
Intelligent Systems: Reasoning and Recognition

James L. Crowley

Ensimag 2 Second Semester 2018/2019

Lesson 15 3 April 2019

Knowledge Representation and Reasoning
With Rule-Based Production Systems

Knowledge Representation in Rule-Based Systems 2	

Production System architecture .. 4	

The NASA CLIPS rule based programming environment 5	

The CLIPS Program Interpreter ... 6	

Working Memory: The Facts List .. 6	

Defining Schema with Deftemplates ... 8	

deffacts ... 10	

Rules in CLIPS ... 11	

Variables .. 12	

Scanning a list .. 14	

Rule Syntax: Constraints ... 16	

Predicates ... 18	

The ACTION part (RHS) of a rule .. 19	

System Actions ... 20	

Knowledge Representation in Rule-Based Systems

15-2

Knowledge Representation in Rule-Based Systems

Most models of human cognition posit some form of "spreading activation"
(Anderson 83) in which activation energy associates cognitive "units" in short term
memory with concepts, episodes and procedures in long term memory.

Long%Term%Memory%(LTM)%

Short%Term%Memory%(STM)%

Procedural%
Knowledge%

Episodic%
Memory%

Concepts%

Rule-based production systems provide a programmable implementation for this
model.

Three techniques are commonly used to represent knowledge in a rule-based
production system

 An interpreted language - for procedural knowledge
 Schema - to represent concepts and frames
 Rules (productions) - for activation of WM from LTM

An interpreted language is a programming language in which instructions are
interpreted and executed directly at run time, without previous compiling. Interpreted
programs permit programs to be treated as data and to be modified dynamically.
The classic interpreted language is LISP. Popular modern languages include Python
and Java.

Schema are patterns (or templates) for representing concepts or data. A schema is a
named collection of attribute-value pairs in which the attributes (or slot) names act as
a key for indexing and the values may be data elements, lists, or pointers.

Rules associate concepts in working memory with long term memory. Rules take
their inspiration from the observation of conditioned reflexes in animals and humans.

Rules are often called “productions”.

Knowledge Representation in Rule-Based Systems

15-3

Conditioned Reflexes are trained associations of stimulus and response.

 Stimulus ⇒ Response

In production systems, rules are implemented as condition-action pairs.

 Condition ⇒ Action

Conditions are conjunctions of patterns that must be true for the rule to be activated.
Actions are sequences of procedures that executed by the interpreter when a rule is
activated.

In a production system, working memory (from perception or memory) acts as
stimuli that trigger associations with information in long term memory and actions.

The association of working memory and productions poses a problem of algorithmic
complexity. If the rules can contain variables, then the algorithmic complexity of
matching (activation) is exponential in the number of conditions.

Knowledge Representation in Rule-Based Systems

15-4

Production System architecture

In a production system, data and concepts in working memory are associated with
data and procedures in long-term memory.

Rules are encoded as condition-action pairs: Condition* ⇒ Action*

Working
Memory

Rules

Agenda

Select Execute

User
Interface

Match

Long-term
Memory

The system implements an "inference engine" that operates as a 3-phase cycle:

The cycle is called the "recognize act" cycle.
The phases are:

Match: match facts in working memory to conditions of rules to produce
 "activations" (associations of WM and rules).

Select: Select an activation for execution.
Execute: Execute the actions specified in the activation.

In this architecture, each element in working memory is labeled with an index. In
each cycle, the conditions part of the rules are matched to the working memory. The
association of working memory and rules are stored in an agenda as "activations".
One of these activations is then selected for execution.

The list of associations of facts and rules are stored in an agenda. One of the
associations is selected for execution.

There are several different models for how to sort the agenda. The most popular is to
use a stack "Last In First Out" or LIFO.

Knowledge Representation in Rule-Based Systems

15-5

The NASA CLIPS rule based programming environment

We will illustrate rule based programming using the CLIPS 6.0 environment created
by NASA. Rule based programming languages went through a number of evolutions
in the 1980's

 OPS-5 ('78) => ART ('80) => CLIPS ('85) => CLIPS 6 ('94)

The OPS system (invented by Newell at CMU) was used to construct a very
successful expert system for configuring VAX computers (R1). R1 gained several
hundred million dollars for Digital Equipment Corporation from 1980 to 1985.

The OPS system was commercialized by DEC. However OPS was public domain,
and not protected from copyright.

