[log (1�D

⇤
G

(x))] equals

E

x⇠p

g

[log (1�D

⇤
G

(x))]

= 2JS(p

data

k p
g

)� 2 log 2� E

x⇠p

data

[logD

⇤
G

(x)] .

(11)

By substituting (11) into (9), (9) reduces to

E

x⇠p

g

[� log (D

⇤
G

(x))]

= KL(p

g

k p
data

)� 2JS(p

data

k p
g

)+

E

x⇠p

data

[logD

⇤
G

(x)] + 2 log 2.

(12)

From (12), we can see that the optimization of the alternative
G loss in the non-saturating game is contradictory because
the first term aims to make the divergence between the
generated distribution and the real distribution as small as
possible while the second term aims to make the divergence
between these two distributions as large as possible due
to the negative sign. This will bring unstable numerical
gradient for training G. Furthermore, KL divergence is not a
symmetrical quantity, which is reflected from the following
two examples

• If p

data

(x) ! 0 and p

g

(x) ! 1, we have
KL(p

g

k p
data

) ! +1.
• If p

data

(x) ! 1 and p

g

(x) ! 0, we have
KL(p

g

k p
data

) ! 0.

The penalizations for two errors made by G are completely
different. The first error is that G produces implausible sam-
ples and the penalization is rather large. The second error is
that G does not produce real samples and the penalization is
quite small. The first error is that the generated samples are
inaccurate while the second error is that generated samples
are not diverse enough. Based on this, G prefers producing
repeated but safe samples rather than taking risk to produce
different but unsafe samples, which has the mode collapse
problem.

3.1.1.3 Maximum likelihood game:
There are many methods to approximate (1) in GANs.
Under the assumption that the discriminator is optimal,
minimizing

J

(G)
= E

z⇠p

z

(z)

⇥
� exp

�
�

�1
(D (G (z)))

�⇤

= E

z⇠p

z

(z) [�D (G (z))/(1�D (G (z)))] ,

(13)

where � is the logistic sigmoid function, equals minimiz-
ing (1) [123]. The demonstration of this equivalence can
be found in Section 8.3 of [103]. Furthermore, there are
other possible ways of approximating maximum likelihood
within the GANs framework [17]. A comparison of original
zero-sum game, non-saturating game, and maximum likeli-
hood game is shown in Fig. 1.

Three observations can be obtained from Fig. 1.

• First, when the sample is possible to be fake, that is
on the left end of the figure, both the maximum like-
lihood game and the original minimax game suffer
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濛瀂瀊濸瀉濸瀅澿澳濺瀅濴濷濼濸瀁瀇澳濼瀁澳
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Fig. 1: The three curves of “Original”, “Non-saturating”, and
“Maximum likelihood cost” denotes log (1�D (G (z))),
� log (D (G (z))), and �D(G(z))/(1 �D(G(z))) in (1), (7),
and (13), respectively. The cost that the generator has for
generating a sample G(z) is only decided by the discrimi-
nator’s response to that generated sample. The larger prob-
ability the discriminator gives the real label to the generated
sample, the less cost the generator gets. This figure is repro-
duced from [103], [123].

from gradient vanishing. The heuristically motivated
non-saturating game does not have this problem.

• Second, maximum likelihood game also has the
problem that almost all of the gradient is from the
right end of the curve, which means that a rather
small number of samples in each minibatch dominate
the gradient computation. This demonstrates that
variance reduction methods could be an important
research direction for improving the performance of
GANs based on maximum likelihood game.

• Third, the heuristically motivated non-saturating
game has lower sample variance, which is the pos-
sible reason that it is more successful in real applica-
tions.

GAN Lab [124] is proposed as the interactive visualization
tool designed for non-experts to learn and experiment with
GANs. Bau et al. [125] present an analytic framework to
visualize and understand GANs.

3.2 GANs’ representative variants
There are many papers related to GANs [126]–[131] such as
CSGAN [132] and LOGAN [133]. In this subsection, we will
introduce GANs’ representative variants.

3.2.1 InfoGAN
Rather than utilizing a single unstructured noise vector z,
InfoGAN [14] proposes to decompose the input noise vector
into two parts: z, which is seen as incompressible noise; c,
which is called the latent code and will target the significant



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

structured semantic features of the real data distribution.
InfoGAN [14] aims to solve

min

G

max

D

V

I

(D,G) = V (D,G)� �I(c;G(z, c)), (14)

where V (D,G) is the objective function of original GAN,
G(z, c) is the generated sample, I is the mutual information,
and � is the tunable regularization parameter. Maximizing
I(c;G(z, c)) means maximizing the mutual information be-
tween c and G(z, c) to make c contain as much important
and meaningful features of the real samples as possible.
However, I(c;G(z, c)) is difficult to optimize directly in
practice since it requires access to the posterior P (c|x).
Fortunately, we can have a lower bound of I(c;G(z, c))

by defining an auxiliary distribution Q(c|x) to approximate
P (c|x). The final objective function of InfoGAN [14] is

min

G

max

D

V

I

(D,G) = V (D,G)� �L

I

(c;Q), (15)

where L
I

(c;Q) is the lower bound of I(c;G(z, c)). InfoGAN
has several variants such as causal InfoGAN [134] and semi-
supervised InfoGAN (ss-InfoGAN) [135].

3.2.2 Conditional GANs (cGANs)

GANs can be extended to a conditional model if both the
discriminator and generator are conditioned on some extra
information y. The objective function of conditional GANs
[15] is:

min

G

max

D

V (D,G) = E

x⇠p

data

(x) [logD (x| y)]
+E

z⇠p

z

(z) [log (1�D (G (z| y)))] .
(16)

By comparing (15) and (16), we can see that the generator
of InfoGAN is similar to that of cGANs. However, the latent
code c of InfoGAN is not known, and it is discovered by
training. Furthermore, InfoGAN has an additional network
Q to output the conditional variables Q(c|x).

Based on cGANs, we can generate samples conditioning
on class labels [30], [136], text [34], [137], [138], bounding
box and keypoints [139]. In [34], [140], text to photo-realistic
image synthesis is conducted with stacked generative ad-
versarial networks (SGAN) [141]. cGANs have been used
for convolutional face generation [142], face aging [143],
image translation [144], synthesizing outdoor images having
specific scenery attributes [145], natural image description
[146], and 3D-aware scene manipulation [147]. Chrysos et
al. [148] proposed robust cGANs. Thekumparampil et al.
[149] discussed the robustness of conditional GANs to noisy
labels. Conditional CycleGAN [16] uses cGANs with cyclic
consistency. Mode seeking GANs (MSGANs) [150] proposes
a simple yet effective regularization term to address the
mode collapse issue for cGANs.

The discriminator of original GANs [3] is trained to
maximize the log-likelihood that it assigns to the correct
source [30]:

L = E [logP (S = real|X
real

)]

+E [log (P (S = fake|X
fake

))] ,

(17)

which is equal to (1). The objective function of the auxiliary
classifier GAN (AC-GAN) [30] has two parts: the loglikeli-
hood of the correct source, L

S

, and the loglikelihood of the

y

G

G(y)

y

D
fake

x

y

D
real

Fig. 2: Illustration of pix2pix: Training a conditional GANs
to map grayscale!color. The discriminator D learns to
classify between real grayscale, color tuples and fake (syn-
thesized by the generator). The generator G learns to fool
the discriminator. Different from the original GANs, both
the generator and discriminator observe the input grayscale
image and there is no noise input for the generator of
pix2pix.

correct class label, L
C

. L
S

is equivalent to L in (17). L
C

is
defined as

L

C

= E [logP (C = c|X
real

)]

+E [log (P (C = c|X
fake

))] .

(18)

The discriminator and generator of AC-GAN is to maximize
L

C

+ L

S

and L

C

� L

S

, respectively. AC-GAN was the
first variant of GANs that was able to produce recognizable
examples of all the ImageNet [151] classes.

Discriminators of most cGANs based methods [31], [41],
[152]–[154] feed conditional information y into the discrimi-
nator by simply concatenating (embedded) y to the input or
to the feature vector at some middle layer. cGANs with pro-
jection discriminator [155] adopts an inner product between
the condition vector y and the feature vector.

Isola et al. [156] used cGANs and sparse regularization
for image-to-image translation. The corresponding software
is called pix2pix. In GANs, the generator learns a mapping
from random noise z to G (z). In contrast, there is no noise
input in the generator of pix2pix. A novelty of pix2pix is
that the generator of pix2pix learns a mapping from an
observed image y to output image G (y), for example, from
a grayscale image to a color image. The objective of cGANs
in [156] can be expressed as

L

cGANs

(D,G) = E

x,y

[logD (x, y)]

+E

y

[log (1�D (y,G (y)))] .

