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Notation 
(Unlike previous lectures, in this lecture we adopt the bold-face matrix-vector 
notation used in Goodfellow et al 2016. ) 
 
h(t)   The hidden recurrent activation vector of the network.   
f (−)    A process equation that computers h(t+1)  from h(t) 
x(t )    A sequence of τ input vectors.  Equivalent to {

!
X1,...,

!
Xτ } in earlier  

   lectures.  
o(t)    The network output. Typically a symbol from a set of symbols.   
U    a weight matrix from the input to the hidden unit.  
W   a hidden-to-hidden layer recurrent weight matrix 
V   a hidden-layer-to-output weight matrix 
b   bias vector for hidden units 
c   bias vector for the output units.  
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Recurrent Neural Networks  
Recurrent Neural Networks (RNNs) are used to discriminate and generate  sequences 
(data that have an intrinsic order relation).   Examples of sequences that may be 
discriminated and generated with RNNs include Speech, Music, Text, and Time 
Series data.    RNNs can be combined with convolutional networks to recognize and 
generate video sequences of actions.  RNNs can be very useful for natural language 
processing including for understanding written text and machine translation.   
 
Recurrent networks are Turing Universal, which means that any function that can be 
computed by a Turing machine can be computed by a recurrent network.  
 
Recurrent networks can be used for many kinds of tasks.  
 

     
 
History 
In the early days of neural networks (1980's), a frequent criticism was that networks 
have no memory, other than the parameter learning.  It was said that because 
networks did not maintain temporal state, they could not be suitable for tasks 
involving temporal or spatial sequences.  
 
In the late 1980s, Rumelhart addressed this question by building on a class of 
completely connected networks proposed by Hopfield, leading to the idea of 
"unfolding" the network over time. Such networks are now called recurrent neural 
networks.  
 
A recurrent neural network (RNN) is a neural network where connections between 
nodes form a directed graph along a temporal sequence. This allows it to exhibit 
temporal dynamic behavior. RNNs can use internal state (memory) to process 
variable length sequences of inputs. This makes them applicable to tasks such as un-
segmented, connected handwriting recognition or speech recognition. 
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Finite vs Infinite impulse networks 
 
The term “recurrent neural network” refers to two broad classes of networks finite 
impulse and infinite impulse. Both classes exhibit temporal dynamic behavior. 
 
Finite Impulse: A finite impulse recurrent network is a directed acyclic graph that 
can be unrolled and replaced with a strictly feed-forward neural network.  The 
temporal dynamics are similar to a Finite Impulse Response (FIR) digital filter. In 
digital signal processing, FIR filters are known to be easy to design, stable, but 
limited in response.  
 
Infinite impulse: Infinite impulse recurrent network is a directed cyclic graph that 
cannot be unrolled because of internal feedback. These have similar temporal 
dynamics to an Infinite Impulse Response digital filter (IIR).  In digital signal 
processing, IIR filters are known to be difficult to design, unstable, but very powerful 
and efficient.  The classic Infinite Inpulse Recurrent network is the LSTM (Long-
Short-Term Memory) architecture.  
 
Both finite impulse and infinite impulse recurrent networks can have additional 
states, and storage can be under direct control by the network. The storage can also 
be replaced by another network or graph. Such controlled states are referred to as 
gated state or gated memory, and are a key part of long short-term memory networks 
(LSTMs) and gated recurrent units.  
 

Finite Impulse Recurrent Networks 
The classic model for dynamic process is a function, f (−) , that predicts the state, s(t)  
of a system at time t, from the state at time t-1, using parameters !w .  Such as process 
is known as a "markov" process.  
 

S(t+3) S(t) S(t-2) S(t-1) fW(-) fW(-) fW(-) fW(-) fW(-) 

 
s(t ) = f !w (s

(t−1) )  
 
In the case of a recurrent network, the "state" is the activation (or vector of 
activations) of one or more "hidden" units. These are generally represented with the 
variable  h(t) 

 
h(t+2) h(t) h(t-1) h(t-1) fW(-) fW(-) fW(-) fW(-) fW(-) 

 
h(t ) = f !w (h

(t−1) )  
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The time variable is traditionally represented with a superscript, to keep it apart from 
the unit indices at each level.  
 
We can model the effects of an external input, x(t )  by adding an additional term, x(t) to 
the temporal transition function.     
 

h(t+2) h(t) h(t-1) h(t-1) fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t) x(t+1) x(t+2) x(t-1) 

 
h(t ) = f !w (h

(t−1), x(t ) )  
 
The temporal duration of the network is typically represented the the variable τ, so 
that the network is said to operate on a temporal sequence x(t) from t=1 to τ.   
 
