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Notation 
 
xd   A feature.  An observed or measured value.  

   A vector of D  features.   
D   The number of dimensions for the vector   
  

! 

{
! 
X m}  

! 

{ym} Training samples for learning.  
M   The number of training samples.  

! 

aj
(l )      the activation output of the jth neuron of the lth layer.  

! 

wij
(l )     the  weight for the unit i of layer l–1 and the unit j of layer l.  

! 

bj
l      the bias term for jth unit of layer l.  

! 

"    The sparsity parameter  
    
 
Key Equations  

The average activation at layer l:   

! 

ˆ " j =
1
M

aj ,m
(1)

m =1

M

#  

The autoencoder cost function :  
  

! 

Lsparse(W , B;
! 
X m , ym ) =

1
2

(! a m
(2) "
! 
X m )2 +# KL($ ||

j=1

N (1)

%  ˆ $ j ) 

 

the Kullback-Leibler Divergence:   

! 

KL(" ||
j=1

N (1)

#  ˆ " j ) = " log
"
ˆ " j

+ (1$")log
1$"
1$ ˆ " j

% 

& 
' ' 

( 

) 
* * 

j=1

N (1)

#  
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AutoEncoders 
 
We can use an auto-encoder to learn a set of K receptive fields, 

! 

wk (u,v) for a data set 
for use with a convolutional neural network. 
 
An auto-encoder is an unsupervised learning algorithm that uses back-propagation to 
learning a sparse set of features for describing the training data.  Rather than try to 
learn a target variable, ym, the auto-encoder tries to learn to reconstruct the input X 
using a minimum set of features (latent variables).  
 
The auto-encoder provides a limited basis set for reconstruction.  
Mathematically, the auto-encoder maps the input signal (or image) onto a manifold.  
 

  
Using the notation from our 2 layer network, given an input feature vector   

! 

! 
X m  the 

auto-encoder learns 

! 

{wij
(1) ,bj

(1)}  and 

! 

{wjk
(2) ,bk

(2)}  such that for each training sample,  

  

! 

! a m
(2) = ˆ X m "

! 
X m  using as few hidden units as possible.  

 
Note that N(2) =D  and that N(1) << N(2) 
 
When the number of hidden units N(2)  is less than the number of input units, D,  
 
   

! 

! a m
(2) = ˆ X m "

! 
X m   is necessarily an approximation.  The hidden unites provide 

a “lossy” encoding for   

! 

! 
X m .  This encoding can be used to suppress noise! 

 
The error for back-propagation for each unit is  a vector    

! 

! 
" m
(2) =
" a m
(2) –
" 
X m  

wit a  component  δi,m  for component xi,m of the  training sample   

! 

! 
X m  
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The hidden code is composed of independent “features” that capture some 
component of the input vector. Each cell of the code vector is driven by a receptive 
field whose sum of products with the receptive fields of other code cells is almost 
zero.    Ideally these receptive fields should be completely independent (orthogonal). 
However, with an autoencoder the components may have some slight overlap.  The 
average degree of independence is captured by a “sparsity parameter”, 

! 

ˆ " .  
 
The Sparsity Parameter 
 
The sparsity 

! 

ˆ " j  is the average activation for each of the hidden units j=1 to N(1).  
 
The auto-encoder will learn weights subject to a sparseness constraints specified by a 
target sparsity parameter 

! 

" , typically set close to zero.     
 
The simple, 2-layer auto-encoder is described by:  
 

Level 0:   

  

! 

! 
X m =

x1,m
"

xD,m

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
  an input vector 

 

level 1:  

! 

aj,m
(1) = f ( wij

(1)xi,m +bj
(1)

i=1

D

" ) the code vector 

 

level 2:  

! 

ak,m
(2) = f ( wjk

(2)aj ,m
(1) +bk

(2)

j=1

N (1)

" )  the reconstruction of the input.  

 
The  output  should approximate the input.  
 

  

  

! 

! a m
(2) =

a1
(2)

"
aD

(2)

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

= ˆ X m (
! 
X m ,   with error   

! 

! 
" m
(2) =
" a m
(2) –
" 
X m  

 
The sparsity 

! 

ˆ " j  for each hidden unit (code component) is computed as the average 
activation for the M training samples:  
 

 

! 

ˆ " j =
1
M

aj,m
(1)

m=1

M

#  
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The auto-encoder is trained to minimize the average sparsity.  This is accomplished 
using  back propagation, with a simple tweak to the cost function.  
 
Standard back propagation tries to minimize a loss based on the sum of squared 
errors. The loss for each sample is.  
 
 

  

! 

Lm (
! 
X m , ym ) =

1
2
(ym "

! a m
(L ) )2  

 
For an auto-encoder, the target output is the input vector, and the loss is squared 
difference from the input vector:  
 
 

  

! 

Lm (
! 
X m , ym ) =

1
2
(
! 
X m "

! a m
(L ) )2 

 
To impose “sparsity” we add an additional term to the loss.  
 

 
  

! 