(19)

Furthermore, l1 distance is used:

L

l1 (G) = E

x,y

[kx�G(y)k1] . (20)

The final objective of [156] is

L

cGANs

(D,G) + �L

l1 (G) , (21)

where � is the free parameter. As a follow-up to pix2pix,
pix2pixHD [157] used cGANs and feature matching loss for
high-resolution image synthesis and semantic manipulation.
With the discriminators, the learning problem is a multi-task
learning problem:

min

G

max

D1,D2,D3

X

k=1,2,3

L

GAN

(G,D

k

). (22)
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The training set is given as a set of pairs of corresponding
images {(s

i

, x

i

)}, where x

i

is a natural photo and s

i

is a
corresponding semantic label map. The ith-layer feature ex-
tractor of discriminator D

k

is denoted as D(i)
k

(from input to
the ith layer of D

k

). The feature matching loss L
FM

(G,D

k

)

is:

L

FM

(G,D

k

) =

E(s,x)

TP
i=1

1
N

i

h���D(i)
k

(s, x)�D

(i)
k

(s,G (s))

���
1

i
,

(23)

where N

i

is the number of elements in each layer and
T denotes the total number of layers. The final objective
function of [157] is

min

G

max

D1,D2,D3

X

k=1,2,3

(L

GAN

(G,D

k

) + �L

FM

(G,D

k

)). (24)

3.2.3 CycleGAN
Image-to-image translation is a class of graphics and vision
problems where the goal is to learn the mapping between
an output image and an input image using a training
set of aligned image pairs. When paired training data is
available, reference [156] can be used for these image-to-
image translation tasks. However, reference [156] can not be
used for unpaired data (no input/output pairs), which was
well solved by Cycle-consistent GANs (CycleGAN) [53].
CycleGAN is an important progress for unpaired data. It
is proved that cycle-consistency is an upper bound of the
conditional entropy [158]. CycleGAN can be derived as a
special case within the proposed variational inference (VI)
framework [159], naturally establishing its relationship with
approximate Bayesian inference methods.

The basic idea of DiscoGAN [54] and CycleGAN [53]
is nearly the same. Both of them were proposed separately
nearly at the same time. The only difference between Cy-
cleGAN [53] and DualGAN [55] is that DualGAN uses the
loss format advocated by Wasserstein GAN (WGAN) rather
than the sigmoid cross-entropy loss used in CycleGAN.

3.2.4 f -GAN
As we know, Kullback-Leibler (KL) divergence measures the
difference between two given probability distributions. A
large class of assorted divergences are the so called Ali-
Silvey distances, also known as the f -divergences [160].
Given two probability distributions P and Q which have,
respectively, an absolutely continuous density function p

and q with regard to a base measure dx defined on the
domain X , the f -divergence is defined,

D

f

(P kQ ) =

Z

X

q (x)f

✓
p (x)

q (x)

◆
dx. (25)

Different choices of f recover popular divergences as special
cases of f -divergence. For example, if f (a) = a log a, f -
divergence becomes KL divergence. The original GANs
[3] is a special case of f -GAN [17] which is based on f -
divergence. The reference [17] shows that any f -divergence
can be used for training GAN. Furthermore, the reference
[17] discusses the advantages of different choices of di-
vergence functions on both the quality of the produced
generative models and training complexity. Im et al. [161]

quantitatively evaluated GANs with divergences proposed
for training. Uehara et al. [162] extend the f -GAN further,
where the f -divergence is directly minimized in the gen-
erator step and the ratio of the distributions of real and
generated data are predicted in the discriminator step.

3.2.5 Integral Probability Metrics (IPMs)
Denoting P the set of all Borel probability measures on a
topological space (M,A). The integral probability metric
(IPM) [163] between two probability distributions P 2 P
and Q 2 P is defined as

�F (P,Q) = sup

f2F

����
Z

M

fdP �
Z

M

fdQ

���� , (26)

where F is a class of real-valued bounded measurable
functions on M . Nonparametric density estimation and
convergence rates for GANs under Besov IPM Losses is
discussed in [164]. IPMs include such as RKHS-induced
maximum mean discrepancy (MMD) as well as the Wasser-
stein distance used in Wasserstein GANs (WGAN).

3.2.5.1 Maximum Mean Discrepancy (MMD):
The maximum mean discrepancy (MMD) [165] is a measure
of the difference between two distributions P and Q given
by the supremum over a function space F of differences
between the expectations with regard to two distributions.
The MMD is defined by:

MMD(F , P,Q) =

sup

f2F
(E

X⇠P

[f (X)]� E

Y⇠Q

[f (Y )]) .

(27)

MMD has been used for deep generative models [166]–[168]
and model criticism [169].

3.2.5.2 Wasserstein GAN (WGAN):
WGAN [18] conducted a comprehensive theoretical analysis
of how the Earth Mover (EM) distance behaves in com-
parison with popular probability distances and divergences
such as the total variation (TV) distance, the Kullback-
Leibler (KL) divergence, and the Jensen-Shannon (JS) diver-
gence utilized in the context of learning distributions. The
definition of the EM distance is

W (p

data

, p

g

) = inf

�2⇧(p
data

,p

g

)
E(x,y)2�

[kx� yk] , (28)

where ⇧ (p

data

, p

g

) denotes the set of all joint distributions
� (x, y) whose marginals are p

data

and p

g

, respectively.
However, the infimum in (28) is highly intractable. The
reference [18] uses the following equation to approximate
the EM distance

max

w2W
E

x⇠p

data

(x) [fw (x)]� E

z⇠p

z

(z) [fw (G (z))] , (29)

where there is a parameterized family of functions
{f

w

}
w2W that are all K-Lipschitz for some K and f

w

can
be realized by the discriminator D. When D is optimized,
(29) denotes the approximated EM distance. Then the aim
of G is to minimize (29) to make the generated distribution
as close to the real distribution as possible. Therefore, the
overall objective function of WGAN is

min

G

max

w2W
E

x⇠p

data

(x) [fw (x)]� E

z⇠p

z

(z) [fw (G (z))]

= min

G

max

D

E

x⇠p

data

(x) [D (x)]� E

z⇠p

z

(z) [D (G (z))] .

(30)
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By comparing (1) and (30), we can see three differences
between the objective function of original GANs and that
of WGAN:

• First, there is no log in the objective function of
WGAN.

• Second, the D in original GANs is utilized as a
binary classifier while D utilized in WGAN is to
approximate the Wasserstein distance, which is a
regression task. Therefore, the sigmoid in the last
layer of D is not used in the WGAN. The output
of the discriminator of the original GANs is between
zero and one while there is no constraint for that of
WGAN.

• Third, the D in WGAN is required to be K-Lipschitz
for some K and therefore WGAN uses weight clip-
ping.

Compared with traditional GANs training, WGAN can
improve the stability of learning and provide meaningful
learning curves useful for hyperparameter searches and
debugging. However, it is a challenging task to approxi-
mate the K-Lipschitz constraint which is required by the
Wasserstein-1 metric. WGAN-GP [19] is proposed by utiliz-
ing gradient penalty for restricting K-Lipschitz constraint
and the objective function is

L = �E

x⇠p

data

[D (x)] + E

x̃⇠p

g

[D (x̃)]

+�E

x̂⇠p

x̂

h
(kr

x̂

D (x̂)k2 � 1)

2
i (31)

where the first two terms are the objective function of
WGAN and x̂ is sampled from the distribution p

x̂

which
samples uniformly along straight lines between pairs of
points sampled from the real data distribution p

data

and
the generated distribution p

g

. There are some other methods
closely related to WGAN-GP such as DRAGAN [170]. Wu et
al. [171] propose a novel and relaxed version of Wasserstein-
1 metric: Wasserstein divergence (W-div), which does not
require the K-Lipschitz constraint. Based on W-div, Wu et al.
[171] introduce a Wasserstein divergence objective for GANs
(WGAN-div), which can faithfully approximate W-div by
optimization. CramerGAN [172] argues that the Wasserstein
distance leads to biased gradients, suggesting the Cramr
distance between two distributions. Other papers related to
WGAN can be found in [173]–[178].

3.2.6 Loss Sensitive GAN (LS-GAN)
Similar to WGAN, LS-GAN [20] also has a Lipschitz con-
straint. It is assumed in LS-GAN that p

data

lies in a set of
Lipschitz densities with a compact support. In LS-GAN , the
loss function L

✓

(x) is parameterized with ✓ and LS-GAN
assumes that a generated sample should have larger loss
than a real one. The loss function can be trained to satisfy
the following constraint:

L

✓

(x)  L

✓

(G (z))�� (x,G (z)) (32)

where � (x,G (z)) is the margin measuring the difference
between generated sample G(z) and real sample x. The
objective function of LS-GAN is

min

D

L
D

= E

x⇠p

data

(x) [L✓

(x)]

+�E

x⇠p

data

(x),
z⇠p

z

(z)

[� (x,G (z)) + L

✓

(x)� L

✓

(G (z))]+,
(33)

min

G

L
G

= E

z⇠p

z

(z) [L✓

(G (z))] , (34)

where [y]

+
= max(0, y), � is the free tuning-parameter, and

✓ is the paramter of the discriminator D.

