Reference Manual

Volume I1
Advanced Programming Guide

Quicksilver Beta

March 22nd 2008

CLIPS Advanced Programming Guide
Quicksilver Beta March 22nd 2008

CLIPS Reference Manual

CONTENTS

License Information i
Preface iii
Acknowledgements vii
Section 1 - Introduction 1
1.1 Warning About Interfacing With CLIPS...........cooiiiiiiiii e 1

1.2 CA4 COMPAIDIIITY ..eeiiiieeiieiiiiiieiee et e e ee et e e e e e e e e atrreeeeeeeeesnansnaseeeeeeeesnnns 2

1.3 Threads and CONCUITENCYuuuvviiiieeeeeeriiiiiireeereeeeeseirtreeeeeeesessssnssreeeeeessssssssssreeeeessesnnnns 2

1.4 Garbage CoOllECIONcceiiiiiiiiiiiiieeeeeeeeeiit et e e e e e e ettt e eeeeeeeessaaanrreeeeeesesasnnssnseeaaessennnnes 3
Section 2 - Installing and Tailoring CLIPS 9
2.1 Installing CLIPS ..ottt e e ettt e e s et e e s ebaaeee e 9
2.1.1 Additional ConSIAETatiONS.......c.uvveeeiiiiieeeiiiiieee et ee e ettt e et e e s e e s e e e e 12

2.2 TaIloring CLIPSooiiiiiiieeeee ettt e e e e e e e aa e e e e e e e e e nnnaaaeeeeeeeenanns 13
Section 3 - Integrating CLIPS with External Functions 19
3.1 Declaring User-Defined External FUNCHIONS.........cocuueiiiiiiiiiiiiiiiiiiiiceceeece e 19

3.2 Passing Arguments from CLIPS to External Functions.............cccccoevvviiiiiiiieeeeeinee, 23
3.2.1 Determining the Number of Passed Arguments............cccceeeeeeeeericiiiiieeeeeeeennennne 23

3.2.2 Passing Symbols, Strings, Instance Names, Floats, and Integers...............ccccuuuee.e. 23

3.2.3 Passing Unknown Data TYPeS........cueeeeeeiiiiiiiiiiieeeieiiiiieee e e e eesiirnreeee e e e 25

3.2.4 Passing Multifield Valuesccoeeiiiiiiiiiiiiiiiiieee e 28

3.3 Returning Values To CLIPS From External Functions.............ccccceeveviiiiiiieeeeeeeeeienee, 30
3.3.1 Returning Symbols, Strings, and Instance Names............ccccceeeeeeeiviiiieeeeeeeeenennnnee 31

3.3.2 Returning Boolean ValUescceeiiiiiiiiiiiiiiieee e e e e e 32

3.3.3 Returning External Addresses and Instance Addresses........oovevvveviiiieeeeeeeeneennnee, 34

3.3.4 Returning Unknown Data TYPESccceeeeruiiiiiiieeeieiiiiiiieee e e e eesiineeeee e e e e 34

3.3.5 Returning Multifield ValUues...........coeeiieiiiiiiiiiiiieeeieiiieee e e 37

3.4 User-Defined Function EXample............ccoiiiiiiiiiiiiiiiiiieiiieniiieeeee e 40
Section 4 - Embedding CLIPS 43
4.1 Environment FUNCHIONS.ccoiiuiiiiiiiiiii ettt s e 43
4.1.1 AddCIearFUNCHIONcccoiiiiiiiiiiiiiiei ittt et e e 43

4.1.2 AddPeriodiCFUNCHIONcooutiiiiiiiiiiie ettt 44

4.1.3 AAdRESEIFUNCHIONeiiiiiiiiiiiiiiiiiee ettt ettt e e s ee e 44

414 BALCRSTAT ... e e 45

1.5 BIOAA .ttt st e e st e e 45

CLIPS Basic Programming Guide

CLIPS Reference Manual

ii

A100 BSAVE ..ttt ettt e e et e e e st e e st aeeeeaas 46
A 1T BUIL et e st e e 46
ALT.8 CLRAT ..ttt ettt e et e e ettt e e et e e e s bt e e et beeeeaan 46
AT EVAL ..ottt et e st e e 47
4.1.10 FUNCtIONCAILooiiiiiiiiiiiie ettt st 47
4.1.11 GetAUtOFIoatDIvIdend........ccceeiiieeiiiiiiiiieee e e e e aaaareee e 48
4.1.12 GetDynamicConstraintCheckingceeiieeeeiioiiiiiiieeeeeeeeiiireeee e e eivaeeeee e 48
4.1.13 GetSequenceOperatorRECOZNILIONeeerieiieiiiiiiiiiieeeeeeeeiiiieee e e e e eiiaeeeee e 48
4.1.14 GetStaticConstraintCheCKiNgccoiiuiiiiiiiiiiie et 49
4.1.15 InitialiZ€ENVIFONIMENTeviiiiiiiiiiieieiiiiee ettt s e e 49
AL IO LL0AA .ttt sttt e e et e e e 49
4.1.17 RemoveClearFUNCLIONccooiuiiiiiiiiiiiiiiiiiee ettt s e e 50
4.1.18 RemovePeriodiCFUNCHONccooiuiiiiiiiiiiiii et 50
4.1.19 RemoveReSEtFUNCHIONoiiiiiiiiiiiiiiiii et 50
4120 RS ...ttt ettt e e ettt e e et e e e st e e s et teeeeans 51
AL121 SAVE .ttt et e e ettt e e et e e e st e e s e atteeeeans 51
4.1.22 Set AutoFloatDIVIAENndcceeiiiiiiiiiiiiiiee e e e e e e e e e 51
4.1.23 SetDynamicConstraintCheckingceiieeieiioiiiiiiieieeeeeeiiiieeee e eeeivereeee e 52
4.1.24 SetSequenceOperator RECOZNItIONeviiieiieiiiiiiiiiieeeeeeeeiireee e eee e 52
4.1.25 SetStaticConstraintCheCKingcccuvviiiiiieeiieiiiieeeee e 53
4.2 Debugging FUNCHONS.ccciiiiiiiiiiiieee e eeeciiieeee e e e e e ettt e e e e e e e essaerareeeaeesesannnnsnnneeeaeens 53
4.2.1 DIIBDIEACHVEeeeiiiiiiiie ittt e st e e s eieeeee e 53
422 DIIbDIEOAT ... 53
4.2.3 DIIBDIEOMN ...ttt e s e e e 54
4.2.4 GetWatChItemccooiiiiiiiiiiiii e et 54
425 UNWALCH c. ettt e e e e e e e e e e 54
42060 WALCR .ot e st e e 55
4.3 Deftemplate FUNCHONS.......ccoieiiiiiiiiee et e e eesite e e e e e e e s e e e e e e e s s nnraaneaeaeens 55
4.3.1 DeftemplateModUleooviiiiiiiiiiiiiiiee e 55
4.3.2 DeftemplateSIOtAIIOWedValuesuuviiiiiiiiiiiiiiiiiieee e 55
4.3.3 DeftemplateSIotCardinality..........coeeeuviiiiiireeeeeiiieeeee e e ee e 56
4.3 4 DeftemplateSIotDefaultPoooooiiiiiiiiii 56
4.3.5 DeftemplateSlotDefaultValuecc..uvviiiiiiiiiiiiiiiie e 57
4.3.6 DeftemplateSIOtEXISPoviiiiiiiiie e 57
4.3.7 DeftemplateSIOtMUILIPcooiiiiiiiiii e 57
4.3.8 DeftemplateSIOtINAIMESevviiieeiieeiiiiiiiee e e e eeeeitee e e e e e e e e e e e e eenaeraneeeaeens 58
4.3.9 DeftemplateSIOtRANGEcoiiiiiiiiiii e 58
4.3.10 DeftemplateSIotSINGIEPcoeiiiiiiiiiiiiee e e 58
4.3.11 DeftemplateSIotTYPES. .ccc.uveiiiiiiiiiiee ittt st e e 59
4.3.12 FINdDeftemplatecccooiiiiiiiiiiiiieiee et 59
4.3.13 GetDeftemplatelLiSt.........uuuiiiiieeiieeiiiiiieee e e e e e e e e e e e ee e 60
4.3.14 GetDeftemplateNAMEcceiiiiiiiiiiiiiiiieeee e e e e e e e e e e e e eaarareeeeeees 60
4.3.15 GetDeftemplatePPFOIMcccooiiiiiiiiiieic e 60

Table of Contents

CLIPS Reference Manual

4.3.16 GetDeftemplateWatCh.........coiiiiiiiiiiiiiiiee e 61
4.3.17 GetNextDEftemMPIateoeeiiiiiiiiiiiiiiiiee e e e e e e e earareeeee e 61
4.3.18 IsDeftemplateDeletable.coiieiiiiiiiiiiieeeeeeiiieeeee e e e e 61
4.3.19 ListDeftemplates.ccoouuiiiiiiiiieeeiiee et 61
4.3.20 SetDeftemplateWatChccoiiiiiiiiiiiiiiiieee e 62
4321 UndeftempPlateccoeeeeiiiiiiiieee ettt et ee e e e e e et r e e e e e e e e aaaaneeeaeens 62
4.4 FACE FUNCHONSuuiiiiiiiiiiiii ettt aaaaaaaaaassaassasassassssnnsssssssnssssnsnsnsnnnnes 63
QAT ASSEIT ..eevieeeeeieeeeeeeeeeeeeeeeaeeeesaaeasaassaaasasssssasasssaastassssssasssassnsatansnntnnnnnnnnnnnnnnnnnnnnnnnnnnns 63
T NS N 11 5117 PRI 63
4.4.3 AssignFactSIotDEfaults.cccciiiiiiiiiiiiiieiee e 64
444 CreateFaCtviiiiiiiiiiiiiiiii ittt eaaaaeeaataaaaaaaaaaaaasaaaasassaaeaaaaaeaaranannnannnrnnnnnnas 65
4.4.5 DecremMentFaACtCOUNEuuuiiiiiiiiiiiiiieeiieieteieteaaseereaeeaeeeeeaeeeraaearaaae—e—aaa.—————————————— 67
4.4.6 FaCtDeftemMPIatecccoeuiiiiiiieeeeeeeiieeeee ettt e e e e e et e e e e e e e eaaaaeeeeae s 68
i A S Vet 1 5 4 1] 1 o FO SRR PPPR 68
44 8 FACHINAEX .. .uuiiiiiiiiiiiiiiiiiitiiittetetieeeeetaaeaaseasaaesaasaaasssssasssasssssssssssssssssssssssssnssnssnnnsnnnns 68
e) S Tot 1SR 68
44,10 FACUSIOtINAINICSuvvvviiiiiiiiiieiesiatstetstssessssassssssssssssssssssssssssssssssessssnssssesssnsnnssssnsnnnns 69
4.4.11 GetFactDUPIICAtIONeeiiiiiiiiiiiiiiiee ettt et e e st e e 69
4412 GEEFACTLIST ...uuuiiiiiiiiiiiiiiiiitietitieeteeesaeaasaaeaaesaessaasasssasssssssssssssssssssssssssssssnssnssnnnsnnnes 70
4.4.13 GetFactListChangedccoeiiiiiiiiiiiiiiieee e e e e e e ee e 70
4.4.14 GetFaCtPPEFOIIMuiiiiiiiiiiiiiiiiiiiiiii ittt aaeaaaaaaaeaaessasaesasasssassnssnnnnnnnes 71
4415 GEtFACESIOt ... euiiiiiiiiiiiiiiiittetitieeeeete et aeeeaeaaeaaaeaaaeaaaaaaasassssssssssnssssssssssssssnsssssnnnsnnnns 71
44,16 GEtNEXLFACE.uuiiiiiiiiiiiiiiiii ettt ae e aaaaaaeaasasaseaaeasasassssssssnsssssnsnsnnnes 71
4.4.17 GetNextFactINTempPlate........cccoiiieiiiiiiiieiee e e e e 72
4.4.18 IncrementFaCtCOUNL...........uuiiiiiiieiieiieee e e e e e e e e e e e e e e e 73
N N e T a | =Tt - TR 73
4.4.20 LoadFactSFIOMSIIINGuvviiiieiiiiiiiiiieee et e e e e e e eaaaaneee e 74
QA 2T PPFACEoiiiiiiiiiiieieieieeteette ettt aastaaasssa st aaassssssssssssssssssssssnsnnsnnnsnnnsnnnes 74
4422 PULFACESIOLeiiiiiiiiiiiiiiiiiiiteeitiatteeit et e et e aaasaaatasaaasasassssssssssasssssessssssssnssnssnnnsnnnns 74
VR B S v o] U 75
s N A< ST Te1 1 ST 75
4.4.25 SetFactDUPIICAtION.uuiiiiiiieeeeeeeiiieeee e e eeeetr e e e e e e e e e e e e e e e enasaaeeeeeeees 76
4.4.26 SetFactListChangedeeiiiiiiiiiiiiiiiiieee et e e e e e e e eraeeeee e 76
4.5 Deffacts FUNCHIONS.uuuuiiiiiiiiiii e aaaaaaaaaasaassassassssnssssnsnsnsnnnnes 77
4.5.1 DeffactSIMOAUIEouviiiiiiiiiiiiiiiiiiiiieiieee ittt avteaaaaeeeaaeaaeeasasassaaessssessssasaansnnssnnnnsnnes 77
4.5.2 FINADETTACESeevviiiiiiiiiiiiiiiiiiiitiiieeeititeeeeaeaaesaasaaasasaaasssasasssssssssssssssssssssssnsssssnnnsnnnns 77
4.5.3 GetDETTACISLLISE. .. uuuuiiiiiiiiiiiiiiiiiiietetitttetataeaeeaaeesaaaasaaasaaassassssssssesssssssssssnsnsnsssnnnssnnes 77
4.5.4 GetDeffaCtSINAIMEuuuiiiiiiiiiiiiiiiiiiiiiieiteieeaaeeeaaaaeeeaaaaaeaaaasaaaaaearaaaaaasaraaannsssnnnnnnnes 78
4.5.5 GetDeffaCtSPPEOIMI........coviiieieieieeeeeeeee e e e 78
4.5.6 GEtINEXDETTACESuvvviiiiiiiiiiiiiiiiiiiiitiieeeieeiateaaeaaaeaeaaaaaaaeeaaasaasaaessaaassesasannsssssnnnsnnnes 78
4.5.7 IsDeffactsDeletable.........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeiaaaeeeeeeaeeaaeaeaaaesaraaaaaaaaeaaaanaan. 79
4.5.8 LAStDETTACESuvviiiiiiiiiiiiiiiiiiieiitiieieettieeesaaeaeeaaasaaasassaasasassssssssssnssssssssssssssnssnssnnnsnnnns 79
4.5.9 UNAEITACES ...eiviiiiiiiiiiiiiiiitiiitiet ittt ataeeeaeaeeaaastaassassasaaasssssssssssssssssssssssssnssnsssnnsnnnes 79