OPS was copied by Teknowledge under the name "ART" Automated Reasoning
Tool. Unfortunately ART was built in the LISP language and was very expensive.
(50 K$ for the ART license, 50 K$ for a LISP machine).

NASA selected ART as its standard. However, because of the cost, in 1985, NASA
engineers reprogrammed ART in C. The result was called CLIPS. (C-language
integrated production system). As a public organization, NASA distributed CLIPS for
free (Before GNU and ShareWare).

Successive versions of CLIPs have been distributed and a substantial user community
has emerged. We will use a version, CLIPS 6.0, that is programmed using object
oriented programming. This version integrates many different knowledge
representation styles, including Rules, Schema, and a logic based Truth Maintenance
system.

For NASA, CLIPS is used to construct Expert Systems for
1) Process Control
2) On-Board Error Diagnostic
3) Mission Planning
4) Logistics Planning.

Knowledge Representation in Rule-Based Systems

15-6

The CLIPS Program Interpreter

The CLIPS interpreter interprets instruction in a Lisp-like pre-fix notation:

(operator data*)

Programs are composed of "expressions" enclosed in parentheses. The first symbol
after an open parenthesis is an operator. Any remaining symbols are data. The star
indicates zero or more elements.

Expressions are both programs and data. They can be created dynamically by other
programs. Expressions may be composed recursively:

(operator (operator (operator data*)))

CLIPS includes a large number of pre-defined operators. These are described in the
CLIPS Basic Programming guide.

Any of the predefined operators can be included in the action part of a rule, may be
used in a user-defined function, or can be entered directly into the interpreter by the
user.

Working Memory: The Facts List

In CLIPS, entities (or concept) in working memory are called "Facts"

Facts are created and destroyed by the commands assert, retract, reset and clear.

CLIPS> (ASSERT <<FACT>>)
CLIPS> (RETRACT <<Fact-Index>>)
CLIPS> (RESET) - Empties the working memory
CLIPS> (CLEAR) - reinitialize the entire system

The working memory of CLIPS is called the "Facts List". Facts represent concepts
represented as lists or as schema defined by templates.

A Fact can represent:
 • A list of items (symbols, strings, integers or floats)
 • A schema template composed of a "name" and a list of "attribute-value" pairs.

Knowledge Representation in Rule-Based Systems

15-7

 • An object from the CLIPS object oriented system.

CLIPS objects are used to represent Frames.

Data primitives (items) belong to a hierarchy of 13 primitive types.

Rule Based programming with CLIPS Lesson 5

 5-5

The Facts List

The working memory of CLIPS is called the "Facts List".
A Fact can represent:
 • A list of items (PRIMITIVES including symbols, strings, integers or floats)
 • A template composed of a "name" and a list of "attribute-value" pairs.
 • An object from the CLIPS object oriented system.

CLIPS' working memory is represented as a list of facts.
Fact are a list or structure or items (or an object).
Items belong to a hierarchy of 13 primitive types.

STRING

OBJECT

PRIMITIVE
USER

LEXEME

SYMBOL

NUMBER

INTEGER FLOAT

MULTIFIELDADDRESSINSTANCE

INSTANCE-ADDRESSINSTANCE-NAME FACT-ADDRESS EXTERNAL-ADDRESS

INITIAL-OBJECT

It is also possible to define new types. Version 6.0 of CLIPS contains an object
oriented environment named COOL. ("C-Language Object Oriented Language").
User defined types belong to the class COOL class USER

In later lessons we will use the COOL. For now, we will work with lists and
structures.

Facts, in CLIPS, are created and destroyed by the commands:

ASSERT: (ASSERT <<FACT>>)
RETRACT, (RETRACT <<INDEX>>)

(CLEAR) - Empties the working memory
(RESET) - Resets the entire system to empty.

Typing (CLEAR) creates an "initial fact" with index 0.

It is also possible to define new types. Version 6.0 of CLIPS contains an object-
oriented environment named COOL. ("C-Language Object Oriented Language").
User defined types belong to the class COOL class USER

In later lessons we will use the COOL. For now, we will work with lists and
structures.

Typing (RESET) creates an "initial fact" with index 0.
Typing (Clear) deletes all templates, rules, facts, classes etc..
And then creates an "initial fact" with index 0.

f-0 (initial-fact)

There are 5 keywords that cannot be used in the first field in a fact:
"test", "and", "or", "not", "declare".

Each fact is identified by a unique index number. Indices are allocated in order. They
are fundamental to the logic of CLIPS.