3.2.7 Summary

There is a website called “The GAN Zoo” (https:
//github.com/hindupuravinash/the-gan-zoo) which lists
many GANs’ variants. Please refer to this website for more
details.

3.3 GANs Training

Despite the theoretical existence of unique solutions, GANs
training is hard and often unstable for several reasons [29],
[32], [179]. One difficulty is from the fact that optimal
weights for GANs correspond to saddle points, and not
minimizers, of the loss function.

There are many papers on GANs training. Yadav et al.
[180] stabilized GANs with prediction methods. By using
independent learning rates, [181] proposed a two time-
scale update rule (TTUR) for both discriminator and gen-
erator to ensure that the model can converge to a stable
local Nash equilibrium. Arjovsky [179] made theoretical
steps towards fully understanding the training dynamics of
GANs; analyzed why GANs was hard to train; studied and
proved rigorously the problems including saturation and
instability that occurred when training GANs; examined a
practical and theoretically grounded direction to mitigate
these problems; and introduced new tools to study them.
Liang et al. [182] think that GANs training is a continual
learning problem [183].

One method to improve GANs training is to assess
the empirical “symptoms” that might occur in training.
These symptoms include: the generative model collapsing
to produce very similar samples for diverse inputs [29];
the discriminator loss converging quickly to zero [179],
providing no gradient updates to the generator; difficulties
in making the pair of models converge [32].

We will introduce GANs training from three perspec-
tives: objective function, skills, and structure.

3.3.1 Objective function

As we can see from Subsection 3.1, utilizing the original
objective function in equation (1) will have the gradient van-
ishing problem for training G and utilizing the alternative
G loss (12) in non-saturating game will get the mode col-
lapse problem. These problems are caused by the objective
function and cannot be solved by changing the structures
of GANs. Re-designing the objective function is a natural
solution to mitigate these problems. Based on the theoretical
flaws of GANs, many objective function based variants
have been proposed to change the objective function of
GANs based on theoretical analyses such as least squares
generative adversarial networks [21], [22].

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
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3.3.1.1 Least squares generative adversarial net-
works (LSGANs) :
LSGANs [21], [22] are proposed to overcome the vanishing
gradient problem in the original GANs. This work shows
that the decision boundary for D of original GAN penalizes
very small error to update G for those generated samples
which are far from the decision boundary. LSGANs adopt
the least squares loss rather than the cross-entropy loss in
the original GANs. Suppose that the a-b coding is used
for the LSGANs’ discriminator [21], where a and b are the
labels for generated sample and real sample, respectively.
The LSGANs’ discriminator loss V

LSGAN

(D) and generator
loss V

LSGAN

(G) are defined as:

min

D

V

LSGAN

(D) = E

x⇠p

data

(x)

h
(D (x)� b)

2
i

+E

z⇠p

z

(z)

h
(D (G (z))� a)

2
i
,

(35)

min

G

V

LSGAN

(G) = E

z⇠p

z

(z)

h
(D (G (z))� c)

2
i
, (36)

where c is the value that G hopes for D to believe for
generated samples. The reference [21] shows that there are
two advantages of LSGANs in comparison with the original
GANs:

• The new decision boundary produced by D penal-
izes large error to those generated samples which
are far from the decision boundary, which makes
those “low quality” generated samples move toward
the decision boundary. This is good for generating
higher quality samples.

• Penalizing the generated samples far from the de-
cision boundary can supply more gradient when
updating the G, which overcomes the vanishing gra-
dient problems in the original GANs.

3.3.1.2 Hinge loss based GAN:
Hinge loss based GAN is proposed and used in [23]–[25]
and its objective function is V (D,G):

V

D

⇣
ˆ

G,D

⌘
= E

x⇠p

data

(x) [min(0,�1 +D (x))]

+E

z⇠p

z

(z)

h
min(0,�1�D

⇣
ˆ

G(z)

⌘
)

i
.

(37)

V

D

⇣
G,

ˆ

D

⌘
= �E

z⇠p

z

(z)

h
ˆ

D (G(z))

i
. (38)

The softmax cross-entropy loss [184] is also used in GANs.
3.3.1.3 Energy-based generative adversarial net-

work (EBGAN):
EBGAN’s discriminator is seen as an energy function, giving
high energy to the fake (“generated”) samples and lower
energy to the real samples. As for the energy function, please
refer to [185] for the corresponding tutorial. Given a positive
margin m , the loss functions for EBGAN can be defined as
follows:

L
D

(x, z) = D(x) + [m�D(G(z))]

+
, (39)

L
G

(z) = D(G(z)), (40)

where [y]

+
= max(0, y) is the rectified linear unit (ReLU)

function. Note that in the original GANs, the discriminator

D give high score to real samples and low score to the
generated (“fake”) samples. However, the discriminator in
EBGAN attributes low energy (score) to the real samples
and higher energy to the generated ones. EBGAN has more
stable behavior than original GANs during training.

3.3.1.4 Boundary equilibrium generative adversar-
ial networks (BEGAN):
Similar to EBGAN [38], dual-agent GAN (DA-GAN) [186],
[187], and margin adaptation for GANs (MAGANs) [188],
BEGAN also uses an auto-encoder as the discriminator.
Using proportional control theory, BEGAN proposes a novel
equilibrium method to balance generator and discriminator
in training, which is fast, stable, and robust to parameter
changes.

3.3.1.5 Mode regularized generative adversarial
networks (MDGAN) :
Che et al. [26] argue that GANs’ unstable training and model
collapse is due to the very special functional shape of the
trained discriminators in high dimensional spaces, which
can make training stuck or push probability mass in the
wrong direction, towards that of higher concentration than
that of the real data distribution. Che et al. [26] introduce
several methods of regularizing the objective, which can
stabilize the training of GAN models. The key idea of
MDGAN is utilizing an encoder E (x) : x ! z to produce
the latent variable z for the generator G rather than utilizing
noise. This procedure has two advantages:

• Encoder guarantees the correspondence between z

(E(x)) and x, which makes G capable of covering di-
verse modes in the data space. Therefore, it prevents
the mode collapse problem.

• Because the reconstruction of encoder can add more
information to the generator G, it is not easy for the
discriminator D to distinguish between real samples
and generated ones.

The loss function for the generator and the encoder of
MDGAN is

L
G

= �E

z⇠p

z

(z) [log (D (G (z)))]

+E

x⇠p

data

(x)


�1d (x,G � E (x))

+�2 logD (G � E (x))

�
,

(41)

L
E

= E

x⇠p

data

(x)


�1d (x,G � E (x))

+�2 logD (G � E (x))

�
, (42)

where both �1 and �2 are free tuning parameters, d is the
distance metric such as Euclidean distance, and G �E (x) =

G (E (x)).
3.3.1.6 Unrolled GAN:

Metz et al. [27] introduce a technique to stabilize GANs
by defining the generator objective with regard to an un-
rolled optimization of the discriminator. This allows training
to be adjusted between utilizing the current value of the
discriminator, which is usually unstable and leads to poor
solutions, and utilizing the optimal discriminator solution
in the generator’s objective, which is perfect but infeasible
in real applications. Let f (✓

G

, ✓

D

) denote the objective
function of the original GANs.
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A local optimal solution of the discriminator parameters
✓

⇤
D

can be expressed as the fixed point of an iterative
optimization procedure,

✓

0
D

= ✓

D

, (43)

✓

k+1
D

= ✓

k

D

+ ⌘

k

df

�
✓

G

, ✓

k

D

�

d✓

k

D

, (44)

✓

⇤
D

(✓

G

) = lim

k!1
✓

k

D

, (45)

where ⌘

k is the learning rate. By unrolling for K steps, a
surrogate objective for the update of the generator is created

f

K

(✓

G

, ✓

D

) = f

�
✓

G

, ✓

K

D

(✓

G

, ✓

D

)

�
. (46)

When K = 0, this objective is the same as the standard
GAN objective. When K ! 1, this objective is the true
generator objective function f (✓

G

, ✓

⇤
D

(G)). By adjusting the
number of unrolling steps K , we are capable of interpolat-
ing between standard GAN training dynamics with their
related pathologies, and more expensive gradient descent
on the true generator loss. The generator and discriminator
parameter updates of unrolled GAN using this surrogate
loss are

✓

G

= ✓

G

� ⌘

df

K

(✓

G

, ✓

D

)

d✓

G

, (47)

✓

D

= ✓

D

+ ⌘

df (✓

G

, ✓

D

)

d✓

D

. (48)

Metz et al. [27] show how this method solves mode collapse,
stabilizes training of GANs, and increases diversity and
coverage of the generated distribution by the generator.

