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Notation 
 
xd   A feature.  An observed or measured value.  
  

! 

! 
X    A vector of D  features.   
D   The number of dimensions for the vector    

! 

! 
X  

  

! 

{
! 
X m}  

! 

{ym} Training samples for learning.  
M   The number of training samples.  

! 

aj
(l )      the activation output of the jth neuron of the lth layer.  

! 

wij
(l )     the  weight for the unit i of layer l–1 and the unit j of layer l.  

! 

bj
l      the bias term for jth unit of layer l.  

! 

"    The sparsity parameter  
    
 
Key Equations  

The average activation at layer l:   

! 

ˆ " j =
1
M

aj,m
(1)

m=1

M

#  

The autoencoder cost function :  
  

! 

Lsparse(W , B;
! 
X m , ym ) =

1
2

(! a m
(2) "
! 
X m )2 +# KL($ ||

j=1

N (1)

%  ˆ $ j ) 

 

the Kullback-Leibler Divergence:   

! 

KL(" ||
j=1

N (1)

#  ˆ " j ) = " log
"
ˆ " j

+ (1$")log
1$"
1$ ˆ " j

% 

& 
' ' 

( 

) 
* * 

j=1

N (1)

#  
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Deconvolution 
 
Deconvolution allows display of the part of an image that has been recognized by a 
convolutional net. This provides a coarse pixel-wise label map for recognized classes, 
that segments the image into regions corresponding to recognized classes.  The 
following is an example from a 16 layer VGG network (taken from noh et al 2015) 
 
Recall that VGG processes a 224x224 window of an image with 19 layers. The first 
17 layers use 3x3 convolutions, relu and 2x2 max pooling after layers 2, 4, 7, 10 and 
13.  The depths are D=64 (layers 1, 2), D=128 (layers 3, 4, 5), D=256 (layers 6, 
7,8,9). D=512 (layers 10 to 17). Layer 18 is a 1 x 1 convolution with depth 4096.  
Layer 19 is 1 x 1 x 1000.  
 

 
 
The deconvolution network is a mirror image, replacing pooling with "un-pooling" 
and convolution with "deconvolution".  
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With Max pooling, unpooling requires remembering which unit was selected for each 
pooling operation. This is done with a "switch Variable" that records the selected 
unit. The output is a larger sparse layer in which 3/4 of the activations are zero. 
 

  
 
Deconvolution multiplies each non-zero activation by the learned receptive field. 
These are then summed to create the fully activated layer. The boundary is cropped to 
obtain an image at the original window size.  

   
 
De-convolution treats the learned receptive field as basis functions, and uses the un-
pooled weights as the amplitude for each basis. 
 
The following shows an example with deconvolution of the VGG net of a bicycle.  
 
(a) is the original image. The other images show the results of max-pooling for the 
14x14, 28x28, 56x56, 112x112, and 224x224 layers 
 

 
 



Artificial Neural Networks Deconvolution, Autoencoders and GANs 

 

9-5 

AutoEncoders 
 
We can use an auto-encoder to learn a set of K receptive fields, 

! 

wk (u,v) for a data set 
for use with a convolutional neural network. 
 
An auto-encoder is an unsupervised learning algorithm that uses back-propagation to 
learning a sparse set of features for describing the training data.  Rather than try to 
learn a target variable, ym, the auto-encoder tries to learn to reconstruct the input X 
using a minimum set of features.  
 
The auto-encoder provides a limited basis set for reconstruction.  
Mathematically, the auto-encoder maps the input signal (or image) onto a manifold.  
 

  
Using the notation from our 2 layer network, given an input feature vector   

! 

! 
X m  the 

auto-encoder learns 

! 

{wij
(1) ,bj

(1)}  and 

! 

{wjk
(2) ,bk

(2)}  such that for each training sample,  

  

! 

! a m
(2) = ˆ X m "

! 
X m  using as few hidden units as possible.  

 
Note that N(2) =D  and that N(1) << N(2) 
 
When the number of hidden units N(2)  is less than the number of input units, D,  
 
   

! 

! a m
(2) = ˆ X m "

! 
X m   is necessarily an approximation.  

 
The error for back-propagation for each unit is    

! 

"k,m
(2) = ak ,m

(2) # xi,m  
For each component xi,m of the  training sample   

! 

! 
X m  
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The Sparsity Parameter 
 
The auto-encoder will learn weights subject to a sparseness constraints specified by a 
sparsity parameter 

! 

ˆ " j = " , typically set close to zero.    The sparsity parameter 

! 

"  is the 
average activation for the hidden units.  
 
The auto-encoder is described by:  
 

Level 0:   

  

! 

! 
X m =

x1,m
"

xD,m

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
  Composed of window extracted from P(c,r) 

 

level 1:  

! 

aj,m
(1) = f ( wij

(1)xi,m +bj
(1)

i=1

D

" ) 

 

level 2:  

! 

ak,m
(2) = f ( wjk

(2)aj ,m
(1) +bk

(2)

j=1

N (1)

" )  

 

Desired output  

  

! 

! a m
(2) =

a1
(2)

"
aD

(2)

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

= ˆ X m (
! 
X m ,   with error 

! 

"k,m
(2) = ak ,m

(2) # xi,m  

 
The average activation 

! 

ˆ " j  is computed as the average activation for each of the N(1)
  

hidden units, j=1 to N(1) for the M training samples:  
 

 

! 

ˆ " j =
1
M

aj,m
(1)

m=1

M

#  

 
The auto-encoder can be learned by back-propagation using a minor change to the 
cost function.  
 

 
  

! 