Lm (
! 
X m , ym ) =

1
2

(
! 
X m "

! a m
( L ) )2 +# KL($ ||

j=1

N (1)

%  ˆ $ j )  

where 

! 

KL(" ||
j=1

N (1)

#  ˆ " j ) is the Kullback-Leibler Divergence of the vector of hidden unit 

activations  and 

! 

"  controls the importance of the sparsity parameter.  
 
(Don’t panic - this is easy to do).  
 
Kullback-Leibler Divergence 
The KL divergence between the desired and average activation is:  
 

 

! 

KL(" ||
j=1

N (1)

#  ˆ " j ) = " log
"
ˆ " j

+ (1$")log
1$"
1$ ˆ " j

% 

& 
' ' 

( 

) 
* * 

j=1

N (1)

#  
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To incorporate the KL divergence into back propagation, we replace 
 

 

! 

" j
(1) =

#f (zj
(1) )

#zj
(1) wjk

(2)"k
(2)

k=1

N (2)

$  

with  
 

 

! 

" j
(1) =

#f (zj
(1) )

#zj
(1) wjk

(2)"k
(2)

k=1

N (2)

$ +% &
'
ˆ ' j

+
1&'
1& ˆ ' j

( 

) 
* * 

+ 

, 
- - 

( 

) 
* * 

+ 

, 
- -  

 
where  N(2) = D.    
(The network output has the same number of components as the input).  
 
Note you need the average activation 

! 

ˆ " j  for the training data to compute the 
correction. Thus you need to compute a forward pass on all the entire batch of 
training data, before computing the back-propagation on any of the training samples. 
This can be a problem if the number of training samples is large.   
 
The auto-encoder forces the hidden units to become approximately orthogonal, 
allowing a small correlation determined by the target sparsity,  

! 

" .  Thus the hidden 
units act as a form of basis space for the input vectors.  
 
The values of the hidden code layer are referred to as latent variables. The latent 
variables provide a compressed representation that reduces dimensionality and 
eliminates random noise. The output of an autoencoder can be used to drive a 
decoder to produce a filtered version of the input.  
 

 
 
For example, if trained for a set of hand-written digits, the auto-encoder will learn a 
“typical” set of hand written digits. These can be seen as a sort of “prototype” for 
each of the data categories.  
 
The following is an image generated from each of the latent variables (code cells) for 
a grid of 10 x 10 hidden units learned for a very large set of images learned as an 
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auto-encoder.  Each imagette is the result of setting one code cell to 1  and all others 
to zero.  
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Generative Networks 
Up to now we have looked at what are called “discriminative” techniques.  These are 
techniques that attempt to discriminate a class label, y from a feature vector,   

! 

! 
X . 

 
 

 
 
In order to minimize the number of errors, we maximized the probability that  
 
   

! 

P( ˆ y = y |
! 
X )  

 
We saw that we could use back-propagation to learn the weights and biases for a 
network to maximizes   

! 

P( ˆ y = y |
! 
X )  for a training set.  

 
The same process can be used to learn a network that generates   

! 

! ˆ X  given a code y 
such that we maximize the   

! 

P(
! ˆ X =
! 
X | y) .  This is called a “generative” process.  

 

 
 
For a fully connected network, this is fairly obvious.  The network input is a binary 
vector   

! 

! 
Y  with k binary values 

! 

yk , with one for each target class.  This is a code.  
The output for a training sample   

! 

! 
Y m  is an approximation of a feature vector belonging 

to the code class,   

! 

! ˆ X m   
 
   

! 

! a m
(2) = ˆ X m "

! 
X m  

 
and the error is the difference between a output and the actual members of the class.  
 
   

! 

! 
" m
(2) =
" a m
(2) –
" 
X m  

 
The average error for at training set   

! 

! 
Y m{ },   

! 

! 
X m{ } can be used to drive back-

propagation.   However, for larger signals such as images, this is not quite so simple. 
To avoid the explosion in the number of parameters we need to use a convolutional 
network.  
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For example, the following is the architecture for a network called DCGAN.  The 
network takes 100 random numbers as an input (or code) and outputs an color image 
of size 64x64x3 
 

 
 
The first fully connected layer is a 4 x 4 array of 1024 cells (Dept = 1024). Total 
number of cells is 16 K.  This layer has 160 K weights and 16 K biases to train.  
 
 This is deconvolved into an 8 x 8 by 512 layer, where deconvolution projects each of 
the  cells in the 4x4 layer onto an overlapping set of 5x5 receptive field with a stride 
of 2.   The process is repeated to create a 3rd layer that is 16x16x245 and then a 4th 
layer that is 32 x 32 by 128. The final output is a 5th layer with 64 x64 pixels of 3 
colors. 
 

Deconvolution 
Deconvolution multiplies each activation at level l by the learned receptive field to 
create an image at level l+1. Overlapping projections of receptive fields are then 
summed to create the layer l+1. In some cases, the boundary is cropped to obtain an 
image at the target window size. Deconvolution uses a stride to create a larger image.  
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De-convolution treats the learned receptive field as basis functions, and uses the 
activation at level l to create a weighted sum of bases at level l+1. 
 