3.3.1.7 Spectrally normalized GANs (SN-GANs):
SN-GANs [23] propose a novel weight normalization
method named spectral normalization to make the training
of the discriminator stable. This new normalization tech-
nique is computationally efficient and easy to be integrated
into existing methods. The spectral normalization [23] uses
a simple method to make the weight matrix W satisfy the
Lipschitz constraint � (W ) = 1:

¯

W

SN

(W ) := W/� (W ) , (49)

where W is the weight matrix of each layer in D and � (W )

is the spectral norm of W . It is shown that [23] SN-GANs
can generate images of equal or better quality in comparison
with the previous training stabilization methods. In theory,
spectral normalization is capable of being applied to all
GANs variants. Both BigGANs [36] and SAGAN [35] use
the spectral normalization and have good performances on
the Imagenet.

3.3.1.8 Relativistic GANs (RGANs):
In the original GANs, the discriminator can be defined,
according to the non-transformed layer C(x), as D(x) =

sigmoid(C(x)). A simple way to make discriminator rela-
tivistic (i.e., making the output of D depend on both real and
generated samples) [28] is to sample from real/generated
data pairs x̃ = (x

r

, x

g

) and define it as

D (x̃) = sigmoid (C (x

r

)� C (x

g

)) . (50)

This modification can be understood in the following way
[28]: D estimates the probability that the given real sample
is more realistic than a randomly sampled generated sam-
ple. Similarly, D

rev

(x̃) = sigmoid (C (x

g

)� C (x

r

)) can be
defined as the probability that the given generated sample
is more realistic than a randomly sampled real sample. The
discriminator and generator loss functions of the Relativistic
Standard GAN (RSGAN) is:

L

RSGAN

D

= �E(x
r

,x

g

) [log (sigmoid (C (x

r

)� C (x

g

)))] , (51)

L

RSGAN

G

= �E(x
r

,x

g

) [log (sigmoid (C (x

g

)� C (x

r

)))] . (52)

Most GANs can be parametrized:

L

GAN

D

= E

x

r

[f1 (C (x

r

))] + E

x

g

[f2 (C (x

g

))] , (53)

L

GAN

G

= E

x

r

[g1 (C (x

r

))] + E

x

g

[g2 (C (x

g

))] , (54)

where f1, f2, g1, g2 are scalar-to-scalar functions. If we adopt
a relativistic discriminator, the loss functions of these GANs
become:

L

RGAN

D

= E(x
r

,x

g

) [f1 (C (x

r

)� C (x

g

))]

+E(x
r

,x

g

) [f2 (C (x

g

)� C (x

r

))]

, (55)

L

RGAN

G

= E(x
r

,x

g

) [g1 (C (x

r

)� C (x

g

))]

+E(x
r

,x

g

) [g2 (C (x

g

)� C (x

r

))] .

(56)

3.3.2 Skills

NIPS 2016 held a workshop on adversarial training, with
an invited talk by Soumith Chintala named ”How to train
a GAN.” This talk has an assorted tips and tricks. For
example, this talk suggests that if you have labels, train-
ing the discriminator to also classify the examples: AC-
GAN [30]. Refer to the GitHub repository associated with
Soumith’s talk: https://github.com/soumith/ganhacks for
more advice.

Salimans et al. [29] proposed very useful and improved
techniques for training GANs (ImprovedGANs), such as
feature matching, minibatch discrimination, historical aver-
aging, one-sided label smoothing, and virtual batch normal-
ization.

3.3.3 Structure

The original GANs utilized multi-layer perceptron (MLP).
Specific type of structure may be good for specific applica-
tions e.g., recurrent neural network (RNN) for time series
data and convolutional neural network (CNN) for images.

3.3.3.1 The original GANs:
The original GANs used MLP as the generator G and
discriminator D. MLP can be only used for small datasets
such as CIFAR-10 [189], MNIST [190], and the Toronto Face
Database (TFD) [191]. However, MLP does not have good
generalization on more complex images [10].

https://github.com/soumith/ganhacks
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3.3.3.2 Laplacian generative adversarial networks
(LAPGAN) and SinGAN:
LAPGAN [31] is proposed for producing higher resolution
images in comparison with the original GANs. LAPGAN
uses a cascade of CNN within a Laplacian pyramid frame-
work [192] to generate high quality images.

SinGAN [193] learns a generative model from a single
natural image. SinGAN has a pyramid of fully convolutional
GANs, each of which learns the patch distribution at a
different scale of the image. Similar to SinGAN, InGAN
[194] also learns a generative model from a single natural
image.

3.3.3.3 Deep convolutional generative adversarial
networks (DCGANs):
In original GANs, G and D are defined by MLP. Because
CNN are better at images than MLP, G and D are defined by
deep convolutional neural networks (DCNNs) in DCGANs
[32], which have better performance. Most current GANs
are at least loosely based on the DCGANs architecture [32].
Three key features of the DCGANs architecture are listed as
follows:

• First, the overall architecture is mostly based on
the all-convolutional net [195]. This architecture has
neither pooling nor “unpooling” layers. When G

needs to increase the spatial dimensionality of the
representation, it uses transposed convolution (de-
convolution) with a stride greater than 1.

• Second, utilize batch normalization for most layers of
both G and D. The last layer of G and first layer of
D are not batch normalized, in order that the neural
network can learn the correct mean and scale of the
data distribution.

• Third, utilize the Adam optimizer instead of SGD
with momentum.

3.3.3.4 Progressive GAN:
In Progressive GAN (PGGAN) [33], a new training method-
ology for GAN is proposed. The structure of Progressive
GAN is based on progressive neural networks that is first
proposed in [196]. The key idea of Progressive GAN is to
grow both the generator and discriminator progressively:
starting from a low resolution, adding new layers that
model increasingly fine details as training progresses.

3.3.3.5 Self-Attention Generative Adversarial Net-
work (SAGAN):
SAGAN [35] is proposed to allow attention-driven, long-
range dependency modeling for image generation tasks.
Spectral normalization technique has only been applied to
the discriminator [23]. SAGAN uses spectral normalization
for both generator and discriminator and it is found that this
improves training dynamics. Furthermore, it is confirmed
that the two time-scale update rule (TTUR) [181] is effective
in SAGAN.

Note that AttnGAN [197] utilizes attention over word
embeddings within an input sequence rather than self-
attention over internal model states.

3.3.3.6 BigGANs and StyleGAN:
Both BigGANs [36] and StyleGAN [37], [198] made great
advances in the quality of GANs.

BigGANs [36] is a large scale TPU implementation of
GANs, which is pretty similar to SAGAN but scaled up

greatly. BigGANs successfully generates images with quite
high resolution up to 512 by 512 pixels. If you do not have
enough data, it can be a challenging task to replicate the
BigGANs results from scratch. Lucic et al. [199] propose to
train BigGANs quality model with fewer labels. BigBiGAN
[200], based on BigGANs, extends it to representation learn-
ing by adding an encoder and modifying the discriminator.
BigBiGAN achieve the state of the art in both unsupervised
representation learning on ImageNet and unconditional im-
age generation.

In the original GANs [3], G and D are defined by MLP.
Karras et al. [37] proposed a StyleGAN architecture for
GANs, which wins the CVPR 2019 best paper honorable
mention. StyleGAN’s generator is a really high-quality gen-
erator for other generation tasks like generating faces. It is
particular exciting because it allows to separate different
factors such as hair, age and sex that are involved in con-
trolling the appearance of the final example and we can then
control them separately from each other. StyleGAN [37] has
also been used in such as generating high-resolution fashion
model images wearing custom outfits [201].

3.3.3.7 Hybrids of autoencoders and GANs:
An autoencoder is a type of neural networks used for
learning efficient data codings in an unsupervised way. The
autoencoder has an encoder and a decoder. The encoder
aims to learn a representation (encoding) for a set of data,
z = E(x), typically for dimensionality reduction. The de-
coder aims to reconstruct the data x̂ = g (z). That is to say,
the decoder tries to generate from the reduced encoding a
representation as close as possible to its original input x.

GANs with an autoencoder: Adversarial autoencoder
(AAE) [202] is a probabilistic autoencoder based on GANs.
Adversarial variational Bayes (AVB) [203], [204] is proposed
to unify variational autoencoders (VAEs) and GANs. Sun et
al. [205] proposed a UNsupervised Image-to-image Transla-
tion (UNIT) framework that are based on GANs and VAEs.
Hu et al. [206] aimed to establish formal connections be-
tween GANs and VAEs through a new formulation of them.
By combining a VAE with a GAN, Larsen et al. [207] utilize
learned feature representations in the GAN discriminator as
basis for the VAE reconstruction. Therefore, element-wise
errors is replaced with feature-wise errors to better capture
the data distribution while offering invariance towards such
as translation. Rosca et al. [208] proposed variational ap-
proaches for auto-encoding GANs. By adopting an encoder-
decoder architecture for the generator, disentangled rep-
resentation GAN (DR-GAN) [68] addresses pose-invariant
face recognition, which is a hard problem due to the drastic
changes in an image for each diverse pose.