CLIPS> (assert (a b c))

ATTN (assert (1 2 3)) will generate an error. The first item in a fact must be a symbol

Knowledge Representation in Rule-Based Systems

15-8

Defining Schema with Deftemplates

A template is a schema for a concept. Templates are named sets of "attribute - value"
pairs. Such structures are defined with deftemplate.

A template makes it possible to manipulate attributes of a fact without having to scan
through a list. Attributes are called "slots" in clips. Example:

(deftemplate person ; A template for a person
 "template for a person" ; Optional Comment

 (slot name (default "John Doe")) ; Default name
(slot age (type INTEGER)) ; default will be 0

)

Instances of templates are created by (assert).

(assert (person))
(assert (person (name "joe")))
(assert (person (name "john") (age 20)))

A number of commands exist inspecting templates

 (list-deftemplates)
 (ppdeftemplate <template-name>)
 (undeftemplate <template-name>)

examples:

CLIPS> (list-deftemplates)
initial-fact
person
For a total of 2 deftemplates.
CLIPS> (ppdeftemplate person)
(deftemplate MAIN::person "template for a person"
 (slot name (default "John Doe"))
 (slot age (type INTEGER)))
CLIPS>

We can define types and default values for slots.
We can also define a list of allowed symbols for a slot value.

Knowledge Representation in Rule-Based Systems

15-9

example :

(deftemplate person ; A template for a person
"template for a person" ; Optional Comment
 (slot name ; Names of a person (string)
 (type STRING)(default "Pierre Dupont"))
 (slot age ; age of the person
 (type INTEGER) ; default will be 0
 (range 0 120)) ; Possible ages - 0 to 120
 (slot Profession ;
 (type SYMBOL)
 (allowed-values artist engineer salesman manager
 other none)
)
)

For numbers we can define a range

(slot age(type NUMBER) (range 0 120))

Attempts to assign a value outside the range will cause an error.

Knowledge Representation in Rule-Based Systems

15-10

deffacts

 A predefined list of facts can be created by the expression "deffacts".

(deffacts <NOM> ["<comment>"]
 [(<<FAIT-1>>) (<<FAIT-2>>) ... (<<FAIT-N>>))

the command (reset) will empty the facts list and create an "initial-fact" and to create
the list of default facts.

examples :

(deftemplate place
 (slot name (type SYMBOL) (default NIL))
 (slot x (type NUMBER) (default -1))
 (slot y (type NUMBER)(default -1))
 (multislot neighbors (default NIL))
)

(deffacts network-of-places
 (place (name A) (x 0) (y 0) (neighbors B C))
 (place (name B) (x 0) (y 1) (neighbors A D))
 (place (name C) (x 1) (y 0) (neighbors A I))
)

CLIPS> (reset)
CLIPS> (facts)
f-0 (initial-fact)
f-1 (place (name A) (x 0) (y 0) (neighbors B C))
f-2 (place (name B) (x 0) (y 1) (neighbors A D))
f-3 (place (name C) (x 1) (y 0) (neighbors A I))
For a total of 4 facts.

Knowledge Representation in Rule-Based Systems

15-11

Rules in CLIPS

CLIPS rules allow programming of reactive knowledge that associate facts.
Rules are defined by the "defrule" command.

(defrule <rule-name> [<comment>]
 [<declaration>] ; Rule Properties
 <conditional-element>* ; Left-Hand Side (LHS)
=>
 <action>*) ; Right-Hand Side (RHS)

Defrule defines a rule.
If the rule with the same name exists, it is replaced with the new rule.

There is no limit to the number of conditions or actions (* means 0 or more).
Actions are executed sequentially.

Rules with no condition are activated by (Initial-Fact). This can be used for
initialisation.

The syntax for condition elements is complex:

<conditional-element> ::= <pattern-CE> |
 <assigned-pattern-CE> |
 <not-CE> |
 <and-CE> |
 <or-CE> |
 <logical-CE> |
 <test-CE>

A condition element (CE) can be a list or a template or user defined object.

List: (<constant-1> ... <constant-n>)
Deftemplate:

(<deftemplate-name> (<slot-name-1> <constant-1>)
 •
 •
 •
 (<slot-name-n> <constant-n>))

A CE can contain constant values or variables.

Knowledge Representation in Rule-Based Systems

15-12

Variables

Variables are represented by ?x
There are two sorts of variables in CLIPS:

Index Variables: are assigned the index of a fact that matches a CE.
Attribute Variables: Contain the value of an item that matches a CE.