Lsparse(W , B;
! 
X m , ym ) =

1
2

(! a m
(2) "
! 
X m )2 +# KL($ ||

j=1

N (1)

%  ˆ $ j ) 

 

where 

! 

KL(" ||
j=1

N (1)

#  ˆ " j ) is the Kullback-Leibler Divergence of the hidden unit activations  

and 

! 

"  controls the weight of the sparsity parameter.  
 
(Don’t panic - this is easy to do).  
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Kullback-Leibler Divergence 
 
The KL divergence between the desired and average activation is:  
 

 

! 

KL(" ||
j=1

N (1)

#  ˆ " j ) = " log
"
ˆ " j

+ (1$")log
1$"
1$ ˆ " j

% 

& 
' ' 

( 

) 
* * 

j=1

N (1)

#  

  
 
To incorporate the KL divergence into back propagation, we replace 
 

 

! 

" j
(1) =

#f (zj
(1) )

#zj
(1) wjk

(2)"k
(2)

k=1

N (2)

$  

with  
 

 

! 

" j
(1) =

#f (zj
(1) )

#zj
(1) wjk

(2)"k
(2)

k=1

N (2)

$ +% &
'
ˆ ' j

+
1&'
1& ˆ ' j

( 

) 
* * 

+ 

, 
- - 

( 

) 
* * 

+ 

, 
- -  

 
where  N(2) = D.    
 
Note you need the average activation 

! 

ˆ " j  to compute the correction. Thus you need to 
compute a forward pass on all the training data, before computing the back-
propagation on any of the training samples. This can be a problem if the number of 
training samples is large.  
 
The auto-encoder forces the hidden units to become approximately orthogonal, 
allowing a small correlation determined by 

! 

" .  Thus the hidden units act as a form of 
basis space for the input vectors.  
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Autoencoders encode input signals as a sum of basis vectors. The values of the basis 
vectors are referred to as latent variables. The latent varibles provide a compressed 
representation that reduces dimensionality and eliminates random noise. The output 
of an autoencoder can be used to drive a decoder to produce a filtered version of the 
input.  

 
The simplest form of decoder would be a one layer weighted sum of latent variables 
times the basis vectors.  A better technique is to learn the decoder as network using 
back-propagation.  
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Generative Adversarial Networks.  
 

Generative Networks 
Given an observable random variable   

! 

! 
X , and a target variable,   

! 

! 
Y , a generative model 

is a joint probability distribution,   

! 

P(
! 
X ,
! 
Y ).  

 
A discriminative model is a model is a conditional probability distribution 
  

! 

P(
! 
Y |
! 
X = ! x ). In classification,   

! 

! 
X , is generally composed of continuous variables, and 

  

! 

! 
Y  is generally a discrete set of classes.  
 
The classical Bayesian approach relies on estimating   

! 

P(
! 
X ,
! 
Y ) using Bayes rule:  

 
   

! 

P(
! 
Y |
! 
X )p(

! 
X ) = P(

! 
Y ,
! 
X ) = p(

! 
X |)P(

! 
Y ) 

 
The networks seen in the previous lectures learn discriminative models using back-
propagation for gradient descent to estimate   

! 

P(
! 
Y |
! 
X = ! x ).  

 
Discriminative Neural networks take a signal as an input and output the likelihood 
the one or more target classes are in the signal  
 

 
 

A Generative network runs the other way, generating a realistic fake signal from a 
random (or arbitrary) input.  
 

 
 
The generative process back propagates derivatives using back-propagation to learn a 
generator network. 
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Generative Adversarial Networks  
 
A Generative Adversarial Network (GAN) places a generative network in 
competition with an Discriminative network.  
 

 
 
The two networks compete in a zero-sum game, where each network attempts to fool 
the other network. The generative network generates examples of an image and the 
discriminative network attempts to recognize whether the generated image is realistic 
or not.  Each network provides feedback to the other, and together they train each 
other.  The result is a technique for unsupervised learning that can learn to create 
realistic patterns. Applications include synthesis of images, video, speech or 
coordinated actions for robots.  
 
Generally, the discriminator is first trained on real data. The discriminator is then 
frozen and used to train the generator.  The generator is trained by using random 
inputs to generate fake outputs. Feedback from the discriminator drives gradient 
ascent by back propagation. When the generator is sufficiently trained, the two 
networks are put in competition.  
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GAN Learning as Min-Max Optimization.  
 
The generator is a function   

! 

! ˆ X = G(! z ,"g ) , where 

! 

G() is a differentiable function computed 
as a multi-layer perceptron, with trainable parameters,  

! 

"g,  and z is an input random vector 
with model   

! 

pz (
! z ) , and   

! 

! ˆ X  is a synthetic (fake) pattern.  

The discriminator is a differentiable function   

! 

D(
! 
X ,"d ) computed as a multi-layer 

perceptron with parameters 

! 

"d  that estimates the likelihood that   

! 

! 
X  belongs to the set 

described by the model 

! 

"d .  

The generator   

! 

! ˆ X = G(! z ,"g ) is trained to minimize   

! 

Log(1"D(G(! z ,#g ))) 

The perceptrons 

! 

D() and 

! 

G() play a two-player zero-sum min-max game with a value 
function V(D, G):  
 

  
 
In practice, this may not give sufficient gradient to learn. To avoid this, the 
discriminator is first trained on real data. The generator is then trained with the 
discriminator held constant. When the generator is sufficiently trained,  the two 
networks are put in competition, providing unsupervised learning. 

The discriminator is trained by ascending the gradient to seek a max:  

  

The generator is trained by seeking a minimum of the gradient : 

   

 
 