CLIPS Basic Programming Guide iii

CLIPS Reference Manual

iv

4.6 DEfTUle FUNCHONSooivviiiiieeee et e e et e e e e e e e e e et e e eeeeeersaaraannes 80
4.6.1 DefruleHasBreakpointceeeiieeriiiiiiieeeeeeeesiieeeee e e e eeeinrreee e e e e e e eaaraneeeee s 80
4.6.2 DefTUIEMOAUIEeeeiiiiiiiiieiieee et 80
4.6.3 FINADEITULE ...oovvvveeeiiieieeeeeeee et e e 80
Y € (1 D i 11 () I3 T TR 80
4.6.5 GetDEfTUIENAIIE.......ccoiiiiieiiieee et e e e e e e e e e e e eeens 81
4.6.6 GetDefTUIEPPIOIMooovvviiiiec et 81
4.6.7 GetDefrule WatChACHVALIONSooovvviiiieeieeeeeeeeeiie et e e e e e e 81
4.6.8 GetDefruleWatChFITINGSuvvviiieeiieeiiiiieee e e e e e eeraeeeee e 82
4.6.9 GetIncrementalRESEL.........vvuuueiiiiiiiiieee e 82
4.6.10 GEtNEXIDEITULEeiiiiiiieeiieee e 82
4.6.11 ISDefruleDeletablecuuueeiiiiiiiiiiiiieeee e 83
4,612 LIStDEITULES ...vvvveeieeeeeeeeeeee et e e e e e e 83
T IR I\ 1767 o 1T TR 83
T O NS & 1] + LT 84
4.6.15 REMOVEBIEAKuuviiiiiiiiiiiiiec ettt e e e e 84
4.6.160 SEIBIEAKoovvvvieeieiiiiiieeeee et 84
4.6.17 SetDefrule WatChACHIVAIONSocvvviiieeieeeiiieeeiieee e e e 84
4.6.18 SetDefruleWatChFIrings.ccuiiiiiiiiiiiiieee e e e e 85
4.6.19 SetIncrementalRESELvuuueeiiiiiiiiiiiee e 85
4.6.20 SNOWBIEAKSuvueeiiiiiiiiiiiieee et e e et e e e e e e e 85
I B s a) i g 1 (PR 86

4.7 AZenda FUNCHONS.ciiiiiiiiiiiiiiiiiee e e e ettt e e e e e et e e e e e e e e s attareeeeeesesansnnssnaeaeeaens 86
4.77.1 AAARUNFUNCHONoiiiiiiiiiiiiec e 86
N <) 1 1« ISR 87
4.7.3 ClearFOCUSSTACKiiiiiiiiiiiiieec e 88
VAR B 1S3 [(AN w15 A 12215 1o) § WA 88
g T oo Yo | 1SRRI 88
4.77.6 GEtACHVAtIONNAINIEoovvviiiieeieeiiiieiiieee e ee et e e e e e e e e e eeeserreaa e eeeens 88
4.77.77 GetActivatioNPPEOIMI.......ouviiiiiiiiiiee e 89
4.77.8 GEtACHVAtIONSALIENCEvvvvvieeiieeiiiiiiieeee et e e et e e e e e e e e eeeeas 89
4.7.9 GetAgendaChangeduieiiiiiiiiiiiiee et 89
O (O @4 3o o1 TR 90
4711 GetFOCUSSTACKcoovviniiiiiiee et e e e e e etee e e s eraaeeeees 90
4.77.12 GetINEXEACHVALIONooiiviiiiiieeeeeeeeeeeeieee e eee e et et eeeeeeeeeraab e eeeeeserrearaeeeeens 90
4.77.13 GetSalienCeEValUAtIONuuueeiiiiiiiiiiiiieee e 91
T U € 1S N 1 < SRR 91
4715 LIStFOCUSSTACK ..uvviiiiiiiiiiiiieec et 91
A.T.16 POPFOCUS ...ttt ettt st e e s e e 91
4717 RefreShAZENAA ..coonieiiiiiiiiiie e e s 92
4.77.18 ReEMOVERUNFUNCHIONovvviiiiiiiiiiiiiiiiiee e e 92
4.7.19 ReOTAEIAZENAA ...uiiiiiiiiiiiie ettt ettt e e s e e 92
N O S 1+ DT 93

Table of Contents

CLIPS Reference Manual

4.7.21 SetACtiVAtIONSAIIENCEeeeeeiiiiiiieiiiittee ettt ettt e s e e 93
4.7.22 SetAgendaChanged............coeiiiiiiiiiiiiiiii e 93
4.7.23 SetSaliencCeEvaluation..........ccooiuiiiiiiiiiiiiiiiiiee e 94
AT .24 SEESITALEEYeveeeeeeieieee ettt ettt e ettt e e ettt e e ettt e e e s e abbeeeesaabbeeeesanaeeeeeaans 94
4.8 Defglobal FUNCHONS ...coouuiiiiiiiiiiiie ettt et e e e 95
4.8.1 DefglobalMOdUIE.........coooiiiiiiiiiiiee e 95
4.8.2 FINADEfZIODbal......ccooiiiiiiiiiii e 95
4.8.3 GetDefloballLiStoiiiiiiiiiiiiiie e 95
4.8.4 GetDefglobalNAMEcocoiiiiiiiiiiiiee et 96
4.8.5 GetDefglobalPPFOIM. ..cccoiiiiiiiiiiiiiee et 96
4.8.6 GetDefglobalValuecooouiiiiiiiiiii e 96
4.8.7 GetDefglobal ValueFOorm........ccooouiiiiiiiiii e 97
4.8.8 GetDefglobalWatChcooouiiiiiiiiii e 97
4.8.9 GetGlobalsChangedeieiiiiiiiiiiiiiee ettt e e 97
4.8.10 GetNextDefglobalccoouiiiiiiiii e 98
4.8.11 GetRESEIGIODALScceeeiiiiiiiiiee et e e e e e e e e e e e aaraaeeeeee s 98
4.8.12 IsDefglobalDeletableccouiiiiiiiiiiiiiiiiiiiee ettt 98
4.8.13 LiStDef@lObals ...cccouuviiiiiiiiiiieeee e 99
4.8.14 SetDefglobal Value.......cooueiiiiiiiiiiiieie e 99
4.8.15 SetDefglobal WatChi......coouuiiiiiiiiiie e 99
4.8.16 SetGlobalSChanged............ceuiiiiiieiiiiiiiiiiee et e e e e e e aaraeeee e 100
4.8.17 SetReSEtGIODALScoiiiiiiiiiiiiee e 100
4.8.18 ShoWDEfZIODaIS.eeiiiiiiiiiii e 100
4.8.19 UNAefglobalcoooiiiiiiiiiee ettt 101
4.9 Deffunction FUNCHONSccoiiiiiiiiiiiiee ettt 101
4.9.1 DeffunctionMOAUIE.ouiiiiiiiiiiiiiee e e e e e e 101
4.9.2 FINADETTUNCHON .ottt 101
4.9.3 GetDeffunctionLLiStc.coouiiiiiiiiiiee e 102
4.9.4 GetDeffunCtionNAMEc..uviiiiiiiiiei et 102
4.9.5 GetDeffunctionPPFOIMccoiiiiiiiiiiiiiice e 102
4.9.6 GetDeffunctionWatChooiiiiiiiii e 103
4.9.7 GetNextDeffUNCHON.uuiiiiiiieiieee e e e e e 103
4.9.8 IsDeffunctionDeletableoouuiiiiiiiiiiiiiii e 103
4.9.9 LiStDEfTUNCHIONSueeiiiieiiiiiee ettt s e e e e 104
4.9.10 SetDeffunctionWatCh.........coiiiiiiiiiiiiiie e 104
4.9. 11 UNeffUnCHION ...ceoiiiiiiieiiiiee ettt et e e et e e s eieeeee e 104
4.10 Defgeneric FUNCHONS.occiiiiiiiiee ettt e ettt e e e e e e e e e e e e e e e s nnaaaaneeeeeens 105
4.10.1 DefgeneriCMOdUIEooviiiiiiiiiiiiiieeee e e e e e e 105
4.10.2 FINADETZENETIC ..eeeeiieeiiiiiiiie ettt e e e e e e e e s easaareeaeeees 105
4.10.3 GetDef@eneriCLIST....ccc.eeiiiiiiiieeeeeciieeeee et e e e e e e e e e e e eeaee s 105
4.10.4 GetDefgeneriCINAIMEceiiiieiiiiiiiiiiieeeeeeeeeiie e ee e e e e e e etrreeeeeeeeesneaseraeeeaeens 106
4.10.5 GetDefgeneriCPPEFOIMcciiiiiiiiiieee e 106
4.10.6 GetDefgeneriCWatCh..........coiiiiiiiiiiiiiieee e ee e 106

CLIPS Basic Programming Guide v

CLIPS Reference Manual

vi

4.10.7 GEtNEXIDEIZENETICuuevvviiiiieeeeeeeeiiiiieee e e e e et ee e e e e e et eeeeeeesseesarreeeeeens 107
4.10.8 IsDefgenericDeletable..........ouiiiieiiiiiiiiieee e ee e 107
4.10.9 LiStDEfZENETICS ..uuttteeeiiiiiee ettt et e e e ee e 107
4.10.10 SetDefgeneriCWatChlcciiiiiiiiiiiiiiiee e e e 108
i O B B T (S5 001 1S o USRS 108
4.11 Defmethod FUNCHONSvvueiiiiiiiiiiiiieee e e e et e e e e e e eeeearannes 108
4.11.1 GetDefmethodDESCIIPLION ..cceeeeeeeiiiiiiiieeeeeeeeiiiieee e e e e eeeirre e e e e e e e e eerrrreeeeeees 108
4.11.2 GetDefMEthOALLIStcovviiiieeiiiiiiieeee e e 109
4.11.3 GetDefmethOdPPIFOIMI.......uoiiiiiiiiiieiieee e 109
4.11.4 GetDefmethOdWatChveviiiiiiiiiieec e 110
4.11.5 GetMethOARESIIICHONS ..vvvueeiiieiiiiiiiiieeeeeeeeeeeeeeee e e e e e eee et eeeeeeeerareeeeens 110
4.11.6 GetNexXtDefmethoduvveiiiiiiiiieee e 110
4.11.7 ISDefmethodDEIEtablecovieiiiiiiiiiieeeceeeeeeeee e 111
4.11.8 LIStDEMEtNOASeiiiiiieeiiieee e 111
4.11.9 SetDefmethOdWatCh........vveiiiiiiiiiieee e 111
4.11.10 UNAEfMETNOAvvvveeieiiiiieieieieieeteeeeeeee et aaaasaasaaeaaasassssesesasnsennnnes 112
4.12 DefClass FUNCHIONSuvuueeiiiiiiiiiiiiiiee et e e e e et e e e e e e e e e eaaa e eeeeeereaeraannes 112
A.12.1 BIOWSECIASSES vuuunniiiiiiiieiiiieeeeeeeeeeeeeee et e e e ettt e e e e e e e e et eeeeeeseesaraeeeeens 112
4.12.2 ClaSSADSIIACTP ..uuniiiiieeeeeieee e e e e e e e e e e e e e e e 113
4.12.3 CIaSSREACHIVEPiiiiiiiiiiiiec e 113
O B O T o) £ RO 113
4.12.5 ClaSSSUDCIASSESceiiiiiiiiiiieieee et e e et e e e e e e e e eaareeeeens 114
4.12.6 ClassSUPETCIASSES ...ceeuuveiiiiiieeeeeeeiiiiiiieee e e e e e e eeitrre e e e e e e esssaetrreeeaeeeeeananssrneeaaeens 114
4.12.7 DefClaSSIMOUIEcoovvviiiiiieeiceeeeeeeee e 115
4.12.8 DESCIIDECTIASS vvvnnniiiiiiiiiiiieeee e ettt e e et e e e e e e e et e e e e e e e eerarbeeeeens 115
4.12.9 FINADETCIASS ..vvvveeieeieieeetiee e e e e e e e e e e e 115
4.12.10 GetClassDefaultSIMOAEccoeeeiiviiiiiiieeeeeieieeeeee e 116
41211 GetDefCIaSSLLISE ...ccoiiiiviiiiieeeeeeeeeeeeeee e e e et e e e e e et ee e 116
4.12.12 GetDefClaSSINAINEovvvvieieiiiiiiiiiiieee et e e e e 116
4.12.13 GetDefClasSPPIOIMuvviiiiiiiiieiieieieeeeeeeeeaeeeeeeaeaaaaaa et aaeaaaaaesaeasesaansesnnnes 117
4.12.14 GetDefclassWatChINStANCEScvvvvueeeiiiiiiiiiiiiieeee e 117
4.12.15 GetDefclassSWatChSIOtS . .uuue i 117
4.12.16 GetNEXtDETCIASScoovvvviiiieeeeeeeeeeeeee et 117
4.12.17 ISDefClasSDEIEtable.uuuiiiiiiiiieiiiieeee e 118
41218 LISTDEICIASSES vuuueeiiiiiieeiiieeee ettt e et e e e e e e e et ee e 118
4.12.19 SetClassDefaultSIMOAEeeeiiiiiiiiiieeeeeeeeeeeeee e 118
4.12.20 SetDefclassWatChINStANCES..........cvvvviieeeieiiiiiiiiieeee et e 119
4.12.21 SetDefclasSWatCISIOLS ..uuuueiiiiiiiiiiiiieec e 119
4.12.22 SIOtATIOWEACTASSES ...ovvvvveneeieeiiiieiitiieeeeeeeee et e e e e e e et e e e e e e e eerareeeeens 119
4.12.23 SIOtAIIOWEAVAIUESovvvvieeeiiiiiiiiiiieee e e 120
4.12.24 S1otCardinalityceeeeeeuvieeeeiiiiieeeeiiiee e et e e et e e e estbeeeeeseraeeeeeerbeeeeesnraeeeean 120
4.12.25 SIotDefaultValuecoovviiiiiiiiiiieieee e 121
4.12.26 SIOtDITECTACCESSP ...ovveiiiieee e 121