GANs with an encoder: References [40], [42] only add
an encoder to GANs. The original GANs [3] can not learn
the inverse mapping - projecting data back into the latent
space. To solve this problem, Donahue et al. [40] proposed
Bidirectional GANs (BiGANs), which can learn this inverse
mapping through the encoder, and show that the resulting
learned feature representation is useful. Similarly, Dumoulin
et al. [41] proposed the adversarially learned inference (ALI)
model, which also utilizes the encoder to learn the latent
feature distribution. The structure of BiGAN and ALI is
shown in Fig. 3(a). Besides the discriminator and generator,
BiGAN also has an encoder, which is used for mapping the
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Fig. 3: The structures of (a) BiGAN and ALI and (b) AGE.

data back to the latent space. The input of discriminator is a
pair of data composed of data and its corresponding latent
code. For real data x, the pair are x,E(x) where E(x) is
obtained from the encoder E. For the generated data G(z),
this pair is G(z), z where z is the noise vector generating
the data G(z) through the generator G. Similar to (1), the
objective function of BiGAN is

min

G,E

max

D

V (D,E,G) = E

x⇠p

data

(x) [logD (x,E(x))]

+E

z⇠p

z

(z) [log (1�D (G (z) , z))] .

(57)

The generator of [40], [42] can be seen the decoder since the
generator map the vectors from latent space to data space,
which performs the same function as the decoder.

Similar to utilizing an encoding process to model the
distribution of latent samples, Gurumurthy et al. [209]
model the latent space as a mixture of Gaussians and learn
the mixture components that maximize the likelihood of
generated samples under the data generating distribution.

In an encoding-decoding model, the output (also known
as a reconstruction), ought to be similar to the input in the
ideal case. Generally, the fidelity of reconstructed samples
synthesized utilizing a BiGAN/ALI is poor. With an addi-
tional adversarial cost on the distribution of data samples
and their reconstructions [158], the fidelity of samples may
be improved. Other related methods include such as vari-
ational discriminator bottleneck (VDB) [210] and MDGAN
(detailed in Paragraph 3.3.1.5).

Combination of a generator and an encoder: Different
from previous hybrids of autoencoders and GANs, Ad-
versarial Generator-Encoder (AGE) Network [42] is set up
directly between the generator and the encoder, and no
external mappings are trained in the learning process. The
structure of AGE is shown in Fig. 3(b) which R is the recon-
struction loss function. In AGE, there are two reconstruction
losses: the latent variable z and E(G(z)), the data x and
G(E(x)). AGE is similar to CycleGAN. However, there are
two differences between them:

• CycleGAN [53] is used for two modalities of the
image such as grayscale and color. AGE acts between
latent space and true data space.

• There is a discriminator for each modality of Cycle-
GAN and there is no discriminator in AGE.

3.3.3.8 Multi-discriminator learning:
GANs have a discriminator together with a generator. Dif-
ferent from GANs, dual discriminator GAN (D2GAN) [43]
has a generator and two binary discriminators. D2GAN is
analogous to a minimax game, wherein one discriminator
gives high scores for samples from generated distribution

whilst the other discriminator, conversely, favoring data
from the true distribution, and the generator generates data
to fool both discriminators. The reference [43] develops
theoretical analysis to show that, given the optimal discrim-
inators, optimizing the generator of D2GAN is minimizing
both KL and reverse KL divergences between true distribu-
tion and the generated distribution, thus effectively over-
coming the mode collapsing problem. Generative multi-
adversarial network (GMAN) [44] further extends GANs
to a generator and multiple discriminators. Albuquerque et
al. [211] performed multi-objective training of GANs with
multiple discriminators.

3.3.3.9 Multi-generator learning:
Multi-generator GAN (MGAN) [45] is proposed to train
the GANs with a mixture of generators to avoid the mode
collapsing problem. More specially, MGAN has one binary
discriminator, K generators, and a multi-class classifier.
The distinguishing feature of MGAN is that the generated
samples are produced from multiple generators, and then
only one of them will be randomly selected as the final
output similar to the mechanism of a probabilistic mixture
model. The classifier shows which generator a generated
sample is from.

The most closely related to MGAN is multi-agent diverse
GANs (MAD-GAN) [46]. The difference between MGAN
and MAD-GAN can be found in [45]. SentiGAN [212] uses
a mixture of generators and a multi-class discriminator to
generate sentimental texts.

3.3.3.10 Multi-GAN learning:
Coupled GAN (CoGAN) [47] is proposed for learning a joint
distribution of two-domain images. CoGAN is composed
of a pair of GANs - GAN1 and GAN2, each of which
synthesizes images in one domain. Two GANs respectively
considering structure and style are proposed in [213] based
on cGANs. Causal fairness-aware GANs (CFGAN) [214]
used two generators and two discriminators for generating
fair data. The structures of GANs, D2GAN, MGAN, and
CoGAN are shown in Fig. 4.

3.3.3.11 Summary:
There are many GANs’ variants and milestone ones are
shown in Fig. 5. Due to space limitation, only limited
number of variants are shown in Fig. 5.

GANs’ objective function based variants can be gener-
alized to structure variants. Compared with other objective
function based variants, both SN-GANs and RGANs show
the stronger generalization ability. These two objective func-
tion based variants can be generalized to the other objective
function based variants. Spectral normalization is capable
of being generalized to any type of GANs’ variants while
RGANs is able to be generalized to any IPM-based GANs.

3.4 Evaluation metrics for GANs

In this subsection, we show evaluation metrics [215], [216]
that are used for GANs.

3.4.1 Inception Score (IS)

Inception score (IS) is proposed in [29], which uses the
Inception model [217] for every generated image to get
the conditional label distribution p (y|x). Images that have
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Fig. 4: The structures of GANs [3], D2GAN [43], MGAN [45],
and CoGAN [47].

meaningful objects ought to have a conditional label distri-
bution p (y|x) with low entropy. Furthermore, the model is
expected to produce diverse images. Therefore, the marginalR
p (y|x = G (z))dz ought to have high entropy. In combina-

tion of these two requirements, the IS is:

exp(E

x

KL (p (y|x) ||p (y))), (58)

where exponentiating results is for easy comparison of the
values.

A higher IS indicates that the generative model can
produce high quality samples and the generated samples
are also diverse. However, the IS also has disadvantages. If
the generative model falls into mode collapse, the IS might
be still good while the real case is pretty bad. To address this
issue, an independent Wasserstein critic [218] is proposed
to be trained independently for the validation dataset to
measure mode collapse and overfitting.

3.4.2 Mode score (MS)
The mode score (MS) [26], [219] is an improved version of
the IS. Different from IS, MS can measure the dissimilarity
between the real distribution and generated distribution.

3.4.3 Fréchet Inception Distance (FID)
FID was also proposed [181] to evaluate GANs. For a
suitable feature function � (the default one is the Inception
network’s convolutional feature), FID models � (p
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which is the Fréchet distance (also called the Wasserstein-2
distance) between the two Gaussian distributions. However,
the IS and FID cannot well handle the overfitting problem.
To mitigate this problem, the kernel inception distance (KID)
was proposed in [220].

3.4.4 Multi-scale structural similarity (MS-SSIM)
Structural similarity (SSIM) [221] is proposed to measure the
similarity between two images. Different from single scale
SSIM measure, the MS-SSIM [222] is proposed for multi-
scale image quality assessment. It quantitatively evaluates
image similarity by attempting to predict human perceptual
similarity judgment. The range of MS-SSIM values is be-
tween 0.0 and 1.0 and lower MS-SSIM values means percep-
tually more dissimilar images. References [30], [223] used
MS-SSIM to measure the diversity of fake data. Reference
[224] suggested that MS-SSIM should only be taken into
account together with the FID and IS metrics for testing
sample diversity.

3.4.5 Summary
How to select a good evaluation metric for GANs is still a
hard problem [225]. Xu et al. [219] proposed an empirical
study on evaluation metrics of GANs. Karol Kurach [224]
conducted a large-scale study on regularization and normal-
ization in GANs. There are some other comparative study
of GANs such as [226]. Reference [227] presented several
measures as meta-measures to guide researchers to select
quantitative evaluation metrics. An appropriate evaluation
metric ought to differentiate true samples from fake ones,
verify mode drop, mode collapse, and detect overfitting. It
is hoped that there will be better methods to evaluate the
quality of the GANs model in the future.

3.5 Task driven GANs
The focus of this paper is on GANs. There are closely
associated fields for specific tasks with an enormous volume
of literature.

3.5.1 Semi-Supervised Learning
A research field where GANs are very successful is the ap-
plication of generative models to semi-supervised learning
[228], [229], as proposed but not shown in the first GANs
paper [3].