Index Variables

Variable : ?x
Index variables are used to identify a fact that has matched a CE
This can be used to retract of modify the fact.

(defrule rule-A
 ?f <- (a)
=>
 (printout t "Retracting " ?f crlf)
 (retract ?f)
)

Attribute Variables

Attribute variables are assigned the value of an item that matched a CE.
These can be used to
 1) Recover the value for computation
 2) Detect matching facts.

Syntax for attribute variables.
 ?var - Defines a variable named var.
 The matching value is assigned to ?var.
 $?list - Defines a list of variables named list
 ? - An unnamed variable. No data is stored.
 $? - An unnamed list. no data is stored.

WITHIN condition elements, values are implicitly bound to variables.

Knowledge Representation in Rule-Based Systems

15-13

Examples :
(assert (a b c))
(assert (a b c d e f))
(assert (d e f))

(defrule a
 (a) ;; matches only facts with a single item. (a)
=>
(printout t "a" found crlf)
)

(defrule abc
 (a b c) ;; matches only facts of the form (a b c)
=>
(printout t "a b c" crlf)
)

(defrule abx
 (a b ?x)
=>
(printout t "a b and ?x = " ?x crlf)
)

(defrule ax-
 (a ?x ?)
=>
(printout t "x = " ?x crlf)
)

(defrule process-a-list
 (a $?x)
=>
(printout t "The list is " $?x crlf)
)

(defrule extract-every-element-from-a-list
 (a $?x $?)
=>
(printout t "The list is " $?x crlf)
)

Knowledge Representation in Rule-Based Systems

15-14

Scanning a list

The following "trick" is used to obtain each item from a list:

(defrule Extract-every-element-from-list
 (a $? ?x $?)
=>
(printout t "x = " ?x crlf)
)

$? Matches nothing, or 1 item, or 2 items etc...
?x matches the next item.
$? Matches the rest of the list.

This rule will provide one activation for each item after
the first item in the fact.

(defrule increment-x-example
 ?f <- (a ?x)
=>
 (printout t "x = " ?x crlf)
 (bind ?x (+ ?x 1))
 (printout t "now x = " ?x crlf)
 (modify ?f (a ?x))
)

(clear)

(deftemplate a (slot x))

(defrule increment-x-example
 ?f <- (a (x ?x))
=>
 (printout t "x = " ?x crlf)
 (bind ?x (+ ?x 1))
 (printout t "now x = " ?x crlf)
 (modify ?f (x ?x))
)

WITHIN the action part of a rule, values may be assigned by
(bind ?Var Value)
e.g. (bind ?x 3) assigns 3 to ?x

Knowledge Representation in Rule-Based Systems

15-15

ATTN: DO NOT use (bind) in condition elements

(defrule test
?c <- (a b c)
=>
(bind ?c oops)
(printout t ?c crlf)
)

Rule Activations (associations of a rule with facts that match conditions)
are placed on the agenda.

(deftemplate person
 "A record for a person"
 (slot family-name)
 (slot first-name)
)

(assert (person (family-name DOE) (first-name John)))
(assert (person (family-name DOE) (first-name Jane)))

(defrule Find-same-name
 ?P1 <- (person (family-name ?f) (first-name ?n1))
 ?P2 <- (person (family-name ?f) (first-name ?n2))
=>
 (printout t ?n1 " " ?f" and " ?n2 " " ?f " have the
same family name" crlf)
)

CLIPS> (assert (person (family-name DOE) (first-name
John)))
<Fact-1>
CLIPS> (assert (person (family-name DOE) (first-name
Jane)))
<Fact-2>
CLIPS> (defrule Find-same-name
 ?P1 <- (person (family-name ?f) (first-name ?n1))
 ?P2 <- (person (family-name ?f) (first-name ?n2))
=>
 (printout t ?n1 " " ?f" and " ?n2 " " ?f " have the
same family name" crlf)
)

Knowledge Representation in Rule-Based Systems

15-16

CLIPS> (run)
Jane DOE and Jane DOE have the same family name
Jane DOE and John DOE have the same family name
John DOE and Jane DOE have the same family name
John DOE and John DOE have the same family name

Question: Why does the rule execute 4 times?
Answer: Twice because a fact can match itself and twice because the rule matches
Jane with John as well as John with Jane

