
Intro to Keras
Hello world!

Overview
● How to build your own Neural Network?
● Keras Libraries.
● First example.
● Exercise: Recognition of handwritten digits.

Tune hyperparameters
Learning rate, batch size, # of
epochs, the loss function...

The task
regression, classification, ...,
and therefore, your loss
function.

Architecture
Type of layers, # of layers,
kernels size, ...

How to build your own NN?
Input X & Output Y
nature (fixed, sequential, ..),
type, shape

1. Specify Input (X) & Output (Y)
● Input:

○ Vector,
○ n-D matrix,
○ sequential data,
○ Multimodal input, …

● Output:
○ discrete scalar,
○ vector,
○ n-D matrix,
○ sequential output, …

2. Define the task
A. Classification predictive modeling:

is the task of approximating a mapping function (f) from input variables (X) to discrete output
variables (y). The output variables are often called labels or categories. The mapping function
predicts the class or category for a given observation.

2. Define the task
● A classification problem requires that examples be

classified into one of two or more classes.
● A problem with two classes is often called a two-class

or binary classification problem.
● A problem with more than two classes is often called

a multi-class classification problem.
● A problem where an example is assigned multiple

classes is called a multi-label classification
problem.

There are many ways to evaluate a classification predictive
model, but perhaps the most common is to calculate the
classification accuracy.

2. Define the task
B. Regression predictive modeling:

is the task of approximating a mapping function (f) from input variables (X) to a continuous output
variable (y). A continuous output variable is a real-value, such as an integer or floating point value.
These are often quantities, such as amounts and sizes.

2. Define the task
B. Regression predictive modeling:

● A regression problem requires the prediction of a quantity.
● A problem with multiple input variables is often called a multivariate regression problem.
● A regression problem where input variables are ordered by time is called a time series

forecasting problem.

A regression predictive model predicts a quantity, therefore to evaluate the model we report an
error in those predictions.

3. Choose your Network Architecture
● Vision/Audio related tasks:

○ Convolutional Neural Networks (CNN)

● Time-series tasks:
○ Recurrent Neural Networks (RNN)

3. Choose your Network Architecture
● Vision/Audio related tasks:

○ Convolutional Neural Networks (CNN)

● Time-series tasks:
○ Recurrent Neural Networks (RNN)

Many architectures have been
proposed in the literature.

Look for what suits your problem

3. Choose your Network Architecture
● Transfer Learning:

is a machine learning technique where a
model trained on one task is re-purposed on
a second related task.

4. Start training ...
● Observe the progress of your training.
● Tune Hyperparameters.

○ Learning Rate
○ Number of epochs

4. Start training ...
● Observe the progress of your training.
● Tune Hyperparameters.

○ Learning Rate
○ Number of epochs

● Test and evaluate your model.
● Don’t fall into an overfitting case!.

Existing Platforms

Keras is a high-level neural networks API,
written in Python and capable of running on
top of TensorFlow, CNTK, or Theano. It was
developed with a focus on enabling fast
experimentation.

● Allows for easy and fast prototyping
(through user friendliness, modularity,
and extensibility).

● Supports both convolutional networks
and recurrent networks, as well as
combinations of the two.

[keras.io]

https://github.com/tensorflow/tensorflow
https://github.com/Microsoft/cntk
https://github.com/Theano/Theano

The Sequential model is a linear stack of layers.

You can create a Sequential model by passing a list of layer instances to the
constructor:

Sequential Model

from keras.models import Sequential
model = Sequential()

from keras.models import Sequential
from keras.layers import Dense

model = Sequential([
 Dense(32, input_shape=(784,), activation=’relu'),
 Dense(10, activation='softmax')
])

● Core layers:
○ Dense layer: fully connected layer

from keras import layers

model.add(Dense(4, activation='softmax'))

● Convolutional layers:
○ Conv1D, Conv2D, Conv3D
○ UpSampling1D, UpSampling2D...

from keras import layers

model.add(Conv2D(filters=5, kernel_size=(3,3), activation='sigmoid'))

● Pooling Layers:
○ MaxPooling1D, MaxPooling2D, ...
○ AveragePooling1D, AveragePooling2D, ...

from keras import layers

model.add(MaxPooling2D(pool_size=(8,8)))

from keras.layers import activations
Activation layers in neural networks, takes a value that is passed through a
function which squashes the value into a range.

Softmax

● calculates the probabilities of each target
class over all possible target classes.

● is often used in the final layer of a neural
network-based classifier.

from keras.layers import activations

model.add(Activation('softmax'))

Sigmoid

● returns a real-valued output.
● is often used as the activation function for

artificial neurons.

model.add(Activation('sigmoid'))

from keras import losses
A loss function or cost function is a function that maps values of one or more
variables onto a real number intuitively representing some associated "cost". An
optimization problem seeks to minimize a loss function.

The loss function lets us quantify the quality of any particular set of parameters (weights W
and biases B). Some available loss functions:

● mean_squared_error
● mean_absolute_error
● ...
● categorical_crossentropy
● binary_crossentropy
● ...

from keras import optimizers
The goal of optimization is to find the set of parameters (W and B) that
minimizes the loss function.

Some available optimizer:

● SGD #Stochastic gradient descent optimizer.
● Adagrad #Adaptive gradient descent optimizer
● Adadelta #Adaptive learning rate optimizer
● Adam
● ...

from keras import applications
Keras Applications are deep learning models that are made available
alongside pre-trained weights. These models can be used for prediction,
feature extraction, and fine-tuning.

● Xception
● VGG16
● VGG19
● ResNet50
● InceptionV3

from keras.applications.vgg16 import VGG16

model = VGG16(weights='imagenet', include_top=True)

● InceptionResNetV2
● MobileNet
● DenseNet
● NASNet

from keras import data augmentation
Image Augmentation is the
process of taking images that are
already in a training dataset and
manipulating them to create
many altered versions of the
same image.

from keras import data augmentation
Generate batches of tensor image data with real-time data augmentation. The
data will be looped over (in batches) indefinitely.

datagen = ImageDataGenerator(
 featurewise_std_normalization=True,
 rotation_range=20,
 width_shift_range=0.2,
 height_shift_range=0.2,
 horizontal_flip=True)

datagen.fit(x_train)

for x, y in datagen.flow(x_train, y_train, batch_size=32):
 ...

from keras import wrap-up!
model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation(sigmoid))

opt = Adam(lr=0.01)
model.compile(loss='categorical_crossentropy',
 optimizer=opt,
 metrics=['accuracy'])

model.fit(x_train, y_train,
 epochs=20,
 batch_size=32)
score = model.evaluate(x_test, y_test, batch_size=32)

Exercise: handwritten digits

Exercise: handwritten digits

Exercise: handwritten digits

https://docs.google.com/file/d/1jPXFu8ZnDKYKVm9xgfbvOT7KPJrclSkD/preview

Exercise: handwritten digits

https://docs.google.com/file/d/1g6aiTbRX2J-QOAuu2Ehvvm98DpjeVi2e/preview