Table of Contents

CLIPS Reference Manual

O B BN 1014 =< 1 4 SRR 121
A.12.28 SIOtFACELS .evvvvieieeeieieeeeee et e e et e e e e e e e e e e e 122
T RS BN (011 53§ 17:10) (=] SRR 122
O B T BN (010 &1 1) T SRR 122
41231 SIOtRANGZE ...vvvviiieeeeeeiiieeee e et e e e e e e et e e e e e e e e ssessraaeeeaeens 123
A.12.32 SIOESOUICES cevvvuneeeeiiieeeteee et e e ettt eee e e e e ettt e e e e e e e e esaa e eeeesseeearreeeeens 123
T G 16 B (1 137 o 1< PSR 123
4.12.34 SIOtWIILADIEP ..ot 124
A.12.35 SUDCIASSP ..ottt 124
4.12.36 SUPETCIASSP ...eeiiiiiiiieeeee et e e e e e e e eaaeees 124
O B I A U T [o] P2 TR 125
4.13 INStANCE FUNCHIONSovvviiiieeiieiiiiieeiieee et e e e et e e e e e e e e e e eeeeeeenearaannes 125
4.13.1 BinaryLoadInStances.cuiieeiieiiiiiiiieieeeeeeseiiiiieeee e e e eeeiarreeeeeeeeesnensanneeeaeens 125
4.13.2 BinarySavelnStancCesceuiiieiieiiiiiiiieieeeeeesiiieeee e e e e e et eeeeeeeeneaaavaeeeae s 125
4.13.3 CreateRAWINSIAIICEcvvvvieeeiiiiiiiiiiiieee e et e e e e e e et ee e 126
4.13.4 DecrementInstanCeCOUNTooovvvuiiiieeeieiiiiiiieee et e e e e e e e 126
4.13.5 DEIEtEINSTANCE ..uuveieiiiiiiiiiieeee ettt e e et e e e e e e e e et e e e 126
O IR NN D1 1ot € 11 (o SRR 127
4137 DITECIPULSION ..vvveiieiiieeeeee et e e e e e e e 127
4.13.8 FINAINSTANCE ..vvvvnniiiiiiiiiiiiieee ettt e e e e et e e e e e e e e rate e e e e 128
4.13.9 GetINStANCECIASSccooivveiiiiieieieeeeeeeeee e e e et e e e e e e e et e e e 128
4.13.10 GetINStANCEINAINECc.evveniiiiiiee et ee e e e e et e e e e eeeeareeeeerannens 129
4.13.11 GetInStanCePPROIIMcoiiiiiiiiee e 129
4.13.12 GetInstancesChanged..........ccooiiiiiiiiiiiiiiiiie e 129
4.13.13 GetNEXINSTANCE .vvuveiiiiiieiiiiiiee e e e et e e e e e e e erannens 130
4.13.14 GetNexXtInStanCeINCIAaSSiiiiiiiieiiiieeee e 130
4.13.15 GetNextInstanceInClassAndSubClasses...........uuveeeeiiiiiiiiiiiieeeeeeeeeeeeeee e 130
4.13.16 IncrementInstanCeCOUNTovvvuviiieeeieiiiiieieiieeee e e e e e e e 131
T B T A § 41 21 4 oL SRRSO 133
4.13.18 LoadINStanCES ...covvvneeiiiiieeeeiiee et et e e e e e e et e e e e e 133
4.13.19 LoadInstanceSFromStIingeveiiiiiiiiiiiiiiie e 134
4.13.20 MaAKEINSLANCEovvvnnieiiiiee ettt e et e e e e e e e e e e erann e 134
4.13.21 ReStOTEINSTANCES ..vuuiiiiiineiiiiieeeeeitee et e et e e et e e e e e e e et e e e eerannens 134
4.13.22 RestoreInstanceSFromSIIingGc..vvvviiiieeiiiiiiiiieeee e e 135
4.13.23 SAVEINSTATICES ...covvvnniiiiiiieeiiiiee et e e e e eee e e et e e et e e e e eaee e e s eareeeseranaens 135
O B N BN 1 L« RO 136
4.13.25 SetInstanceSChangedcceeeeeeeeiuiiiiiiieeeeeeeciieieee e e e e ee e e e e e e e esaraeeeee s 136
4.13.26 UNMAKEINSTANCEoovvviiviiieiieiiiieeiieee et e e e e 137
4.13.27 ValidINStanCEAAAIESSvvuuneeiiiiiiieiiiiieeee ettt et e e e e e e e e 137
4.14 Defmessage-handler FUNCHONSoooviiiiiiiiiiei e ee e 137
4.14.1 FindDefmessageHandlerccocuviiiiiiiiiiieiiee e 137
4.14.2 GetDefmessageHandIerLiStcc..uvviiiiieeiiiiiiiiiiieee e 138
4.14.3 GetDefmessageHandIerNameceeveeiiiiiiiiiiiiiieeeeeeriiieeee e eeeiveeeeee e 138

CLIPS Basic Programming Guide vii

CLIPS Reference Manual

4.14 .4 GetDefmessageHandlerPPFOrm ..ot 139
4.14.5 GetDefmessageHandlerType.ccoouiiiiiiiiiiiiiiece e 139
4.14.6 GetDefmessageHandlerWatChoooiiiiiiiiiiiiiiiiiiicecceee e 139
4.14.7 GetNextDefmessageHandIeruvviiieiiiiiiiiiiiiiieeee e 140
4.14.8 IsDefmessageHandlerDeletable.............ccoooiviiiiiiiiiiiieiiiiiiiieeee e 140
4.14.9 ListDefmessageHandIers.c..oeiiiiiiiiiiiiiicce e 140
41410 PreVIEWSENA ..ouuveiiiiiiiiiiiieee ettt e e et e e e e e e et e ee e 141
4.14.11 SetDefmessageHandlerWatchccoovviviiiiiiiiiiiiiiiiiieeeee e 141
4.14.12 UndefmessageHandIeroooeiiiiiiiiieiiieeieee et 142
4.15 Definstances FUNCHONSciiiiiiiiiiiiieee e e e e e e e e e veeabnnes 142
4.15.1 DefinstanCeSMOAUIEuueeiiiiiiiiiiiiiiiieee e 142
4.15.2 FINADEINSTANCEScoovvvviiiieeeieeeieeeeiieee e e et e e e e e e e et e e e 142
4.15.3 GetDefinStanCeSLLiStuuvueeeiiiiiiieiieeee e 143
4.15.4 GetDefinStanCeSINAINIEuueiiiiiiiiieiiiieee e e et e e e e e e e e e 143
4.15.5 GetDefinstanCeSPPEFOIMcoooiiiiiiiiiieecc e 143
4.15.6 GetNEeXtDEfINSTANCESovvvvieeiiiiiiiiiiee e e e e 144
4.15.7 IsDefinstanceSDEletablecoeiiiiiiiiiiieee e 144
4.15.8 LIStDETINSIANCESccoiiiiviiiiiieeeeeeeeeeeiteee et e et e e e e e e e et e e e 144
4.15.9 UNAEINSTANCES 1uvvviiiiiiiiiiiieeeeeeeeeeeeeeee et e e e e e e e e et eeeeeseeesarbeeeeens 145
4.16 Defmodule FUNCHONSuueeeiiiiiiiiiiiiiiee et e et e e e e e e e e e ereaaraannes 145
4.16.1 FINADEIMOAUIEcooiiiiiiiiieiecceeeeeeee e 145
4.16.2 GetCurreNtMOAUIEovvueiiiiiiiiiieeee et 145
4.16.3 GetDefMOAUIELISEcovvviiiieeeiieeeeeeeeeee e e e e e 146
4.16.4 GetDefMOAUIENAIEovvveieiiiiiiieiiee e e e e 146
4.16.5 GetDefMOAUIEPPIOIMI.uuiiiiiiiiiieeee e 146
4.16.6 GetNeXtDefMOAUIEcovveeiiiiiiieeeeee e 147
4.16.7 LIStDEMOAUIESccooiiviiiiiiiiiiieeeeeeeee e 147
4.16.8 SetCurrentMOAUIE.covvueiiiiiiiiiiee e e e 147
4.17 Embedded Application EXamplesccccuviiiiiieiiiiiiiiiiiiceee et 148
4.17.1 User-Defined FUNCHONSuuiiiiiiiiiiiiiiieeeeeeeeeeeeeeee et e e 148
4.17.2 Manipulating Objects and Calling CLIPS Functionscccccceeeeeeiviniivneennnnn. 150
Section 5 - Creating a CLIPS Run-time Program 153
5.1 Compiling the CONSIIUCESeeiiieiieiiiiiiiieeeeeeeeesitreeeeeeeeesstarreeeeeeeesssnesareeeaeeseannnns 153
Section 6 - Integrating CLIPS with Other Languages and Environments 157
6.1 INTTOAUCTIONovviiiieiieeii it e ettt e e e ettt e e e e e e e e e et eeeeesseesstaeeeeessennees 157
Section 7 - I/O Router System 159
T 1 INTTOAUCTIONeeviiiiiee e e ettt e e e ettt e e e e e e e e e et eeeeeseeesstaeeeeessennees 159
7.2 LogICal NAIMESeeiiiiiiiiiiiiiieee ettt e et e st e e s e e e 159
R I 0] 11 C RPN 161
T4 ROULET PIIOTITIES ©uvvveeiiiiiiiiieiiieeeeeeeeeeeeete e e e e e e e ettt e e eeeeeeeeaaaa e eeeeseeesaaaeeeeessennnes 162

viii

Table of Contents

CLIPS Reference Manual

7.5 Internal I/O FUNCHONS.uuuiiiiiiiiiiiiiieiieiitiieietiteieeeeeeaaeaeeaaaaaaeeaaassaasasaassasssenssnnsssnsnnnnes 163
TS T EXIMROULET oo 163
T.5.2 GEICROULET ...oooiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 164
753 PrintROULET ...cooiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee e 164
7.5.4 UNGEICROULETcciiiiiiiiiiiiiie ettt e e et e e e e e e e ennaanaeeeeeeeeennnes 164

7.6 Router Handling FUNCHONScciiiiiiiiiiiiiiieee ettt e e e e e e e e e e 165
7.6.1 ACtVAtEROULET.......coeiiiiiiiiieeeeee e 165
7.6.2 AAAROULET ...t 166
7.6.3 DeactivateROULETccooiiiiiiiiiee e 167
7.6.4 DeleteROULETccoiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 167

Section 8 - Memory Management 169

8.1 HOW CLIPS USES MEIMOTY ...cceeiiiiiiiiiiiiiiiiieeiiiiiiiieee e ettt e e e e e e e e e e 169

8.2 Standard Memory FUNCHONScooiuiiiiiiiiie et e e e ee e e e e e e 170
8.2.1 GetCONSEIVEMEIMOTY ...ceeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e 170
8.2.2 MEMREQUESES ...ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 170
823 MemMUSEd ..o 171
824 ReleaseMemccoooeiiiiiiiiie e 171
8.2.5 SetCONSEIVEMEIMOTY ..ceeveieeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e e 172
8.2.6 SetOutOfMEemOTYFUNCHONuuviiiiiiiieieeiiiiiceee e e e e e e e e e e e eenees 172