Normally, the network generates an output represented by an output variable, o(t).  
 

h(t+2) h(t) h(t-1) h(t-1) fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t) x(t+1) x(t+2) x(t-1) 

o(t) o(t+1) o(t+2) o(t-1) 

 
 
For example, in a many-to-one network, the network would produce a single output 
after τ time steps.  For example, the following network assembles the words  "This", 
"is", "a", and "phrase", into a single output "This is a phrase".  In this case, t is the 
number of words in the phrase, 4.  

h(t+τ) h(t+1) h(t) fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t+1) x(t+τ) x(t) 

o(τ) 

… 

… This a phrase 

This is a phrase 

… 

 
 
A one-to-many network would produce a sequence of τ outputs from a single input.  
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For example, a single symbol for "This is a phrase" can be expanded into a sequence 
of outputs, where τ = 4. 

h(t+τ) h(t+1) fW(-) fW(-) fW(-) fW(-) fW(-) 

o(t+1) o(t+τ) O(t) 

h(t) 

x(t) 

… 

… 
… This is phrase 

This is a phrase  
 

Folding and Unfolding 
 
Recurrent networks are classically "folded" into a recurrent structure:  

h(t+2) h(t) h(t-1) h(t-1) 
fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t) x(t+1) x(t+2) x(t-1) 

o(t) o(t+1) o(t+2) o(t-1) 

!
!
!
⇔ !
!

!  

h(t) 

x(t) 

o(t) 

 
 
Where the black square represents a time delay of 1 time unit.  The recurrent 
structure can be unfolded to see the network as a 2-D structure.  

h(t) 

x(t) 

o(t) 

 

!
!
!
⇔ !
!

!  

h(t+2) h(t) h(t-1) h(t-1) 
fW(-) fW(-) fW(-) fW(-) fW(-) 

x(t) x(t+1) x(t+2) x(t-1) 

o(t) o(t+1) o(t+2) o(t-1) 
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Forward Propagation Equations 
 
Networks parameters include:  

U  a weight matrix, 
W a hidden-to-hidden recurrent weight matrix 
V a hidden-to-output weight matrix 
b bias vector for hidden units 
c bias vector for the output units.  

 
The classic forward propagation equations are:  
 

z(t) = b + Wh(t-1)+Ux(t) 

  h(t) =  f(z(t))) = f(b + Wh(t-1)+Ux(t)) 
  o(t)= c + V h(t) 
 
where o(t), h(t), z()t, b, h(t-1), x(t) are all vectors  and  U, V and W are matrices and b and c 
are bias vectors.  Such networks typically use a hyperbolic tangent activation 
function. The equations should be read as expressing summations over as a set of 
units at the same level. For example for the j=1 to N units of h(t) and h(t+1):  
  

  z(t) = b + Wh(t-1)+Ux(t) ⇔  zj
(t ) = bj + Wij

(t )hi
(t−1)

i=1

N

∑ + Uij
(t )xi

(t )

i=1

N

∑  

 
Classically recurrent networks are used to generate symbolic data such as words or 
characters. In this case, the output vector, o(t) can be seen as an un-normalized log 
probability of each possible value of the discrete variable.   Softmax can then be used 
to obtain the vector ŷ(t ) of normalized probabilities for the output.  
 
 ŷ(t ) = softmax(o(t ) )  
 
Forward propagation starts from an initial state h(1), and then computes the recurrent 
states from t = 1 to  t = τ.  
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Training   
 
As with classic networks, a recurrent network is trained to minimize the Loss 
between a target vector Y(t), and an output vector o(t) generated from an input vector  
X(t).  This is represented as L(t):  

h(t) 

x(t) 

o(t) 

L(t) 

Y(t) 

 
 
Where the Loss L(t) measures how far o(t) is from the target Y(t).   The loss is internally 
computed using softmax.   ŷ(t ) = softmax(o(t ) )  
 
The total loss L is computed for an input sequence x(1),..., x(τ ){ } and the resulting output 
sequence y(1),..., y(τ ){ }  
 

 L
!
X (1),...,

!
X (τ ){ }, y(1),..., y(τ ){ }( ) = L(t )

t=1

τ

∑ = – Log p y(t ) |
!
X (1),...,

!
X (τ ){ }( )( )

t=1

τ

∑  

 
Computing the gradient of this loss function with respect to the parameters is an 
expensive operation.  
 
The gradient computation involves performing a forward propagation pass moving 
left to right through the unfolded graph of τ units, followed by a backward 
propagation pass moving right to left through the graph.   
 