The stride acts as the opposite of pooling.  For 2x2 average pooling, de-convolution 
simply projects 4 displaced copies of the receptive field onto a 2 x 2 grid of 
overlapping receptive fields.  These are then summed to give an image.  
 

Locating objects in images with deconvolution.  
 
Deconvolution is often used with convolutional networks to determine the location of 
a detected pattern in an image.   Deconvolution allows display of the part of an image 
that has been recognized by a convolutional net. This provides a coarse pixel-wise 
label map that segments the image into regions corresponding to recognized classes.   
 
The following is an example from a 16 layer VGG network (taken from noh et al 
2015) 
 
Recall that VGG processes a 224x224 window of an image with 19 layers. The first 
17 layers use 3x3 convolutions, relu and 2x2 max pooling after layers 2, 4, 7, 10 and 
13.  The depths are D=64 (layers 1, 2), D=128 (layers 3, 4, 5), D=256 (layers 6, 
7,8,9). D=512 (layers 10 to 17). Layer 18 is a 1 x 1 convolution with depth 4096.  
Layer 19 is 1 x 1 x 1000.  
 

 
 
The deconvolution network is a mirror image, replacing pooling with "un-pooling" 
and convolution with "deconvolution".  
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VGG uses max pooling.  With Max pooling, unpooling requires remembering which 
unit was selected for each pooling operation. This is done with a "switch Variable" 
that records the selected unit. The output is a larger sparse layer in which 3/4 of the 
activations are zero. 
 

  
 
The following shows an example with deconvolution of the VGG net of a bicycle.  
 
(a) is the original image. The other images show the results of max-pooling for the 
14x14, 28x28, 56x56, 112x112, and 224x224 layers 
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Generative Adversarial Networks.  
Generative Networks 
 
Given an observable random variable   

! 

! 
X , and a target variable,   

! 

! 
Y , Gradient descent 

allows us to learn a joint probability distribution,   

! 

P(
! 
X ,
! 
Y ), where   

! 

! 
X , is generally 

composed of continuous variables, and   

! 

! 
Y  is generally a discrete set of classes 

represented by a binary vector.  
 
A discriminative model a conditional probability distribution   

! 

P(
! 
Y |
! 
X ). 

  
A generative model, is a conditional probability   

! 

P(
! 
X |
! 
Y ) 

 
The classical Bayesian approach relies on estimating   

! 

P(
! 
X ,
! 
Y ) using Bayes rule:  

 
   

! 

P(
! 
Y |
! 
X )p(

! 
X ) = P(

! 
Y ,
! 
X ) = p(

! 
X |
! 
Y )P(

! 
Y ) 

 
It is possible to put a discriminative network together with a generative network and 
have them train each other.  This is called a Generative Adversarial Network (GAN).  
 

Generative Adversarial Networks  
 
A Generative Adversarial Network (GAN) places a generative network in 
competition with a Discriminative network.  
 

 
 
The two networks compete in a zero-sum game, where each network attempts to fool 
the other network. The generative network generates examples of an image and the 
discriminative network attempts to recognize whether the generated image is realistic 
or not.  Each network provides feedback to the other, and together they train each 
other.  The result is a technique for unsupervised learning that can learn to create 
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realistic patterns. Applications include synthesis of images, video, speech or 
coordinated actions for robots.  
 
Generally, the discriminator is first trained on real data. The discriminator is then 
frozen and used to train the generator.  The generator is trained by using random 
inputs to generate fake outputs. Feedback from the discriminator drives gradient 
ascent by back propagation. When the generator is sufficiently trained, the two 
networks are put in competition.  
 

GAN Learning as Min-Max Optimization.  
The generator is a function   

! 

! ˆ X = G(! z ,"g ) , where 

! 

G() is a differentiable function computed 
as a multi-layer perceptron, with trainable parameters,  

! 

"g,  and z is an input random vector 
with model   

! 

pz (
! z ) , and   

! 

! ˆ X  is a synthetic (fake) pattern.  

The discriminator is a differentiable function   

! 

D(
! 
X ,"d ) computed as a multi-layer 

perceptron with parameters 

! 

"d  that estimates the likelihood that  belongs to the set 
described by the model 

! 

"d .  

The generator   

! 

! ˆ X = G(! z ,"g ) is trained to minimize   

! 

Log(1"D(G(! z ,#g ))) 

The perceptrons 

! 

D() and 

! 

G() play a two-player zero-sum min-max game with a value 
function V(D, G):  
 

  
 
In practice, this may not give sufficient gradient to learn. To avoid this, the 
discriminator is first trained on real data. The generator is then trained with the 
discriminator held constant. When the generator is sufficiently trained,  the two 
networks are put in competition, providing unsupervised learning. 

The discriminator is trained by ascending the gradient to seek a max:  

  

The generator is trained by seeking a minimum of the gradient: 

   