GANs have been successfully used for semi-supervised
learning at least since CatGANs [48]. Feature matching
GANs [29] got good performance with a small number of
labels on datasets such as MNIST, SVHN, and CIFAR-10.

Odena [230] extends GANs to the semi-supervised learn-
ing by forcing the discriminator network to output class la-
bels. Generally speaking, when we train GANs, we actually
do not use the discriminator in the end. The discriminator is
only used to guide the learning process, but the discrimina-
tor is not used to generate the data after we have trained the
generator. We only use the generator to generate the data
and abandon discriminator at last. For traditional GANs,
the discriminator is a two-class classifier, which outputs cat-
egory one for real data and category two for generated data.
In semi-supervised learning, the discriminator is upgraded
to be a multi-class classifier. At the end of the training, the
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Fig. 5: A road map of GANs. Milestone variants are shown in this figure.

classifier is the thing that we are interested in. For semi-
supervised learning, if we want to learn an N class classifier,
we make GANs with a discriminator which can predict N+1
classes the input is from, where an extra class corresponds to
the outputs of G. Therefore, suppose that we want to learn
to classify two classes, apples and oranges. We can make a
classifier which has three different labels: one - the class of
real apples, two - the class of real oranges, and three - the
class of generated data. The system learns on three kinds of
data: real labeled data, unlabeled real data, and fake data.

Real labeled data: We can tell the discriminator to
maximize the probability of the correct class. For example,
if we have an apple photo and it is labeled as an apple,
we can maximize the probability of the apple class in this
discriminator.

Unlabeled real data: Suppose we have a photo, we
do not know whether it is an apple or an orange but we
know that it is a real photo. In this situation, we train the
discriminator to maximize the sum of the probabilities over
all the real classes.

Fake data: When we obtain a generated example from
the generator, we train the discriminator to classify it as a
fake example.

Miyato et al. [49] proposed virtual adversarial training
(VAT): a regularization method for both supervised and
semi-supervised learning. Dai et al. [231] show that given
the discriminator objective, good semi-supervised learning
indeed requires a bad generator from the theory perspective,
and propose the definition of a preferred generator. A tri-
angle GAN (�-GAN) [50] is proposed for semi-supervised
cross-domain joint distribution matching and �-GAN is
closely related to Triple-GAN [51]. Madani et al. [232] used
semi-supervised learning with GANs for chest X-ray classi-
fication.

Future improvements to GANs can be expected to
simultaneously produce further improvements to semi-
supervised learning and unsupervised learning such as self-
supervised learning [233].

3.5.2 Transfer learning
Ganin et al. [234] introduce a domain-adversarial training
approach of neural networks for domain adaptation, where
training data and test data are from similar but different
distributions. The Professor Forcing algorithm [235] uses ad-
versarial domain adaptation for training recurrent network.
Shrivastava et al. [236] used GANs for simulated training
data. A novel extension of pixel-level domain adaptation
named GraspGAN [237] was proposed for robotic grasping

[238], [239]. By using synthetic data and domain adaptation
[237], the number of real-world examples needed to achieve
a given level of performance is reduced by up to 50 times,
utilizing only randomly generated simulated objects.

Recent studies have shown remarkable success in image-
to-image translation [240]–[245] for two domains. However,
existing methods such as CycleGAN [53], DiscoGAN [54],
and DualGAN [55], cannot be used directly for more than
two domains, since different approaches should be built
independently for every pair of domains. StarGAN [56]
well solve this problem which can conduct image-to-image
translations for multiple domains using only a single model.
Other related works can be found in [246], [247]. CoGAN
[47] can be also used for multiple domains.

Learning fair representations is a closely related problem
to domain transfer. Note that different formulations of ad-
versarial objectives [248]–[251] achieve different notations of
fairness.

Domain adaptation [61], [252] can be seen as a subset of
transfer learning [253]. Recent visual domain adaptation
(VDA) methods include: visual appearance adaptation,
representation adaptation, and output adaptation, which
can be thought of as using domain adaptation based on
the original input, features, and outputs of the domains,
respectively.

Visual appearance adaptation: CycleGAN [53] is a rep-
resentative method in this category. CyCADA [57] is pro-
posed for visual appearance adaptation based on Cycle-
GAN.

Representation adaptation: The key of adversarial dis-
criminative domain adaptation (ADDA) [58], [59] is to learn
feature representations that a discriminator cannot differ-
entiate which domain they belong to. Sankaranarayanan et
al. [254] focused on adapting the representations learned by
segmentation networks across real and synthetic domains
based on GANs. Fully convolutional adaptation networks
(FCAN) [60] is proposed for semantic segmentation which
combines visual appearance adaptation and representation
adaptation.

Output adaptation: Tsai [255] made the outputs of the
source and target images have a similar structure so that the
discriminator cannot differentiate them.

Other transfer learning based GANs can be found in [52],
[256]–[262].

3.5.3 Reinforcement learning
Generative models can be integrated into reinforcement
learning (RL) [107] in different ways [103], [263]. Reference
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[264] has already discussed connections between GANs and
actor-critic methods. The connections among GANs, inverse
reinforcement learning (IRL), and energy-based models is
studied in [265]. These connections to RL are possible to be
useful for the development of both GANs and RL. Further-
more, GANs were combined with reinforcement learning
for synthesizing programs for images [266]. The competitive
multi-agent learning framework proposed in [267] is also
related to GANs and works on learning robust grasping
policies by an adversary.

Imitation Learning: The connection between imitation
learning and EBGAN is discussed in [268]. Ho and Ermon
[269] show that an instantiation of their framework draws
an analogy between GANs and imitation learning, from
which they derive a model-free imitation learning method
that has significant performance gains over existing model-
free algorithms in imitating complex behaviors in large
and high-dimensional environments. Song et al. [62] pro-
posed multi-agent generative adversarial imitation learning
(GAIL) and Guo et al. [270] proposed generative adversarial
self-imitation learning. A multi-agent GAIL framework is
used in a deconfounded multi-agent environment recon-
struction (DEMER) approach [271] to learn the environment.
DEMER is tested in the real application of Didi Chuxing and
has achieved good performances.

3.5.4 Multi-modal learning

Generative models, especially GANs, make machine learn-
ing be able to work with multi-modal outputs. In many
tasks, an input may correspond to multiple diverse correct
outputs, each of which is an acceptable answer. Traditional
ways of training machine learning methods, such as mini-
mizing the mean squared error (MSE) between the model’s
predicted output and a desired output, are not capable of
training models that can produce many different correct
outputs. One instance of such a case is predicting the next
frame in a video sequence, as shown in Fig. 6. Multi-modal
image-to-image translation related works can be found in
[272]–[275].

3.5.5 Other task driven GANs

GANs have been used for feature learning such as feature
selection [277], hashing [278]–[285], and metric learning
[286].

MisGAN [287] was proposed to learn from incomplete
data with GANs. Evolutionary GANs are proposed in [288].
Ponce et al. [289] combined GANs and genetic algorithms
to evolve images for visual neurons. GANs have also been
used in other machine learning tasks [290] such as active
learning [291], [292], online learning [293], ensemble learn-
ing [294], zero-shot learning [295], [296], and multi-task
learning [297].

4 THEORY

In this section, we first introduce maximum likelihood es-
timation. Then, we introduce mode collapse. Finally, other
theoretical issues such as inverse mapping and memoriza-
tion are discussed.

濚瀅瀂瀈瀁濷澳瀇瀅瀈瀇濻澳澳澳澳澳澳澳澳澳澳澳濠濦濘澳澳澳澳澳澳澳澳澳澳澳濔濷瀉濸瀅瀆濴瀅濼濴濿澳濿瀂瀆瀆澳澳澳澳澳澳澳澳澳澳澳澳澳

Fig. 6: Lotter et al. [276] show an excellent description of
the significance of being capable of modeling multi-modal
data. In this instance, a model is trained to predict the
next frame in a video. The video describes a computer
rendering of a moving 3D model of a man’s head. The
image on the left is the ground truth, an instance of an
actual frame of a video, which the model would like to
predict. The image in the middle is what happens when the
model is trained using mean squared error (MSE) between
the model’s predicted next frame and the actual next frame.
The model is forced to select only one answer for what
the next frame will be. Since there are multiple possible
answers, corresponding to slightly diverse positions of the
head, the answer that the model selects is an average over
multiple slightly diverse images. This causes the faces to
have a blurring effect. Utilizing an additional GANs loss,
the image on the right is capable of knowing that there are
multiple possible outputs, each of which is recognizable and
clear as a realistic, satisfying image. Images are from [276].