The algorithmic complexity is O(τ)  and cannot be reduced by parallelization because 
the forward propagation graph is inherently sequential. Each time step may only be 
computed after the previous one.  States computed in the forward pass must be stored 
until they are reused during the backward pass, so the memory cost is also O(τ).  
(O(-) is the order-of operator) 
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The back-propagation algorithm applied to the unfolded graph with O(τ) cost is 
called back-propagation through time or BPTT.  
 
In summary:  Computing the gradient of this loss function is expensive because 

1) The forward propagation followed by backward propagation operates on all τ 
samples in parallel.  

2) Run-time cost is O(τ) and can not be implemented in parallel. 
3) Memory cost is also O(τ).  
4) Back-propagation must be applied to the entire unfolded graph.  This is called 

"Back Propagation Through Time" (BPTT).  
 
To reduce the cost of training we can use a network where the recurrence relation is 
from output to hidden. 

h(t) 

x(t) 

o(t) 

L(t) 

Y(t) 

 

!
!
!
!
!
⇔ 

(unfold) !
!

!
!
!
!  

h(t) 

x(t) 

o(t) 

L(t) 

Y(t) 

h(t+1) 

x(t+1) 

o(t+1) 

L(t+1) 

Y(t+1) 

h(t+2) 

o(t-1) 

… 

… 

… 

… 

… 

… 

… 

…  
 
The equations for the above network are  

z(t) = b + Wo(t-1)+Ux(t) 

  h(t) =  tanh(z(t))) =tanh(b + Wo(t-1)+Ux(t)) 
  o(t)= c + V h(t) 

  ŷ(t ) = softmax(o(t ) )  
 
Such a network is less powerful, then the general network described above, but easier 
to train because each time step can be trained in isolation of the others, allowing for 
greater parallelization during training.  
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Computing the Gradient of a Recurrent Network 
 
The gradient of the loss function for a recurrent network is computed with the same 
back-propagation algorithm described in previous lectures, applied to the unfolded 
computational graph.   
 
The following development is copied from Goodfellow et al 2016. We adopt there 
use of bold face for vectors, so that  x(t) is equivalent to 

!
X (t )  used in earlier lectures.  

 
 As before network parameters include:  

U  a weight matrix, 
W a hidden-to-hidden recurrent weight matrix 
V a hidden-to-output weight matrix 
b bias vector for hidden units 
c bias vector for the output units.  

 
Nodes indexed by t where o(t), h(t), z()t, b, h(t-1), x(t) are all vectors.  L(t) is the Loss for 
each unit of time t.  
 
For each neural unit we need to recursively compute the gradient 

!
∇L  based on the 

neural units above it in the graph.  The gradient of the loss 
!
∇

o( t )
L  is equivalent to the 

error term , δ (out ) , used in deriving back-propagation in earlier lectures.  
 
We compute the loss for each time step, t, as the negative log-likelihood of the true 
target y(t ) given the input sequence x(1),...,x(t ){ }  up to time t.  
 
 L(t ) = −Log p y(t ) | x(1),...,x(t ){ }( )( )  
 
We assume that the outputs o(t), are used as the argument to a softmax function to 
obtain the vector ŷ(t )  of probabilities over the output.  
 

ŷ(t ) = softmax(o(t ) )  
 
We start by setting:  
  

 
∂L
∂L(t )

=1  
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To we can the work backwards from the end of the sequence. 
 
 
The gradient 

!
∇

o(t )
L  with respect to the output is the outputs at time step t is 

computed using the chain rule:  
 

(
!
∇

o( t )
L)i =

∂L
∂oi

(t ) =
∂L
∂L(t )

∂L(t )

∂oi
(t ) = ŷi

(t ) −1
i,y( t )

 
 
At the final time step, τ,  h(τ) has only o(τ)  as a descendent, so the gradient is simple,  
 !

∇
h(τ )
L =VT

!
∇o(τ )L  

 
We then iterate backwards in time to back-propagate the gradients  from t= τ–1 back 
to t=1, noting that h(t) for  t< τ has as descendants both o(t) and h(t+1). 
 

!
∇

h( t )
L = ∂h(t+1)

∂h(t )
#

$
%

&

'
(

T !
∇

h( t+1)
L( )+ ∂o(t )

∂h(t )
#

$
%

&

'
(

T !
∇o(τ )L( )  

=WT
!
∇

h( t )
L( )diag 1− h(t+1)( )

2( )+VT
!
∇o(τ )L( )  

 
where diag 1− h(t+1)( )

2( )  indicates the diagonal matrix containing the elements 

1− h(t+1)( )
2

.   
 
This is the Jacobian of the hyperbolic tangent associated with the hidden unit i, at 
time t+1.  Once we have the gradients of the internal nodes of the computational 
graph we can obtain the gradients of the parameter nodes. 

 