Section 9 - Environments 175

9.1 Creating, selecting, and destroying enViroNmMeENtsc.coccuveeeerriurreeerniiereeesnnieeeeesnnnns 175

9.2 Environment Companion FUNCHONS..........uiiiiiiiiiiiiiiie e 177

9.3 Standard Environment FUNCHONSuuuuuiuiuiiiiiiiiiiiiiieiiiiiiiiiaeeeneeeseseneseenaeennneennnne.——.. 178
9.3.1 AddEnvironmentCleanupFunctionccc.eeiiiiiiiiiiiniiiieiiniieeeeeeee e 178
9.3.2 AllocateEnvironmentData.................ooooviiiiiiiiiiiiiiiieeceeeeeeeeeeeeeeeeeeeeeeeeeeeeee 179
9.3.3 CreateEnvirOnmentcooviiiiiiiiiiiieceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 180
9.3.4 DeallocateEnvironmentDataoooooiiiiiiiiiiiiiiicieceeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 180
0.3.5 DeStroyENVITONIMENTccouuvtiiiiiiiiiee ittt e e st e e s eieeeee e 181
9.3.6 GetCurrentEnvironment................ooooiiiiiiiiiiiiiiiccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 181
9.3.7 GetEnvironmentByIndexc.ooiiiiiiiiiiiiiiiic e 181
9.3.8 GetEnvironmentDataooooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 182
9.3.9 GetEnvironmentIndeX ..o 182
9.3.10 SetCurrentEnvironmentcoooviiiiiiiiiiiiiieceeeeeeeeeeeeeeeeeeeeeeee e 182
9.3.11 SetCurrentEnvironmentByIndeXccooocuiiiiiiiiiiiiiiiiiiiceee e, 182

9.4 Environment Aware User-Defined FUNCtiONSuvvviiiiiiiiiiiiiiiiiiiiiieiiiiiiiinieenennnns 183

9.5 Allocating Environment Dataccoiiiiiiiiiiiiiiiiiiiccceiee e 184

9.6 Environment GlODAIS............uuuuiiuiiiiiiiiiiiiiiiiiiiiiiieieiiietireeeaseeaaaeeeeeeaeeeasaasaasaaeaaeanaananaaana 187

0.7 Other CONSIACTALIONSuvvvvuiiertiiiesiiiuseeaeeeressaeersesesseesereeesaeeaereaaeaaaaaaa.a..—a—.a.aannnnannn.——... 187

Section 10 — CLIPS Java Native Interface 189

10.1 CLIPSINI Dir€CtOry StIUCTUIE ...couvveiieiiiiiieeeeiiiteeeeeiitee e et ee sttt ee s eeeseieeeee s 189

CLIPS Basic Programming Guide ix

CLIPS Reference Manual

10.2 Running CLIPSJNI In Command Line Mode.............ccooiniiiiiiiniiiiiiiiieeeieee e 189
10.3 Running The Swing Demo Programs...........cooccuveiiiiiieiiiiiiieiiece e 190
10.3.1 Running the Demo Programs on Mac OS Xccccceiiiiiiiiiiiiiiiiiieee e 190

10.3.2 Running the Demo Programs on Windows XP........cccoccccciiiiiiiiiiiniieiiiniieeeen, 192

10.4 Creating The CLIPSINI JAR Filecccoiiiiiiiiiiiii e 194
10.5 Creating The CLIPSINI Native Libraryccccceiiiieiiiniiiiieiiieee e 195
10.5.1 Creating the Native Library on Mac OS Xccooiiiiiiiiiiiiiiieee e 195

10.5.2 Creating the Native Library on Windows XPcccooiiiiiiiiiiiiiiiiciieeeee 196

10.5.3 Creating the Native Library On Other SyStemsccccceeiniiieiiiniiieeeiniiieeenne 196

10.6 Recompiling The Swing Demo Programsccooouieiiiniiiiiiiniiieeeinieceeeeee e 196
10.7 Internationalizing The Swing Demo Programs............ccccoeuiiiiiniiiiiiiniiiceeiniieee e 196
Section 11 — Microsoft Windows Integration 199
11.1 Installing the SOUIce COdecccoiuiiiiiiiiiiiiiiiie et 199
11.2 Building the CLIPS Libraries and Executablescccooouiiiiiniiiiiiiiiiiiieiiieeeee 199
11.2.1 Building the Projects Using Microsoft Visual C++ Express 2008...................... 200

11.2.2 Building the Projects Using Borland Turbo C++ 2006cccccceevvvviininrrennnnn.. 200

11.3 Running the Library EXamplesccooooiiiiiiiiiiiiiiiiiieeee e 201
11.3.1 Running the ExplicitDLLExample Projectccccccevvviiiciiiieeeeeeeeeeiieeeeeeee. 201

11.3.2 Running the ImplicitDLLExample Projectccccceevvvieiiiiiiiieeeeeeeiiieeeeenen. 202

11.3.3 Running the SimpleLibExample Project..........cccccccveeeeiiiiiiiiiiiiieee e 202

11.3.4 Running the WrappedDLLExample Projectcccccevevviiiiiiieeieeeeieiiiieeeeenn. 202
Appendix A - Language Integration Listings 203
Appendix B - I/O Router Examples 205
B.1 DIibbIe SYSIEIM ...vviiiiiiiiieiiiiiiieee ettt e et ee e e e e e e et eeeeeeeesnnsareaeeeeeeennns 205
B.2 Better Dribble SYSteIM........uuuiiiiiiieiieiiiiiiiieeee e e et e e e e e e et ee e e e e e e e s aesareeeaeeeeennnns 207
B.3 BatCh SyStEMeeiiiiiiiiiee e e e 208
B.4 Simple WINAOW SYStEIM.......uuviiiiiiiiiiiiiiiiiiieee e e eeeeiiieete e e e e e esetarreeeeeeeessnesareeeeeeeeennnns 210
Appendix C - Update Release Notes 215
C.T VETSION 6.30 .ttt et e e et e e e et e e e st e e e s eabbeeeeeeaaeee 215
C.2 VETSION 6.24 ..ottt e e ettt e e st e e e st e e e 215
C.3VETSION 6.23 .ottt e ettt e e ettt e e st eeeseabteee e e e 216
CA VETSION 6.22 .ottt e ettt e e et e e e st e e e s eabbaeee e 217
C.5 VETSION 6.21 .ottt et e e st e e st e e e 218
C.0 VETSION 6.2 ..ottt ettt et e e sttt e e st e e e s eabtaeeeeeaaee 218
C.7 VETSION 6.1 ..ottt e e et e e st e e e st ee e e 219
C.8 VETSION 6.05 ...ttt et e e et e e st e e e s ee e e 220
Index 221

X Table of Contents

CLIPS Reference Manual

License Information

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or
sell copies of the Software, and to permit persons to whom the Software is furnished to do so.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL
THE AUTHORS BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

CLIPS is released as public domain software and as such you are under no obligation to pay for
its use. However, if you derive commercial or monetary benefit from use of the software or just
want to show support, please consider making a voluntary payment based on the worth of the
software to you as compensation for the time and effort required to develop and maintain CLIPS.
Payments can be made online at http://order.kagi.com/?JKT.

CLIPS Advanced Programming Guide i

CLIPS Reference Manual

Preface

The History of CLIPS

The origins of the C Language Integrated Production System (CLIPS) date back to 1984 at
NASA’s Johnson Space Center. At this time, the Artificial Intelligence Section (now the
Software Technology Branch) had developed over a dozen prototype expert systems applications
using state-of-the-art hardware and software. However, despite extensive demonstrations of the
potential of expert systems, few of these applications were put into regular use. This failure to
provide expert systems technology within NASA’s operational computing constraints could
largely be traced to the use of LISP as the base language for nearly all expert system software
tools at that time. In particular, three problems hindered the use of LISP based expert system
tools within NASA: the low availability of LISP on a wide variety of conventional computers,
the high cost of state-of-the-art LISP tools and hardware, and the poor integration of LISP with
other languages (making embedded applications difficult).

The Artificial Intelligence Section felt that the use of a conventional language, such as C, would
eliminate most of these problems, and initially looked to the expert system tool vendors to
provide an expert system tool written using a conventional language. Although a number of tool
vendors started converting their tools to run in C, the cost of each tool was still very high, most
were restricted to a small variety of computers, and the projected availability times were
discouraging. To meet all of its needs in a timely and cost effective manner, it became evident
that the Artificial Intelligence Section would have to develop its own C based expert system tool.

The prototype version of CLIPS was developed in the spring of 1985 in a little over two months.
Particular attention was given to making the tool compatible with expert systems under
development at that time by the Artificial Intelligence Section. Thus, the syntax of CLIPS was
made to very closely resemble the syntax of a subset of the ART expert system tool developed
by Inference Corporation. Although originally modeled from ART, CLIPS was developed
entirely without assistance from Inference or access to the ART source code.

The original intent for CLIPS was to gain useful insight and knowledge about the construction of
expert system tools and to lay the groundwork for the construction of a replacement tool for the
commercial tools currently being used. Version 1.0 demonstrated the feasibility of the project
concept. After additional development, it became apparent that CLIPS would be a low cost
expert system tool ideal for the purposes of training. Another year of development and internal
use went into CLIPS improving its portability, performance, functionality, and supporting
documentation. Version 3.0 of CLIPS was made available to groups outside of NASA in the
summer of 1986.

Further enhancements transformed CLIPS from a training tool into a tool useful for the
development and delivery of expert systems as well. Versions 4.0 and 4.1 of CLIPS, released

CLIPS Advanced Programming Guide iii

CLIPS Reference Manual

respectively in the summer and fall of 1987, featured greatly improved performance, external
language integration, and delivery capabilities. Version 4.2 of CLIPS, released in the summer of
1988, was a complete rewrite of CLIPS for code modularity. Also included with this release
were an architecture manual providing a detailed description of the CLIPS software architecture
and a utility program for aiding in the verification and validation of rule-based programs.
Version 4.3 of CLIPS, released in the summer of 1989, added still more functionality.

Originally, the primary representation methodology in CLIPS was a forward chaining rule lan-
guage based on the Rete algorithm (hence the Production System part of the CLIPS acronym).
Version 5.0 of CLIPS, released in the spring of 1991, introduced two new programming
paradigms: procedural programming (as found in languages such as C and Ada) and
object-oriented programming (as found in languages such as the Common Lisp Object System
and Smalltalk). The object-oriented programming language provided within CLIPS is called the
CLIPS Object-Oriented Language (COOL). Version 5.1 of CLIPS, released in the fall of 1991,
was primarily a software maintenance upgrade required to support the newly developed and/or
enhanced X Window, MS-DOS, and Macintosh interfaces. Version 6.0 of CLIPS, released in
1993, provided support for the development of modular programs and tight integration between
the object-oriented and rule-based programming capabilities of CLIPS. Version 6.1 of CLIPS,
released in 1998, removed support for older non-ANSI C Compilers and added support for C++
compilers. Commands to profile the time spent in constructs and user-defined functions were
also added. Version 6.2 of CLIPS, released in 2002, added support for multiple environments
into which programs can be loaded and improved Windows XP and MacOS development
interfaces.

Because of its portability, extensibility, capabilities, and low cost, CLIPS has received
widespread acceptance throughout the government, industry, and academia. The development of
CLIPS has helped to improve the ability to deliver expert system technology throughout the
public and private sectors for a wide range of applications and diverse computing environments.
CLIPS is being used by numerous users throughout the public and private community including:
all NASA sites and branches of the military, numerous federal bureaus, government contractors,
universities, and many private companies.

CLIPS is now maintained as public domain software by the main program authors who no longer
work for NASA. See appendix A of the Basic Programming Guide for information on obtaining
CLIPS and support.

CLIPS Version 6.3

Version 6.3 of CLIPS contains two major enhancements. First, rule performance has been
improved particularly in situations with large numbers of facts/instances or partial matches.
Second, support for integration with languages such as Java and C++ has been improved. For a
detailed listing of differences between the 6.x releases of CLIPS, refer to appendix B of the Basic
Programming Guide and appendix C of the Advanced Programming Guide.

iv Preface

CLIPS Reference Manual

CLIPS Documentation
Two documents are provided with CLIPS.
* The CLIPS Reference Manual which is split into the following parts:

* Volume I - The Basic Programming Guide, which provides the definitive description of
CLIPS syntax and examples of usage.

e Volume II - The Advanced Programming Guide, which provides detailed discussions of
the more sophisticated features in CLIPS and is intended for people with extensive
programming experience who are using CLIPS for advanced applications.

* Volume III - The Interfaces Guide, which provides information on machine-specific
interfaces.

e The CLIPS User’s Guide which provides an introduction to CLIPS rule-based and

object-oriented programming and is intended for people with little or no expert system
experience.

CLIPS Advanced Programming Guide v

CLIPS Reference Manual

Acknowledgements

As with any large project, CLIPS is the result of the efforts of numerous people. The primary
contributors have been: Robert Savely, who conceived the project and provided overall direction
and support; Chris Culbert, who managed the project and wrote the original CLIPS Reference
Manual; Gary Riley, who designed and developed the rule-based portion of CLIPS, co-authored
the CLIPS Reference Manual, and developed the Macintosh interface for CLIPS; Brian Donnell,
who designed and developed the CLIPS Object Oriented Language (COOL) and co-authored the
CLIPS Reference Manual; Bebe Ly, who developed the X Window interface for CLIPS; Chris
Ortiz, who developed the original Windows 95 interface for CLIPS; Dr. Joseph Giarratano of the
University of Houston-Clear Lake, who wrote the CLIPS User’s Guide; and Frank Lopez, who
designed and developed CLIPS version 1.0 and wrote the CLIPS 1.0 User's Guide.