4.1 Maximum likelihood estimation (MLE)
Not all generative models use maximum likelihood estima-
tion (MLE). Some generative models do not utilize MLE,
but can be made to do so (GANs belong to this category). It
can be simply proved that minimizing the Kullback-Leibler
Divergence (KLD) between p
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The model probability distribution p
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(x) is replaced
with p

g

(x) for notation consistency. Refer to Chapter 5 of
[298] for more information on MLE and other statistical
estimators.

4.2 Mode collapse
GANs are hard to train, and it has been observed [26], [29]
that they often suffer from mode collapse [299], [300], in
which the generator learns to generate samples from only
a few modes of the data distribution but misses many
other modes, even if samples from the missing modes exist
throughout the training data. In the worst case, the gener-
ator produces simply a single sample (complete collapse)
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[179], [301]. In this subsection, we will first introduce two
viewpoints of GANs mode collapse. Then, we will intro-
duce methods that propose new objective functions or new
structures to solve mode collapse.

4.2.1 Two viewpoints: divergence and algorithmic
We can resolve and understand GANs mode collapse and
instability from two viewpoints: divergence and algorith-
mic.

Divergence viewpoint: Roth et al. [302] stabilizd train-
ing of GANs and their variants such as f -divergence based
GANs (f -GAN) through regularization.

Algorithmic viewpoint: The numerics of common algo-
rithms for training GANs are analyzed and a new algorithm
that has better convergence properties is proposed in [303].
Mescheder et al. [304] showed that which training methods
for GANs do actually converge.

4.2.2 Methods overcoming mode collapse
Objective function based methods: Deep regret analytic
GAN (DRAGAN) [170] suggests that the mode collapse
exists due to the occurence of a fake local Nash equilibrium
in the nonconvex problem. DRAGAN solves this problem
by constraining gradients of the discriminator around the
real data manifold. It adds a gradient penalizing term which
biases the discriminator to have a gradient norm of 1 around
the real data manifold. Other methods such as EBGAN and
Unrolled GAN (detailed in Section 3.3) also belong to this
category.

Structure based methods: Representative methods in
this category include such as MAD-GAN [46] and MRGAN
[26] (detailed in Section 3.3)

There are also other methods to reduce mode collapse in
GANs. For example, PACGAN [305] eases the pain of mode
collapse by changing input to the discriminator.

4.3 Other theoretical issues
4.3.1 Do GANs actually learn the distribution?
References [41], [301], [306] have both empirically and the-
oretically brought the concern to light that distributions
learned by GANs suffer from mode collapse. In contrast,
Bai et al. [307] show that GANs can in principle learn
distributions in Wasserstein distance (or KL-divergence in
many situations) with polynomial sample complexity, if the
discriminator class has strong discriminating power against
the particular generator class (instead of against all possible
generators). Liang et al. [308] studied how well GANs learn
densities, including nonparametric and parametric target
distributions. Singh et al. [309] further studied nonparamet-
ric density estimation with adversarial losses.

4.3.2 Divergence/Distance
Arora et al. [301] show that training of GAN may not have
good generalization properties; e.g., training may look suc-
cessful but the generated distribution may be far from real
data distribution in standard metrics. The popular distances
such as Wasserstein and Jensen-Shannon (JS) may not gen-
eralize. However, generalization does occur by introducing
a novel notion of distance between distributions, the neural
net distance. Are there other useful divergences?

4.3.3 Inverse mapping
GANs cannot learn the inverse mapping - projecting data
back into the latent space. BiGANs [40] (detailed in Sec-
tion 3.3.3.7) is proposed as a way of learning this inverse
mapping. Dumoulin et al. [41] introduce the adversarially
learned inference (ALI) model (detailed in Section 3.3.3.7),
which jointly learns an inference network and a generation
network utilizing an adversarial process. Arora et al. [310]
show the theoretical limitations of Encoder-Decoder GAN
architectures such as BiGANs [40] and ALI [41]. Creswell et
al. [311] invert the generator of GANs.

4.3.4 Mathematical perspective such as optimization
Mohamed et al. [312] frame GANs within the algorithms
for learning in implicit generative models that only specify
a stochastic procedure with which to generate data. Gidel
et al. [313] looked at optimization approaches designed
for GANs and casted GANs optimization problems in the
general variational inequality framework. The convergence
and robustness of training GANs with regularized optimal
transport is disscussed in [314].

4.3.5 Memorization
As for “memorization of GANs”, Nagarajan et al. [315]
argue that making the generator “learn to memorize” the
training data is a more difficult task than making it “learn
to output realistic but unseen data”.

5 APPLICATIONS

As discussed earlier, GANs are a powerful generative model
which can generate realistic-looking samples with a random
vector z. We neither need to know an explicit true data
distribution nor have any mathematical assumptions. These
advantages allow GANs to be widely applied to many areas
such as image processing and computer vision, sequential
data.

5.1 Image processing and computer vision
The most successful applications of GANs are in image
processing and computer vision, such as image super-
resolution, image synthesis and manipulation, and video
processing.

5.1.1 Super-resolution (SR)
SRGAN [63], GANs for SR, is the first framework able to
infer photo-realistic natural images for upscaling factors.
To further improve the visual quality of SRGAN, Wang
et al. [64] thoroughly study three key components of SR-
GAN and improve each of them to derive an Enhanced
SRGAN (ESRGAN). For example, ESRGAN uses the idea
from relativistic GANs [28] to have the discriminator predict
relative realness rather than the absolute value. Benefiting
from these improvements, ESRGAN won the first place in
the PIRM2018-SR Challenge (region 3) [316] and got the
best perceptual index. Based on CycleGAN [53], the Cycle-
in-Cycle GANs [65] is proposed for unsupervised image
SR. SRDGAN [66] is proposed to learn the noise prior for
SR with DualGAN [55]. Deep tensor generative adversarial
nets (TGAN) [67] is proposed to generate large high-quality
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images by exploring tensor structures. There are methods
specific for face SR [317]–[319]. Other related methods can
be found in [320]–[323].

5.1.2 Image synthesis and manipulation

5.1.2.1 Face:
Pose related: Disentangled representation learning GAN
(DR-GAN) [324] is proposed for pose-invariant face recog-
nition. Huang et al. [69] proposed a Two-Pathway GAN
(TP-GAN) for photorealistic frontal view synthesis by si-
multaneously perceiving local details and global structures.
Ma et al. [70] proposed the novel Pose Guided Person
Generation Network (PG2) that synthesizes person images
in arbitrary poses, based on a novel pose and an image of
that person. Cao et al. [325] proposed a high fidelity pose
invariant model for high-resolution face frontalization based
on GANs. Siarohin et al. [326] proposed deformable gans for
pose-based human image generation. Pose-robust spatial-
aware GAN (PSGAN) for customizable makeup transfer is
proposed in [71].

Portrait related: APDrawingGAN [72] is proposed to
generate artistic portrait drawings from face photos with
hierarchical GANs. APDrawingGAN has a software based
on wechat and the results are shown in Fig. 8. GANs have
also been used in other face related applications such as
facial attribute changes [327] and portrait editing [328]–
[331].

Face generation: The quality of generated faces by GANs
is improved year by year, which can be found in Sebastian
Nowozin’s GAN lecture materials1. As we can see from Fig-
ure 7, the generated faces based on original GANs [3] are of
low visual quality and can only serves as a proof of concept.
Radford et al. [32] used better neural network architectures:
deep convolutional neural networks for generating faces.
Roth et al. [302] addressed the instability problems of GAN
training, allowing for larger architectures such as the ResNet
to be utilized. Karras et al. [33] utilized multiscale training,
allowing megapixel face image generation at high fidelity.

Face generation [332]–[340] is somewhat easy because
there is only one class of object. Every object is a face and
most face data sets tend to be composed of people looking
straight into the camera. Most people have been registered
in terms of putting nose and eyes and other landmarks in
consistent locations.

5.1.2.2 General object:
It is a little harder to have GANs work on assorted data
sets like ImageNet [151] which has a thousand different
object classes. However, we have seen rapid progress over
the recent few years. The quality of these images has been
improved year by year [304].

While most papers use GANs to synthesize images in
two dimensions [341], [342], Wu et al. [343] synthesized
three-dimensional (3-D) samples using GANs and volumet-
ric convolutions. Wu et al. [343] synthesized novel objects
including cars, chairs, sofa, and tables. Im et al. [344] gen-
erated images with recurrent adversarial networks. Yang et
al. [345] proposed layered recursive GANs (LR-GAN) for
image generation.

1. https://github.com/nowozin/mlss2018-madrid-gan

5.1.2.3 Interaction between a human being and an
image generation process:
There are many applications that involve interaction be-
tween a human being and an image generation process.
Realistic image manipulation is difficult because it requires
modifying the image in a user-controlled way, while making
it appear realistic. If the user does not have efficient artistic
skill, it is easy to deviate from the manifold of natural
images while editing. Interactive GAN (IGAN) [73] defines
a class of image editing operations, and constrain their
output to lie on that learned manifold at all times. Intro-
spective adversarial networks [74] also offer this capability
to perform interactive photo editing and have demonstrated
their results mostly in face editing. GauGAN [75] can turn
doodles into stunning, photorealistic landscapes.