(defrule Find-same-name
 ?P1 <- (person (family-name ?f) (first-name ?n1))
 ?P2 <- (person (family-name ?f) (first-name ?n2))
 (test (neq ?n1 ?n2))
=>
 (printout t ?n1 " " ?f" and " ?n2 " " ?f " have the
same family name" crlf)
)

Rule Syntax: Constraints

Variable assignment and matching in conditions can be "constrained" by constraints.
There are two classes of constraints: "Logic Constraints" and Predicate Functions

Logic Constraints are composed using"&", "|", "~"

"&"- AND - Conjunctive constraint
"|" - OR - Disjunctive Constraint
"~" - NOT - Negation

(defrule Find-same-name
 ?P1 <- (person (family-name ?f) (first-name ?n1))
 ?P2 <- (person (family-name ?f)
 (first-name ?n2&~?n1))

=>
 (printout t ?n1 " " ?f" and " ?n2 " " ?f " have the
same family name" crlf)
)

example :

Knowledge Representation in Rule-Based Systems

15-17

(?x & green | blue) - ?x must be green or blue for the
condition to match
(?x & ~red) - ?x cannot match red.

(defrule Stop-At-Light
 (color ?x & red | yellow)
=>
 (assert (STOP))
 (printout t "STOP! the light is " ?x crlf)
)
 (assert (color red))

Knowledge Representation in Rule-Based Systems

15-18

Predicates

 Predicates provide functions for defining constraints.
 For Predicate functions, the variable is followed by ":".

(?x&:(<predicate>
<<arguments>>)

The condition is satisfied if
1) a value is assigned to ?x , and
2) the predicate is true for arguments

(?x|:(<predicate>
<<arguments>>)

The condition is satisfied if
1) a value is assigned to ?x , or
2) the predicate is true for arguments

(?x&~(<predicate>
<<arguments>>)

The condition is satisfied if
1) a value is assigned to ?x , and
2) the predicate is false for arguments

(defrule Find-same-name
 ?P1 <- (person (family-name ?f) (first-name ?n1))
 ?P2 <- (person (family-name ?f)

(first-name ?n2&:(neq ?n1 ?n2)))

=>
 (printout t ?n1 " " ?f" and " ?n2 " " ?f " have the
same family name" crlf)
)

There are many predefined predicates. For example.
 (numberp <arg>) - true if <arg> is a PRIMITIVE of type NUMBER
 (stringp <arg>) - true if <arg> is a PRIMITIVE of type STRING
 (wordp <arg>) - true if <arg> is a PRIMITIVE of type WORD
Additional functions can be found in the manual

(defrule example-1
 (data ?x&:(numberp ?x))
 =>)

(defrule example-2
 (data ?x&~:(symbolp ?x))
 =>)

Knowledge Representation in Rule-Based Systems

15-19

(defrule example-3
 (data ?x&:(numberp ?x)&:(oddp ?x))
 =>)

(defrule example-4
 (data ?y)
 (data ?x&:(> ?x ?y))
 =>)

(defrule example-4
 (data ?y)
 not (data ?x&:(> ?x ?y))
 =>)

(defrule example-5
 (data $?x&:(> (length$?x) 2))
 =>)

The ACTION part (RHS) of a rule

In the action part (or RHS) the rule contains a sequence of actions.
Any command recognized by the interpreter can be placed in the action part of a rule.
Each action enclosed in parentheses (<fonction> <<args>>*)
The first symbol in parentheses is interpreted as a function.

New variables can be defined and assigned with bind: (bind ?x 0).
Values may be read from a file or from ttyin by read and readline.

example :
(defrule ask-user
 (person)
=>
 (printout t "first name? ")
 (bind ?firstname (read))
 (printout t "Family name? ")
 (assert (person ?firstname (read)))
)

Knowledge Representation in Rule-Based Systems

15-20

System Actions

1) assert : facts are created with "ASSERT"
Syntax : (assert (<<fait>>) [(<<faits>>)])

(defrule I-Think-I-Exist
 (I think)
=>
 (assert-string "(I exist)")
)
2) retract - Facts are deleted with retract

(defrule I-dont-think-I-Exits
 ?me <- (I do not think)
=>
 (printout t "oops!" CRLF)
 (retract ?me)
)
3) Str-assert Assert a string

(defrule I-Think-I-Exist
 (I think)
=>
 (str-assert "I Think therefore I exist")
)
4) Halt : Stop execution.