Many other individuals contributed to the design, development, review, and general support of
CLIPS, including: Jack Aldridge, Carla Colangelo, Paul Baffes, Ann Baker, Stephen
Baudendistel, Les Berke, Tom Blinn, Marlon Boarnet, Dan Bochsler, Bob Brown, Barry
Cameron, Tim Cleghorn, Major Paul Condit, Major Steve Cross, Andy Cunningham, Dan
Danley, Mark Engelberg, Kirt Fields, Ken Freeman, Kevin Greiner, Ervin Grice, Sharon Hecht,
Patti Herrick, Mark Hoffman, Grace Hua, Gordon Johnson, Phillip Johnston, Sam Juliano, Ed
Lineberry, Bowen Loftin, Linda Martin, Daniel McCoy, Terry McGregor, Becky McGuire, Scott
Meadows, C. J. Melebeck, Paul Mitchell, Steve Mueller, Bill Paseman, Cynthia Rathjen, Eric
Raymond, Reza Razavipour, Marsha Renals, Monica Rua, Tim Saito, Michael Sullivan, Gregg
Swietek, Eric Taylor, James Villarreal, Lui Wang, Bob Way, Jim Wescott, Charlie Wheeler, and
Wes White.

CLIPS Advanced Programming Guide vii

CLIPS Reference Manual

Section 1 - Introduction

This manual is the Advanced Programming Guide for CLIPS. It describes the Application
Programmer Interface (API) that allows users to integrate their programs with CLIPS and use
some of the more sophisticated features of CLIPS. It is written with the assumption that the user
has a complete understanding of the basic features of CLIPS and a background in programming.
Many sections will not be understandable without a working knowledge of C. Knowledge of
other languages also may be helpful. The information presented here will require some
experience to understand, but every effort has been made to implement capabilities in a simple
manner consistent with the portability and efficiency goals of CLIPS.

Section 2 describes how to install and tailor CLIPS to meet specific needs. Section 3 of this
document describes how to add user-defined functions to a CLIPS expert system. Section 4
describes how to embed a CLIPS application in a C program. Section 5 describes how to create
run-time CLIPS programs. Section 6 discusses integrating CLIPS with languages other than C.
Section 7 details the input/ output (I/O) router system used by CLIPS and how the user can
define his own I/O routers. Section 8 discusses CLIPS memory management. Section 9 discusses
environments which allow multiple expert systems to be loaded and run concurrently.

Not all of the features documented here will be of use to all users. Users should pick those areas
which are of specific use to them. It is advised that users complete the Basic Programming
Guide before reading this manual.

1.1 WARNING ABOUT INTERFACING WITH CLIPS

CLIPS provides numerous methods for integrating with user-defined code. As with any powerful
capability, some care must be taken when using these features. By providing users with the
ability to access internal information, we have also opened the door to the possibility of users
corrupting or destroying data that CLIPS needs to work properly. Users are advised to be careful
when dealing with data structures or strings which are returned from calls to CLIPS functions.
Generally, these data structures represent useful information to CLIPS and should not be
modified or changed in any way except as described in this manual. A good rule of thumb is to
duplicate in user-defined storage space every piece of information taken out of or passed into
CLIPS. In particular, do not store pointers to strings returned by CLIPS as part of a permanent
data structure. When CLIPS performs garbage collection on symbols and strings, the pointer
reference to the string may be rendered invalid. To store a permanent reference to a string,
allocate storage for a copy of the string and then copy the string returned by CLIPS to the copy’s
storage area.

CLIPS Advanced Programming Guide 1

CLIPS Reference Manual

1.2 C++ COMPATIBILITY

The CLIPS source code can now be compiled using either an ANSI C or C++ compiler.
Minimally, non-ANSI C compilers must support full ANSI style function prototypes and the
void data type in order to compile CLIPS. If you want to make CLIPS API calls from a C++
program, it is usually easier to do the integration by compiling the CLIPS source files as C++
files. This removes the need to make an extern "C" declaration in your C++ program for the
CLIPS APIs. Some programming environments allow you to specify the whether a file should be
compiled as C or C++ code based on the file extension. Other environments allow you to
explicitly specify which compiler to use regardless of the extension (e.g. in gcc the option “-x
c++” will compile .c files as C++ files). In some environments, the same compiler is used to
compile both C and C++ programs and the compiler uses the file extension to determine whether
the file should be compiled as a C or C++ program. In this situation, changing the .c extension of
the CLIPS source files to .cpp usually allows the source to be compiled as a C++ program.

1.3 THREADS AND CONCURRENCY

The CLIPS architecture is designed to support multiple expert systems running concurrently
using a single CLIPS application engine. The environment API, described in section 9, is used to
implement this functionality. In order to use multiple environments, CLIPS must be embedded
within your program either by linking the CLIPS source code with your program or using a
shared library such as a Dynamic Link Library (DLL). The standard command line version of
CLIPS as well as the operating system specific development interfaces for Windows, Mac OS X,
and X Windows provide access to a single environment. It is not possible to load and run
multiple expert systems using these versions of CLIPS.

If multiple environments are created, a single thread of execution can be used to run each expert
system. In this situation, one environment must finish executing before control can be passed to
another environment. The user explicitly determines which environment should be executed by
using the environment API to set the current environment. Once execution of an API call for that
environment begins, the user must wait for completion of the API call before passing control to
another environment.

Most likely, this type of execution control will be used when you need to make several expert
systems available to a single end user, but don’t want to go through the process of clearing the
current expert system from a single environment, loading another expert system into it, and then
resetting the environment. Instead, each expert system is loaded into its own environment, so to
change expert systems it is only necessary to switch to the new environment and reset it.

A less likely scenario for this type of execution control is to simulate multiple expert systems

running concurrently. In this scenario, each environment is allowed to execute a number of rules
before control is switched to the next environment.

2 Section 1 - Introduction

CLIPS Reference Manual

Instead of simulating multiple expert systems running concurrently, using the multi-threading
capabilities native to the operating system on which CLIPS is running allows concurrent
execution to occur efficiently and prevents one environment from blocking the execution of
another. In this scenario, each environment uses a single thread of execution. Since each
environment maintains its own set of data structures, it is safe to run a separate thread on each
environment. This use of environments is most likely for a shared library where it is desirable to
have a single CLIPS engine running that is shared by multiple applications.

Warning

Each environment can have at most one thread of execution. The CLIPS internal data structures
can become corrupted if two CLIPS API calls are executing at the same time for a single
environment. For example, you can’t have one thread executing rules and another thread
asserting facts for the same environment without some synchronization between the two threads.

1.4 GARBAGE COLLECTION

Garbage collection is a process used by CLIPS to manage memory that most users do not need to
understand to use CLIPS. In some cases, when users embed CLIPS within their applications, a
knowledge of the garbage collection process is necessary to understand when values returned by
CLIPS to an embedding program can be safely accessed.

As a CLIPS program executes, it allocates and deallocates numerous types of data structures. In
many cases, some data structures cannot be immediately deallocated because either outstanding
references to the data structure still exist or the need to deallocate the data structure is
questionable. Data which has been marked for later deallocation is referred to as garbage. The
process of deallocating this garbage is referred to as garbage collection. CLIPS only performs
garbage collection when it can determine that it is safe to deallocate the data structures marked
for deallocation.

The following example illustrates several important concepts:

CLIPS>
(defrule gc-example

?f <- (factoid ?7g)

=>

(retract ?f)

(printout t "The value is " ?g crlf))
CLIPS> (assert (factoid (gensym*)))
<Fact-0>
CLIPS> (run)

The value is genl
CLIPS>

CLIPS Advanced Programming Guide 3

CLIPS Reference Manual

First the gc-example rule is entered at the command prompt. The RHS of this rule retracts the
factoid fact bound on the LHS of the rule. It then prints out one of the field values contained in
this fact. The next command creates a factoid fact that activates the rule. This fact contains the
unique symbol genl returned by the gensym™* function. The genl symbol is initially considered
to be garbage when created since nothing refers to it, but when it is asserted as part of the factoid
fact it’s no longer considered as garbage and isn’t subject to garbage collection.

When the run command is issued, the gc-example rule fires. The first action of the rule retracts
the factoid fact bound on the LHS of the rule. The fact is now considered to be garbage. The
symbol genl contained in the fact is also marked as being garbage since the fact contains the
only reference to it. The next action in the rule prints the value from the factoid fact bound to the
variable ?g. Since CLIPS directly retrieves this value from the fact, if the fact and symbols
associated with it had been immediately deallocated when the retract command was executed,
these values would not be available when the printout command is executed.

Since garbage created by the RHS actions may be accessed by other RHS actions, CLIPS does
not initiate garbage collection for garbage created by RHS actions until the rule has finished
firing. In this example, once the gc-example rule has finished firing, since there are no
outstanding references to the factoid fact or the genl symbol the data structures associated with
these can be deallocated.

The garbage collection behavior would be changed by adding an assert command to the rule
RHS:

(defrule gc-example
?f <- (factoid ?7g)
=>
(retract ?f)
(printout t "The value is " ?g crlf)
(assert (info 7g)))

In this case, the factoid fact and the genl symbol would be marked as garbage as a result of the
retract command, but the assertion of the info fact with the genl symbol removes the symbol
from consideration for garbage collection. Once the rule finishes executing, however, the other
data structures associated with the fact are still subject to garbage collection.

This next example is a simpler example of garbage collection that will be used to compare and
contrast garbage collection triggered by the command prompt to that triggered by an embedding
application.

CLIPS> (gensym*)
gen2
CLIPS>

4 Section 1 - Introduction

CLIPS Reference Manual

The gensym* function entered at the command prompt returns the unique symbol gen2. This
newly created symbol is assumed to be garbage until an outstanding reference to the symbol is
established. In this case, once the return value has been displayed and control returned to the
command prompt, garbage collection is initiated as part of the command prompt loop and the
data structures associated with the symbol can be deallocated,

The following main routine is an equivalent embedded program that makes a call to the gensym*
function.

main()

{
DATA_OBJECT rtn;

InitializeEnvironment();

FunctionCall("gensym*" NULL,&rtn);
3

The key difference between this example and the command loop example is that the gen2
symbol returned to the command loop can be garbage collected after it is printed, but the value
returned to the embedding main program can not be safely garbage collected until the embedding
program has finished using it.

If the values returned to an embedding program are never garbage collected, continuous
execution would result in a program eventually running out of memory. CLIPS addresses this
issue by automatically invoking garbage collection for the following embedded functions:
Assert, AssertString, Clear, Deletelnstance, DirectPutSlot, FunctionCall, Makelnstance,
Reset, Send, SetDefglobalValue, Undefclass, Undeffacts, Undeffunction, Undefgeneric,
Undefglobal, Undefinstances, = Undefmethod, Undefrule, Undeftemplate, and
Unmakelnstance. Calling one of these functions will not garbage collect any data returned from
that call, but it could garbage collect data returned from prior calls.

The following main routine is an example of how garbage collection affects whether you can
safely access data returned by CLIPS.

main()

{
DATA_OBJECT rtn;
char *strl, *str2;

InitializeEnvironment();

FunctionCall("gensym*" /NULL,&rtn);
strl = DOToString(rtn);

/* Safe to refer to strl here. */

FunctionCall("gensym*" NULL,&rtn);
str2z = DOToString(rtn);

CLIPS Advanced Programming Guide 5

CLIPS Reference Manual

/* Not safe to refer to strl here. */

}

The first call to FunctionCall could trigger garbage collection, but since no data has been
returned yet to the embedding program this does not cause any problems. The next call to
DOToString stores the string value in the DATA_OBIJECT rtn in the strl variable. At this point,
strl can be safely referenced.

The second call to FunctionCall could also trigger garbage collection. In this case, however, the
value returned by the prior call to FunctionCall could be garbage collected as a result. Therefore
it is not safe to reference the value stored in str/ after this point. This is a problem if, for
example, you want to compare the value of str/ to str2.

There are two ways to work around this problem. The first is to create your own copies of strl
and str2. This is somewhat inconvenient since you have to determine the size of the strings,
allocate space for them, copy them, and then delete them once they’re no longer needed. The
second way is more convenient. CLIPS provides two functions, IncrementGCLocks and
DecrementGCLocks, which allow you to temporarily disable garbage collection. Each call to
IncrementGCLocks places a lock on the garbage collector. Each call to DecrementGCLocks
removes a lock from the garbage collector. If the garbage collector has one or more locks place
on it, it is disabled and garbage collection does not occur.

void IncrementGCLocks();
void DecrementGCLocks();

The use of these functions is demonstrated in the following revised main routine:

main()

{
DATA_OBJECT rtn;
char *strl, *str2;

InitializeEnvironment();
IncrementGCLocks();

FunctionCall("gensym*" NULL,&rtn);
strl = DOToString(rtn);

/* Safe to refer to strl here. */

FunctionCall("gensym*" NULL,&rtn);
str2z = DOToString(rtn);

/* Safe to refer to strl here. */

DecrementGCLocks();

6 Section 1 - Introduction

CLIPS Reference Manual

In this case, the second call to FunctionCall can’t garbage collect the string referenced by stri,
so it is safe to refer to this string after the call. The same effect could also be achieved by moving
the IncrementGCLocks call after the first call to FunctionCall.