5.1.3 Texture synthesis

Texture synthesis is a classical problem in image field.
Markovian GANs (MGAN) [76] is a texture synthesis
method based on GANs. By capturing the texture data of
Markovian patches, MGAN can generate stylized videos
and images very quickly, in order to realize real-time texture
synthesis. Spatial GAN (SGAN) [77] was the first to apply
GANs with fully unsupervised learning in texture synthesis.
Periodic spatial GAN (PSGAN) [78] is a variant of SGAN,
which can learn periodic textures from a single image or
complicated big dataset.

5.1.4 Object detection

How can we learn an object detector that is invariant to
deformations and occlusions? One way is using a data-
driven strategy - collect large-scale datasets which have
object examples under different conditions. We hope that the
final classifier can use these instances to learn invariances.
Is it possible to see all the deformations and occlusions in a
dataset? Some deformations and occlusions are so rare that
they hardly happen in practical applications; yet we want to
learn a method invariant to such situations. Wang et al. [346]
used GANs to generate instances with deformations and
occlusions. The aim of the adversary is to generate instances
that are difficult for the object detector to classify. By using a
segmentor and GANs, Segan [79] detected objects occluded
by other objects in an image. To deal with the small object
detection problem, Li et al. [80] proposed perceptual GAN
and Bai et al. [81] proposed an end-to-end multi-task GAN
(MTGAN).

5.1.5 Video applications

Reference [82] is the first paper to use GANs for video
generation. Villegas et al. [347] proposed a deep neural
network for the prediction of future frames in natural video
sequences using GANs. Denton and Birodkar [83] proposed
a new model named disentangled representation net (DR-
NET) that learns disentangled image representations from
video based on GANs. A novel video-to-video synthesis
approach (video2video) under the generative adversarial
learning framework was proposed in [85]. MoCoGan [86]
is proposed to decompose motion and content for video
generation [348]–[350].

https://github.com/nowozin/mlss2018-madrid-gan


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

濮濚瀂瀂濷濹濸濿濿瀂瀊澳濸瀇澳濴濿濁澿澳濅濃濄濇濰
濨瀁濼瀉濸瀅瀆濼瀇瀌澳瀂濹澳濠瀂瀁瀇瀅濸濴濿

濮濥濴濷濹瀂瀅濷澳濸瀇澳濴濿濁澿澳濅濃濄濈濰
濙濴濶濸濵瀂瀂濾澳濔濜澳濥濸瀆濸濴瀅濶濻

濮濥瀂瀇濻澳濸瀇澳濴濿濁澿澳濅濃濄濊濰
濠濼濶瀅瀂瀆瀂濹瀇澳濴瀁濷澳濘濧濛濭

濮濞濴瀅瀅濴瀆 濸瀇澳濴濿濁澿澳濅濃濄濋濰
濡濩濜濗濜濔

Fig. 7: Face image synthesis.

(a) photo (b) portrait drawings

Fig. 8: Given a photo such as (a), APDrawingGAN can
produce the corresponding artistic portrait drawings (b).

GANs have also been used in other video applications
such as video prediction [84], [351], [352] and video retar-
geting [353].

5.1.6 Other image and vision applications
GANs have been utilized in other image processing and
computer vision tasks [354]–[357] such as object transfig-
uration [358], [359], semantic segmentation [360], visual
saliency prediction [361], object tracking [362], [363], image
dehazing [364]–[366], natural image matting [367], image
inpainting [368], [369], image fusion [370], image completion
[371], and image classification [372].

Creswell et al. [373] show that the representations
learned by GANs can also be used for retrieval. GANs have
also been used for anticipating where people will look [374],
[375].

5.2 Sequential data
GANs also have achievements in sequential data such as
natural language, music, speech, voice [376], [377], and time
series [378]–[381].

Natural language processing (NLP): IRGAN [88], [89]
is proposed for information retrieval (IR). Li et al. [382]
used adversarial learning for neural dialogue generation.
GANs have also been used in text generation [87], [383]–
[385] and speech language processing [94]. Kbgan [386] is
proposed to generate high-quality negative examples and
used in knowledge graph embeddings. Adversarial REward
Learning (AREL) [387] is proposed for visual storytelling.
DSGAN [388] is proposed for distant supervision relation
extraction. ScratchGAN [389] is proposed to train a language
GAN from scratch – without maximum likelihood pre-
training.

Qiao et al. [90] learn text-to-image generation by re-
description and text conditioned auxiliary classifier GAN
(TAC-GAN) [390] is also proposed for text to image. GANs

have been widely used in image-to-text (image caption)
[391], [392], too.

Furthermore, GANs have been widely utilized in other
NLP applications such as question answer selection [393],
[394], poetry generation [395], talent-job fit [396], and review
detection and geneneration [397], [398].

Music: GANs have been used for generating music
such as continuous RNN-GAN (C-RNN-GAN) [91], Object-
Reinforced GAN (ORGAN) [92], and SeqGAN [93], [94].

Speech and Audio: GANs have been used for speech
and audio analysis such as synthesis [399]–[401], enhance-
ment [402], and recognition [403], .

5.3 Other applications
Medical field: GANs have been widely utilized in medical
field such as generating and designing DNA [404], [405],
drug discovery [406], generating multi-label discrete patient
records [407], medical image processing [408]–[415], dental
restorations [416], and doctor recommendation [417].

Data science: GANs have been used in data generating
[214], [418]–[426], neural networks generating [427], data
augmentation [428], [429], spatial representation learning
[430], network embedding [431], heterogeneous information
networks [432], and mobile user profiling [433].

GANs have been widely used in many other areas
such as malware detection [434], chess game playing [435],
steganography [436]–[439], privacy-preserving [440]–[442],
social robot [443], and network pruning [444], [445].

6 OPEN RESEARCH PROBLEMS

Because GANs have become popular throughout the deep
learning area, its limitations have recently been improved
[446], [447]. There are still open research problems for
GANs.

GANs for discrete data: GANs rely on the generated
samples being completely differentiable with respect to the
generative parameters. Therefore, GANs cannot produce
discrete data directly, such as hashing code and one-hot
word. Solving this problem is very important since it could
unlock the potential of GANs for NLP and hashing. Good-
fellow [103] suggested three ways to solve this problem:
using Gumbel-softmax [448], [449] or the concrete distri-
bution [450]; utilizing the REINFORCE algorithm [451];
training the generator to sample continuous values that can
be transformed to discrete ones (such as sampling word
embeddings directly).

There are other methods towards this research direction.
Song et al. [278] used a continuous function to approximate
the sign function for hashing code. Gulrajani et al. [19]
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modelled discrete data with a continuous generator. Hjelm
et al. [452] introduced an algorithm for training GANs with
discrete data that utilizes the estimated difference measure
from the discriminator to compute importance weights for
generated samples, and thus providing a policy gradient for
training the generator. Other related work can be found in
[453], [454]. More work needs to be done in this interesting
area.

New Divergences: New families of Integral Probability
Metrics (IPMs) for training GANs such as Fisher GAN [455],
[456], mean and covariance feature matching GAN (McGan)
[457], and Sobolev GAN [458], have been proposed. Are
there any other interesting classes of divergences? This
deserves further study.

Estimation uncertainty: Generally speaking, as we have
more data, uncertainty estimation reduces. GANs do not
give the distribution that generated the training examples
and GANs aim to generate new samples that come from
the same distribution of the training examples. Therefore,
GANs have neither a likelihood nor a well-defined posterior.
There are early attempts towards this research direction
such as Bayesian GAN [459]. Although we can use GANs
to generate data, how can we measure the uncertainty of
the well-trained generator? This is another interesting future
issue.

Theory: As for generalization, Zhang et al. [460] devel-
oped generalization bounds between the true distribution
and learned distribution under different evaluation metrics.
When evaluated with neural distance, the bounds in [460]
show that generalization is guaranteed as long as the dis-
criminator set is small enough, regardless of the size of the
hypothesis set or generator. Arora et al. [306] proposed a
novel test for estimating support size using the birthday
paradox of discrete probability and show that GAN does
suffer mode collapse even when images are of higher visual
quality. More deep theoretical research is well worth study-
ing. How do we test for generalization empirically? Useful
theory should enable choice of model class, capacity, and
architectures. This is an interesting issue to be investigated
in future work.

Others: There are other important research problems for
GANs such as evaluation (detailed in Subsection 3.4) and
mode collapse (detailed in Subsection 4.2)

7 CONCLUSIONS

This paper presents a comprehensive review of various
aspects of GANs. We elaborate on several perspectives, i.e.,
algorithm, theory, applications, and open research problems.
We believe this survey will help readers to gain a thorough
understanding of the GANs research area.
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