The garbage collector should not be disabled indiscriminately as shown in the following
example:

main()

{

InitializeEnvironment();
IncrementGCLocks();

Load("mab.clp");
Reset();
Run(-1);

DecrementGCLocks();
}

First, while calling Reset could trigger garbage collection on values returned to the embedding
program, in this case there are no such values. Second, while Load and Run won’t trigger
garbage collection on values returned to the embedding program, they do trigger garbage
collection to remove garbage generated during their execution. Garbage collection should only
be disabled for brief periods of time. The primary execution of your program should occur with
garbage collection enabled.

It is only necessary to consider the effects of garbage collection when an embedding program is
retrieving data from CLIPS. When calls to a user function by CLIPS are made (such as to a
user-defined function), the possible consequences of garbage collection do not have to be
considered. In this case, garbage collection will not be triggered for any data retrieved by the
user function until after the user function has exited.

CLIPS Advanced Programming Guide 7

CLIPS Reference Manual

Section 2 - Installing and Tailoring CLIPS

This section describes how to install and tailor CLIPS to meet specific needs.

2.1 INSTALLING CLIPS

CLIPS executables for DOS, Windows XP, and MacOS are available for download from the
internet. See Appendix A in the Basic Programming Guide for details. To tailor CLIPS or to
install it on another machine, the user must port the source code and create a new executable
version.

Testing of CLIPS 6.30 included the following hardware/software environments:

e Dell Dimension 8250 running Windows XP Professional with Microsoft Visual C++
Express 2008 and Borland Turbo C++ 2006.

* Apple iMac running MacOS X 10.5 using Xcode 3.0.

CLIPS was designed specifically for portability and has been installed on numerous other
computers without making modifications to the source code. It should run on any system which
supports an ANSI C or C++ compiler. Some compilers have extended syntax to support a
particular platform which will add additional reserved words to the C language. In the event that
this extended syntax conflicts with the CLIPS source, the user will have to edit the code. This
usually only involves a global search-and-replace of the particular reserved word. The following
steps describe how to create a new executable version of CLIPS:

1) Load the source code onto the user's system
The following C source files are necessary to set up the basic CLIPS system:

agenda.h dffnxpsr.h globlpsr.h prccode.h
analysis.h dfinsbin.h immthpsr.h prcdrfun.h
argacces.h dfinscmp.h incrrset.h prcdrpsr.h
bload.h drive.h inherpsr.h prdctfun.h
bmathfun.h ed.h inscom.h prntutil.h
bsave.h emathfun.h insfile.h proflfun.h
classcom.h engine.h insfun.h reorder.h
classexm.h envrnmnt.h insmngr.h reteutil.h
classfun.h evaluatn.h insmoddp.h retract.h
classinf.h expressn.h insmult.h router.h
classini.h exprnbin.h inspsr.h rulebin.h
classpsr.h exprnops.h insquery.h rulebld.h
clips.h exprnpsr.h insqypsr.h rulebsc.h

CLIPS Advanced Programming Guide

CLIPS Reference Manual

10

clsltpsr.h
cmptblty.h
commline.h
conscomp.h
constant.h
constrct.h
constrnt.h
crstrtgy.h
cstrcbin.h
cstrccmp.h
cstrccom.h
cstrepsr.h
cstrnbin.h
cstrnchk.h
cstrncmp.h
cstrnops.h
cstrnpsr.h
cstrnutl.h
default.h
defins.h
developr.h
dffctbin.h
dffctbsc.h
dffctcmp.h
dffctdef.h
dffctpsr.h
dffnxbin.h
dffnxcmp.h
dffnxexe.h
dffnxfun.h

agenda.c
analysis.c
argacces.c
bload.c
bmathfun.c
bsave.c
classcom.c
classexm.c
classfun.c
classinf.c
classini.c
classpsr.c

extnfunc.h
factbin.h
factbld.h
factcmp.h
factcom.h
factfun.h
factgen.h
facthsh.h
factlhs.h
factmch.h
factmngr.h
factgpsr.h
factqury.h
factprt.h
factrete.h
factrhs.h
filecom.h
filertr.h
generate.h
genrcbin.h
genrccmp.h
genrccom.h
genrcexe.h
genrcfun.h
genrcpsr.h
globlbin.h
globlbsc.h
globlcmp.h
globlcom.h
globldef.h

edbasic.c
edmain.c
edmisc.c
edstruct.c
edterm.c
emathfun.c
engine.c
envrnmnt.c
evaluatn.c
expressn.c
exprnbin.c
exprnops.c

iofun.h
lgcldpnd.h
match.h
memalloc.h
miscfun.h
modulbin.h
modulbsc.h
modulcmp.h
moduldef.h
modulpsr.h
modulutl.h
msgcom.h
msgfun.h
msgpass.h
msgpsr.h
multifld.h
multifun.h
network.h
objbin.h
objcmp.h
object.h
objrtbin.h
objrtbld.h
objrtcmp.h
objrtfnx.h
objrtgen.h
objrtmch.h
parsefun.h
pattern.h
pprint.h

globlpsr.c
immthpsr.c
incrrset.c
inherpsr.c
inscom.c
insfile.c
insfun.c
insmngr.c
insmoddp.c
insmult.c
inspsr.c
insquery.c

Section 2 - Installing and Tailoring CLIPS

rulecmp.h
rulecom.h
rulecstr.h
ruledef.h
ruledlt.h
rulelhs.h
rulepsr.h
scanner.h
setup.h
sortfun.h
strngfun.h
strngrtr.h
symblbin.h
symblcmp.h
symbol.h
sysdep.h
textpro.h
tmpltbin.h
tmpltbsc.h
tmpltcmp.h
tmpltdef.h
tmpltfun.h
tmpltlhs.h
tmpltpsr.h
tmpltrhs.h
tmpltutl.h
userdata.h
utility.h
watch.h

prcdrpsr.c
prdctfun.c
prntutil.c
proflfun.c
reorder.c
reteutil.c
retract.c
router.c
rulebin.c
rulebld.c
rulebsc.c
rulecmp.c

clsltpsr.c exprnpsr.c insqypsr.c rulecom.c
commline.c extnfunc.c iofun.c rulecstr.c
conscomp.c factbin.c lgcldpnd.c ruledef.c
constrct.c factbld.c main.c ruledlt.c
constrnt.c factcmp.c memalloc.c rulelhs.c
crstrtgy.c factcom.c miscfun.c rulepsr.c
cstrebin.c factfun.c modulbin.c scanner.c
cstrccom.c factgen.c modulbsc.c sortfun.c
cstrepsr.c facthsh.c modulcmp.c strngfun.c
cstrnbin.c factlhs.c moduldef.c strngrtr.c
cstrnchk.c factmch.c modulpsr.c symblbin.c
cstrncmp.c factmngr.c modulutl.c symblcmp.c
cstrnops.c factprt.c msgcom.c symbol.c
cstrnpsr.c factgpsr.c msgfun.c sysdep.c
cstrnutl.c factqury.c msgpass.c textpro.c
default.c factrete.c msgpsr.c tmpltbin.c
defins.c factrhs.c multifld.c tmpltbsc.c
developr.c filecom.c multifun.c tmpltcmp.c
dffctbin.c filertr.c objbin.c tmpltdef.c
dffctbsc.c generate.c objcmp.c tmpltfun.c
dffctcmp.c genrcbin.c objrtbin.c tmpltlhs.c
dffctdef.c genrccmp.c objrtbld.c tmpltpsr.c
dffctpsr.c genrccom.c objrtcmp.c tmpltrhs.c
dffnxbin.c genrcexe.c objrtfnx.c tmpltutl.c
dffnxcmp.c genrcfun.c objrtgen.c userdata.c
dffnxexe.c genrcpsr.c objrtmch.c userfunctions.c
dffnxfun.c globlbin.c parsefun.c utility.c
dffnxpsr.c globlbsc.c pattern.c watch.c
dfinsbin.c globlcmp.c pprint.c

dfinscmp.c globlcom.c prccode.c

drive.c globldef.c prcdrfun.c

CLIPS Reference Manual

Additional files must also be included if one of the machine specific user interfaces is to be
set up. See the Utilities and Interfaces Guide for details on compiling the machine specific
interfaces.

2) Modify all include statements (if necessary)
All of the “.c” files and most of the “.h” files have #include statements. These #include
statements may have to be changed to either match the way the compiler searches for

include files or to include a different ".h" file.

3) Tailor CLIPS environment and/or features

CLIPS Advanced Programming Guide 11

CLIPS Reference Manual

4)

5)

Edit the setup.h file and set any special options. CLIPS uses preprocessor definitions to
allow machine-dependent features. The first set of definitions in the setup.h file tells CLIPS
on what kind of machine the code is being compiled. The default setting for this definition is
GENERIC, which will create a version of CLIPS that will run on any computer. The user
may set the definition for the user’s type of system. If the system type is unknown, the
definition should be set to GENERIC (so for this situation you do not need to edit setup.h).
If you change the system type to anything other than GENERIC, make sure that the version
number of your compiler is greater than or equal to the version number listed in the setup.h
file (as earlier versions of a compiler may not support some system dependent features).
Other preprocessor definitions in the setup.h file also allow a user to tailor the features in
CLIPS to specific needs. For more information on using the flags, see section 2.2.

Optionally, preprocessor definitions can be set using the appropriate command line
argument used by your compiler, removing the need to directly edit the setup.h file. For
example, the command line option —DUNIX_7 will work on many compilers to set the
preprocessor definition of UNIX_7 to 1.

Compile all of the ".c" files to object code

Use the standard compiler syntax for the user's machine. The ".h" files are include files used
by the other files and do not need to be compiled. Some options may have to be set,
depending on the compiler.

If user-defined functions are needed, compile the source code for those functions as well
and modify the UserFunctions or EnvUserFunctions definition in userfunctions.c to reflect
the user's functions (see section 3 for more on user-defined functions).

Create the interactive CLIPS executable element

To create the interactive CLIPS executable, link together all of the object files. This
executable will provide the interactive interface defined in section 2.1 of the Basic
Programming Guide.

2.1.1 Additional Considerations

Although compiling CLIPS should not be difficult even for inexperienced C programmers, some
non-obvious problems can occur. One type of problem is linking with inappropriate system
libraries. Normally, default libraries are specified through the environment; i.e., not specified as
a part of the compile/link process. On occasion, the default system libraries are inappropriate for
use with CLIPS. For example, when using a compiler which supports different memory models,
be sure to link with the system libraries that match the memory model under which the CLIPS
code was compiled. The same can be said for floating-point models. Some computers provide
multiple ways of storing floating-point numbers (typically differing in accuracy or speed of proc-
essing). Be sure to link with system libraries that use the same storage formats with which the

12

Section 2 - Installing and Tailoring CLIPS

CLIPS Reference Manual

CLIPS code was compiled. Some additional considerations for compiling CLIPS with specific
compilers and/or operating systems are described following.

DJGPP v3.21

The free DJGPP C compiler creates executables that can access memory beyond the DOS 640K
limit, but your environment must have DMPI services available in order to run this executable. If
you are running Windows or OS/2, DPMI services are provided for you. Information on this
compiler is available at the WWW URL http://www.delorie.com/djgpp/. A free DPMI server is
also available at this location.

The built-in MicroEMACS editor will not work with this compiler, so the EMACS_EDITOR
compiler directive in setup.h should be set to 0. With the compiler installed, the following
command will compile CLIPS

gcc -o clipsdos *.c -1m

UNIX

If the EXTENDED_MATH_FUNCTIONS compiler directive is enabled, then the -Im option
must be used when compiling CLIPS with the gcc command. Similary, if the
EMACS_EDITOR compiler directive is enabled, the -ltermcap option must be used when
compiling CLIPS. If all of the CLIPS source code is contained in the same directory and the
compiler directives are set to their default values in the setup.h file, then the following command
line will compile CLIPS

gcc -o clips *.c -1m -ltermcap

GCC

If the —O optimization option is specified, then the -fno-strict-aliasing option should also be
specified. The —x c¢++ option can be used to force compilation of CLIPS as a C++ program. If
used the -Istdc++ option should also be used to link with C++ libraries. The following command
line will compile CLIPS as a C++ program

gcc -o clips -x c++ *.c -lstdc++ -ltermcap

2.2 TAILORING CLIPS

CLIPS makes use of preprocessor definitions (also referred to in this document as compiler
directives or setup flags) to allow easier porting and recompiling of CLIPS. Compiler directives
allow the incorporation of system-dependent features into CLIPS and also make it easier to tailor
CLIPS to specific applications. All available compiler options are controlled by a set of flags
defined in the setup.h file.

The first flag in setup.h indicates on what type of compiler/machine CLIPS is to run. The source
code is sent out with the flag for GENERIC CLIPS turned on. When compiled in this mode, all

CLIPS Advanced Programming Guide 13

CLIPS Reference Manual

system-dependent features of CLIPS are excluded and the program should run on any system. A
number of other flags are available in this file, indicating the types of compilers/machines on
which CLIPS has been compiled previously. If the user's implementation matches one of the
available flags, set that flag to 1 and turn the GENERIC flag off (set it to 0). The code for most
of the features controlled by the compiler/machine-type flag is in the sysdep.c file.

Many other flags are provided in setup.h. Each flag is described below.

ALLOW_ENVIRONMENT_GLOBALS

BLOAD

BLOAD_AND_BSAVE

BLOAD_INSTANCES

BLOAD_ONLY

BLOCK_MEMORY

14

If this flag is on, then global variables are used to track the current
environment and environment indices. If this flag is off, then no
global variables are used by CLIPS. If this is disabled, then
ENVIRONMENT_API_ONLY will be automatically enabled and
EMACS_EDITOR will be automatically disabled. This is on in the
standard CLIPS executable.

This flag controls access to the binary load command (bload). This
would be used to save some memory in systems which require
binary load but not save capability. This is off in the standard
CLIPS executable.

This flag controls access to the binary load and save commands.
This would be used to save some memory in systems which require
neither binary load nor binary save capability. This is on in the
standard CLIPS executable.

This flag controls the ability to load instances in binary format from
a file via the bload-instances command (see section 13.11.4.7 of
the Basic Programming Guide). This is on in the standard CLIPS
executable. Turning this flag off can save some memory.

This flag controls access to the binary and ASCII load commands
(bload and load). This would be used to save some memory in
systems which require binary load capability only. This flag is off
in the standard CLIPS executable.

This option controls memory allocation. If the flag is on, memory is
allocated from the operating system in large blocks. This can
improve performance if the system memory allocation routines are
extremely inefficient or place arbitrary restrictions on the number of
memory allocations that can be made. This flag is off in the stan-
dard CLIPS executable.

Section 2 - Installing and Tailoring CLIPS

CLIPS Reference Manual

BSAVE_INSTANCES
This flag controls the ability to save instances in binary format to a
file via the bsave-instances command (see section 13.11.4.4 of the
Basic Programming Guide). This is on in the standard CLIPS
executable. Turning this flag off can save some memory.

CONSTRUCT_COMPILER
This flag controls the construct compiler functions. If it is turned
on, constructs may be compiled to C code for use in a run-time
module (see section 5). This is off in the standard CLIPS
executable.

DEBUGGING_FUNCTIONS
This flag controls access to commands such as agenda, facts,
ppdefrule, ppdeffacts, etc. This would be used to save some
memory in BLOAD_ONLY or RUN_TIME systems. This flag is
on in the standard CLIPS executable.

DEFFACTS_CONSTRUCT
This flag controls the use of deffacts. If it is off, deffacts are not
allowed which can save some memory and performance during
resets. This is on in the standard CLIPS executable. If this flag is
off, the (initial-fact) fact is still created during a reset if the
DEFTEMPLATE_CONSTRUCT flag is on.

DEFFUNCTION_CONSTRUCT
This flag controls the use of deffunction. If it is off, deffunction is

not allowed which can save some memory. This is on in the
standard CLIPS executable.

DEFGENERIC_CONSTRUCT
This flag controls the use of defgeneric and defmethod. If it is off,
defgeneric and defmethod are not allowed which can save some
memory. This is on in the standard CLIPS executable.

DEFGLOBAL_CONSTRUCT
This flag controls the use of defglobal. If it is off, defglobal is not

allowed which can save some memory. This is on in the standard
CLIPS executable.

DEFINSTANCES_CONSTRUCT
This flag controls the use of definstances (see section 9.6.1.1 of the
Basic Programming Guide). If it is off, definstances are not allowed
which can save some memory and performance during resets. This

CLIPS Advanced Programming Guide 15

CLIPS Reference Manual

is on in the standard CLIPS executable. If this flag is off, the

[initial-object] instance is still created during a reset if the
INSTANCE_PATTERN_MATCHING flag is on.

DEFMODULE_CONSTRUCT

This flag controls the use of the defmodule construct. If it is off,
then new defmodules cannot be defined (however the MAIN
module will exist). This is on in the standard CLIPS executable.

DEFRULE_CONSTRUCT

This flag controls the use of the defrule construct. If it is off, the
defrule construct is not recognized by CLIPS. This is on in the
standard CLIPS executable.

DEFTEMPLATE_CONSTRUCT

EMACS_EDITOR

This flag controls the use of deftemplate. If it is off, deftemplate is
not allowed which can save some memory. This is on in the
standard CLIPS executable.

This flag controls the integrated MicroEMACS editor. If it is turned
on, the editor will be available. If it is turned off, the editor will not
be available but about 40K of memory will be saved. NOTE: The
editor is machine dependent and will not run on all machines. See
the setup.h file for a description of which machines can support the
editor. This is on in the standard CLIPS executable.

EXTENDED_MATH_FUNCTIONS

FACT_SET_QUERIES

HELP_FUNCTIONS

16

This flag indicates whether the extended math package should be
included in the compilation. If this flag is turned off (set to 0), the
final executable will be about 25-30K smaller, a consideration for
machines with limited memory. This is on in the standard CLIPS
executable.

This flag determines if the fact-set query functions are available.
These functions are any-factp, do-for-fact, do-for-all-facts,
delayed-do-for-all-facts, find-fact, and find-all-facts,. This is on
in the standard CLIPS executable. Turning this flag off can save
some memory.

If this flag is on, the on-line help system will be available from the
CLIPS top-level interface. When this is turned on, the
HELP_DEFAULT flag should be set to point to the full path name

Section 2 - Installing and Tailoring CLIPS

CLIPS Reference Manual

for the CLIPS help file. This is on in the standard CLIPS
executable.

INSTANCE_SET_QUERIES

I0_FUNCTIONS

This flag determines if the instance-set query functions are
available. These functions are any-instancep, do-for-instance,
do-for-all-instances, delayed-do-for-all-instances, find-instance,
and find-all-instances,. This is on in the standard CLIPS
executable. Turning this flag off can save some memory.

This flag controls access to the I/O functions in CLIPS. These
functions are printout, read, open, close, format, and readline. If
this If this flag is off, these functions are not available. This would
be used to save some memory in systems which used custom I/O
routines. This is on in the standard CLIPS executable.

MULTIFIELD_FUNCTIONS

OBJECT_SYSTEM

This flag controls access to the multifield manipulation functions in
CLIPS. These functions are subseq$, delete$, insert$, replace$,
explode$, implode$, nth$, member$, first$, rest$, progn$, and
subsetp. The function create$ is always available regardless of the
setting of this flag. This would be used to save some memory in
systems which performed limited or no operations with multifield
values. This flag is on in the standard CLIPS executable.

This flag controls the use of defclass, definstances, and defmessage-
handler. If it is off, these constructs are not allowed which can save
some memory. If this flag is on, the MULTIFIELD_FUNCTIONS
flag should also be on if you want to be able to manipulate
multifield slots. This is on in the standard CLIPS executable.

PROFILING_FUNCTIONS

RUN_TIME

This flag controls access to the profiling functions in CLIPS. These
functions are get-profile-percent-threshold, profile, profile-info,
profile-reset, and set-profile-percent-threshold. This flag is on in
the standard CLIPS executable.

This flag will create a run-time version of CLIPS for use with
compiled constructs. It should be turned on only after the
constructs-to-c function has been used to generate the C code
representation of the constructs, but before compiling the constructs
C code. When used, about 90K of memory can be saved from the

CLIPS Advanced Programming Guide 17

CLIPS Reference Manual

STRING_FUNCTIONS

TEXTPRO_FUNCTIONS

WINDOW_INTERFACE

18

basic CLIPS executable. See section 5 for a description of how to
use this. This is off in the standard CLIPS executable.

This flag controls access to the string manipulation functions in
CLIPS. These functions are str-cat, sym-cat, str-length,
str-compare, upcase, lowcase, sub-string, str-index, eval, and
build. This would be used to save some memory in systems which
perform limited or no operations with strings. This flag is on in the
standard CLIPS executable.

This flag controls the CLIPS text-processing functions. It must be
turned on to use the fetch, toss, and print-region functions in a
user-defined help system. It also must be turned on to use the
on-line help system. This is on in the standard CLIPS executable.

This flag indicates that a windowed interface is being used. In some
cases, this may include CLIPS console applications (for example
Win32 console applications as opposed to a DOS application).
Currently, the help system uses this flag to determine whether it
should handle more processing by itself or allow the interface to
take care of more processing. This is off in the standard CLIPS
executable.

Section 2 - Installing and Tailoring CLIPS

CLIPS Reference Manual

Section 3 - Integrating CLIPS with External Functions

One of the most important features of CLIPS is an ability to integrate CLIPS with external
functions or applications. This section discusses how to add external functions to CLIPS and
how to pass arguments to them and return values from them. A user can define external functions
for use by CLIPS at any place a function can normally be called. In fact, the vast majority of
system defined functions and commands provided by CLIPS are integrated with CLIPS in the
exact same manner described in this section. The examples shown in this section are in C, but
section 6 discusses how other languages can be combined with CLIPS. Prototypes for the
functions listed in this section can be included by using the clips.h header file.

3.1 DECLARING USER-DEFINED EXTERNAL FUNCTIONS

All external functions must be described to CLIPS so they can be properly accessed by CLIPS
programs. User-defined functions are described to CLIPS by modifying the function
UserFunctions or EnvUserFunctions (if the function is environment aware as described in
section 9.4) which reside in the CLIPS userfunctions.c file. Within UserFunctions, a call
should be made to the DefineFunction routine for every function which is to be integrated with
CLIPS. The user's source code then can be compiled and linked with CLIPS. Alternately, the
user can call DefineFunction from their own initialization code—the only restrictions is that it
must be called after CLIPS has been initialized and before the user-defined function is
referenced.

int DefineFunction(functionName, functionType,
functionPointer,actualFunctionName);

char *functionName, functionType, *actualFunctionName;
int (*functionPointer)();

An example UserFunctions declaration follows:

void UserFunctions()

{

/* */
/* Declare your C functions if necessary. */
/* */

extern double rtaQ);
extern void *dummy();

/* */
/* Call DefineFunction to register user-defined functions. */
/* */

DefineFunction("rta",'d',PTIF rta,"rta");
DefineFunction("mul",'l"',PTIF mul,"mul");

CLIPS Advanced Programming Guide 19

CLIPS Reference Manual

The first argument to DefineFunction is the CLIPS function name, a string representation of the
name that will be used when calling the function from within CLIPS.

The second argument is the type of the value which will be returned to CLIPS. Note that this is
not necessarily the same as the function type. Allowable return types are shown as follows:

Return Code Return Type Expected

External Address

Boolean

Character

Double Precision Float

Single Precision Float

Long Long Integer

Integer

Unknown Data Type (Symbol, String, or Instance Name Expected)
Unknown Data Type (Symbol or String Expected)
Long Integer

Multifield

Unknown Data Type (Integer or Float Expected)
Instance Name

String

Unknown Data Type (Any Type Expected)
Void—No Return Value

Symbol

Instance Address

“ % < 2 »w OB B —~KFw— =0 -0 T

Boolean functions should return a value of type int (O for the symbol FALSE and any other value
for the symbol TRUE). String, symbol, instance name, external address, and instance address
functions should return a pointer of type void *. Character return values are converted by CLIPS
to a symbol of length one. Integer return values are converted by CLIPS to long integers for
internal storage. Single precision float values are converted by CLIPS to double precision float
values for internal storage. If a user function is not going to return a value to CLIPS, the function
should be defined as type void and this argument should be v for void. Return types o and x are
only available if the object system has been enabled (see section 2.2).

Function types j, k, m, n, and u are all passed a data object as an argument in which the return
value of function is stored. This allows a user defined function to return one of several possible
return types. Function type u is the most general and can return any data type. By convention,
function types j, k, m, and n return specific data types. CLIPS will signal an error if one of these
functions return a disallowed type. See section 3.3.4 for more details on returning unknown data

types.

20 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

The third argument is a pointer to the actual function, the compiled function name (an extern
declaration of the function may be appropriate). The CLIPS name (first argument) need not be
the same as the actual function name (third argument). The macro identifier PTIF can be placed
in front of a function name to cast it as a pointer to a function returning an integer (primarily to
prevent warnings from compilers which allow function prototypes).

The fourth argument is a string representation of the third argument (the pointer to the actual C
function). This name should be identical to the third argument, but enclosed in quotation marks.

DefineFunction returns zero if the function was unsuccessfully called (e.g. bad function type
parameter), otherwise a non-zero value is returned.

User-defined functions are searched before system functions. If the user defines a function which
is the same as one of the defined functions already provided, the user function will be executed
in its place. Appendix A of the Basic Programming Guide contains a list of function names used
by CLIPS.

In place of DefineFunction, the DefineFunction2 function can be used to provide additional
information to CLIPS about the number and types of arguments expected by a CLIPS function or
command.

int DefineFunction2(functionName, functionType,
functionPointer,actualFunctionName,
functionRestrictions);

char *functionName, functionType, *actualFunctionName;
int (*functionPointer)();
char *functionRestrictions;

The first four arguments to DefineFunction2 are identical to the four arguments for
DefineFunction. The fifth argument is a restriction string which indicates the number and types
of arguments that the CLIPS function expects. The syntax format for the restriction string is

<min-args> <max-args> [<default-type> <types>*]

The values <min-args> and <max-args> must be specified in the string. Both values must either
be a character digit (0-9) or the character *. A digit specified for <min-args> indicates that the
function must have at least <min-args> arguments when called. The character * for this value
indicates that the function does not require a minimum number of arguments. A digit specified
for <max-args> indicates that the function must have no more than <max-args> arguments when
called. The character * for this value indicates that the function does not prohibit a maximum
number of arguments. The optional <default-type> is the assumed type for each argument for a
function call. Following the <default-type>, additional type values may be supplied to indicate
specific type values for each argument. The type codes for the arguments are as follows:

CLIPS Advanced Programming Guide 21

CLIPS Reference Manual

Type Code Allowed Types

External Address

Float

Instance Address, Instance Name, or Symbol
Float

Integer, Float, or Symbol
Instance Address, Instance Name, Fact Address, Integer, or Symbol
Integer

Symbol, String, or Instance Name
Symbol or String

Integer

Multifield

Integer or Float

Instance Name

Instance Name or Symbol
Symbol, String, or Multifield
String

Any Data Type

Symbol

Instance Address

Fact Address

Fact address, Integer, or Symbol

- 50 - 0O Q0o

N< ¥ £ »vwo0g 05358 —~ K/«

Examples
The restriction string for a function requiring a minimum of three arguments is:

n 3 * "
The restriction string for a function requiring no more than five arguments is:
n * 5 "

The restriction string for a function requiring at least three and no more than five arguments
(each of which must be an integer or float) is:

"35I’l n

The restriction string for a function requiring exactly six arguments (of which the first must be a
string, the third an integer, and the remaining arguments floats) is:

22 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

"66fsui”

3.2 PASSING ARGUMENTS FROM CLIPS TO EXTERNAL FUNCTIONS

Although arguments are listed directly following a function name within a function call, CLIPS
actually calls the function without any arguments. The arguments are stored internally by CLIPS
and can be accessed by calling the argument access functions. Access functions are provided to
determine both the number and types of arguments.

3.2.1 Determining the Number of Passed Arguments

User-defined functions should first determine that they have been passed the correct number of
arguments. Several functions are provided for this purpose.

int RtnArgCount(Q);

int ArgCountCheck(functionName,restriction,count);
int ArgRangeCheck(functionName,min,max);

int restriction, count, min, max;

char *functionName;

A call to RtnArgCount will return an integer telling how many arguments with which the
function was called. The function ArgCountCheck can be used for error checking if a function
expects a minimum, maximum, or exact number of arguments (but not a combination of these
restrictions). It returns an integer telling how many arguments with which the function was
called (or -1 if the argument restriction for the function was unsatisfied). The first argument is
the name of the function to be printed within the error message if the restriction is unsatisfied.
The restriction argument should be one of the values NO_MORE_THAN, AT_LEAST, or
EXACTLY. The count argument should contain a value for the number of arguments to be used
in the restriction test. The function ArgRangeCheck can be used for error checking if a function
expects a range of arguments. It returns an integer telling how many arguments with which the
function was called (or -1 if the argument restriction for the function was unsatisfied). The first
argument is the name of the function to be printed within the error message if the restriction is
unsatisfied. The second argument is the minimum number of arguments and the third argument
is the maximum number of arguments.

3.2.2 Passing Symbols, Strings, Instance Names, Floats, and Integers

Several access functions are provided to retrieve arguments that are symbols, strings, instance
names, floats, and integers.

CLIPS Advanced Programming Guide 23

CLIPS Reference Manual

char *RtnLexeme(argumentPosition);
double RtnDouble(argumentPosition);
long RtnLong(argumentPosition);
int argumentPosition;

A call to RtnLexeme returns a character pointer from either a symbol, string, or instance name
data type (NULL is returned if the type is not SYMBOL, STRING, or INSTANCE_NAME),
RtnDouble returns a floating-point number from either an INTEGER or FLOAT data type, and
RtnLong returns a long integer from either an INTEGER or FLOAT data type. The arguments
have to be requested one at a time by specifying each argument’s position number as the
argumentPosition to RtnLexeme, RtnDouble, or RtnLong. If the type of argument is unknown,
another function can be called to determine the type. See section 3.2.3 for a further discussion of
unknown argument types. Do not store the pointer returned by RtnLexeme as part of a
permanent data structure. When CLIPS performs garbage collection on symbols and strings, the
pointer reference to the string may be rendered invalid. To store a permanent reference to a
string, allocate storage for a copy of the string and then copy the string returned by RtnLexeme
to the copy’s storage area.

Example
The following code is for a function to be called from CLIPS called rta which will return the

area of a right triangle.

/* This include definition */
#include "clips.h" /* should start each file which */
/* has CLIPS functions in it */
/*
Use DefineFunction2("rta",'d',PTIF rta,"rta","22n");
*/

double rta(Q)

double base, height;

/* */

/* Check for exactly two arguments. */

/* */

if (ArgCountCheck("rta",EXACTLY,2) == -1) return(-1.0);
/* */
/* Get the values for the 1st and 2nd arguments. */
/* */
base = RtnDouble(1);

height = RtnDouble(2);

/* */

/* Return the area of the triangle. */

/* */

24 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

return(@.5 * base * height);
3

As previously shown, rta also should be defined in UserFunctions. If the value passed from
CLIPS is not the data type expected, an error occurs. Section 3.2.3 describes a method for testing
the data type of the passed arguments which would allow user-defined functions to do their own
error handling. Once compiled and linked with CLIPS, the function rta could be called as shown
following.

CLIPS> (rta 5.0 10.0)

25.0

CLIPS> (assert (right-triangle-area (rta 20.0 10.0)))
CLIPS> (facts)

f-0 (right-triangle-area 100.0)
For a total of 1 fact.
CLIPS>

3.2.3 Passing Unknown Data Types

Section 3.2.2 described how to pass data to and from CLIPS when the type of data is explicitly
known. It also is possible to pass parameters of an unknown data type to and from external
functions. To pass an unknown parameter to an external function, use the RtnUnknown
function.

#include "clips.h" /* or "evaluatn.h" */
DATA_OBJECT *RtnUnknown(CargumentPosition, &argument);

int GetType(argument);

int GetpType(&argument);

int ArgTypeCheck(char *,argumentPosition,
expectedType,&argument);

char *D0ToString(argument);
char *DOPToString(&argument);
double DOToDouble(argument);
double DOPToDouble(&argument);
float DOToFloat(argument);
float DOPToFloat(&argument);
long DOToLong(Cargument);

long DOPToLong(&argument);
int DOToInteger(argument);
int DOPToInteger(&argument);
void *DOToPointer(argument);
void *DOPToPointer(&argument);

int argumentPosition, expectedType;
DATA_OBJECT argument;

Function RtnUnknown should be called first. It copies the elements of the internal CLIPS
structure that represent the unknown-type argument into the DATA_OBJECT structure pointed

CLIPS Advanced Programming Guide 25

CLIPS Reference Manual

to by the second argument. It also returns a pointer to that same structure, passed as the second
argument. After obtaining a pointer to the DATA_OBJECT structure, a number of macros can be
used to extract type information and the arguments value.

Macros GetType or GetpType can be used to determine the type of argument and will return an
integer (STRING, SYMBOL, FLOAT, INTEGER, MULTIFIELD, INSTANCE_ADDRESS,
INSTANCE_NAME, or EXTERNAL_ADDRESS) defined in the clips.h file. Once the data type
is known, the functions DOToDouble, DOPToDouble, DOToFloat, or DOPToFloat (for
FLOAT), DOToString, or DOPToString (for STRING, SYMBOL, or INSTANCE_NAME),
DOToLong, DOPToLong, DOTolnteger, or DOPTolnteger (for INTEGER), and
DOToPointer and DOPToPointer (for INSTANCE_ADDRESS and EXTERNAL_ADDRESS)
can be used to extract the actual value of the variable from the DATA_OBJECT structure.
Accessing multifield values is discussed in section 3.2.4. Do not store the pointer returned by
DOToString or DOPToString as part of a permanent data structure. When CLIPS performs
garbage collection on symbols and strings, the pointer reference to the string may be rendered
invalid. To store a permanent reference to a string, allocate storage for a copy of the string and
then copy the string returned by DOToString or DOPToString to the copy’s storage area.

The function ArgTypeCheck can be used for error checking if a function expects a specific type
of argument for a particular parameter. It returns a non-zero integer value if the parameter was of
the specified type, otherwise it returns zero. The first argument is the name of the function to be
printed within the error message if the type restriction is unsatisfied. The second argument is the
index of the parameter to be tested. The third argument is the type restriction and must be one of
the following CLIPS defined constants: STRING, SYMBOL, SYMBOL_OR_STRING,
FLOAT, INTEGER, INTEGER_OR_FLOAT, MULTIFIELD, EXTERNAL_ADDRESS,
INSTANCE_ADDRESS, INSTANCE_NAME, or INSTANCE_OR_INSTANCE_NAME. If the
FLOAT type restriction is used, then integer values will be converted to floating-point numbers.
If the INTEGER type restriction is used, then floating-point values will be converted to integers.
The fourth argument is a pointer to a DATA_OBIJECT structure in which the unknown
parameter will be stored.

Example
The following function mul takes two arguments from CLIPS. Each argument should be either

an integer or a float. Float arguments are rounded and converted to the nearest integer. Once
converted, the two arguments are multiplied together and this value is returned. If an error occurs
(wrong type or number of arguments), then the value 1 is returned.

#include <math.h> /* ANSI C library header file */
#include "clips.h"

/*

Use DefineFunction2("mul",'l',PTIF mul,"mul","22n");

*/

26 Section 3 - Integrating CLIPS with External Functions

long mul(Q)

{
DATA_OBJECT temp;
long firstNumber, secondNumber;

/* */
/* Check for exactly two arguments. */
/* */

if (ArgCountCheck("mul",EXACTLY,2) == -1)
{ return(lil); }

/*

/*

*/
/* Get the first argument using the ArgTypeCheck function. */
/* Return if the correct type has not been passed. */
*/
if (ArgTypeCheck("mul",1,INTEGER_OR_FLOAT,&temp) == @)
{ return(il); }

/*

*/

/* Convert the first argument to a long integer. If it's not */

/* an integer, then it must be a float (so round it to the
/* nearest integer using the C library ceil function.
/*

if (GetType(temp) == INTEGER)
{ firstNumber = DOToLong(temp); }
else /* the type must be FLOAT */
{ firstNumber = (long) ceil(DOToDouble(temp) - 0.5); }

/*

/* Get the second argument using the RtnUnknown function.
/* Note that no type error checking is performed.
/*

RtnUnknown(2,&temp);

/*

*/
*/
*/
*/

*/

/* Convert the second argument to a long integer. If it's
/* not an integer or a float, then it's the wrong type.
/*

*/
*/
*/

if (GetType(temp) == INTEGER)

{ secondNumber = DOToLong(temp); }
else if (GetType(temp) == FLOAT)

{ secondNumber = (long) ceil(DOToDouble(temp) - 0.5); }
else

{ return(lil); }

/*
/* Multiply the two values together and return the result.
/*

*/
*/
*/

return (firstNumber * secondNumber);

}

CLIPS Advanced Programming Guide

*/
*/
*/

CLIPS Reference Manual

27

CLIPS Reference Manual

Once compiled and linked with CLIPS, the function mul could be called as shown following.

CLIPS> (mul 3 3)

9

CLIPS> (mul 3.1 3.1)
9

CLIPS> (mul 3.8 3.1)
12

CLIPS> (mul 3.8 4.2)
16

CLIPS>

3.2.4 Passing Multifield Values

Data passed from CLIPS to an external function may be stored in multifield values. To access a
multifield value, the user first must call RtnUnknown or ArgTypeCheck to get the pointer. If
the argument is of type MULTIFIELD, several macros can be used to access the values of the
multifield value.

#include "clips.h" /* or "evaluatn.h" */

int GetDOLength(argument);

int GetpDOLength(&argument);

int GetDOBegin(argument);

int GetpDOBegin(&argument);

int GetDOEnd(Cargument);

int GetpDOEnd(&argument);

int GetMFType(multifieldPtr,fieldPosition);
void *GetMFValue(multifieldPtr,fieldPosition);

DATA_OBJECT argument;
void *multifieldPtr;
int fieldPosition;

Macros GetDOLength and GetpDOLength can be used to determine the length of a
DATA_OBJECT or DATA_OBJECT_PTR respectively. The macros GetDOBegin,
GetpDOBegin, GetDOEnd, GetpDOEnd can be used to determine the beginning and ending
indices of a DATA_OBJECT or DATA_OBJECT_PTR containing a multifield value. Since
multifield values are often extracted from arrays of other data structures (such as facts), these
indices are used to indicate the beginning and ending positions within the array. Thus it is very
important when traversing a multifield value to use indices that run from the begin index to the
end index and not from one to the length of the multifield value. The begin index points to the
first element in the multifield value and the end index points to the last element in the multifield
value. A multifield value of length one will have the same values for the begin and end indices.
A multifield value of length zero will have an end index that is one less than the begin index.

The macros GetMFType and GetMFValue can be used to examine the types and values of
fields within a multifield value. The first argument to these macros should be the value retrieved

28 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

from a DATA_OBJECT or DATA_OBJECT_PTR using the GetValue and GetpValue macros.
The second argument is the index of the field within the multifield value. Once again, this
argument should fall in the range between the begin index and the end index for the
DATA_OBJECT from which the multifield value is stored. Macros ValueToString,
ValueToDouble, ValueToLong, and ValueTolnteger can be used to convert the retrieved value
from GetMFValue to a C object of type char *, double, and long respectively. Do not store the
pointer returned by ValueToString as part of a permanent data structure. When CLIPS performs
garbage collection on symbols and strings, the pointer reference to the string may be rendered
invalid. To store a permanent reference to a string, allocate storage for a copy of the string and
then copy the string returned by ValueToString to the copy’s storage area.

The multifield macros should only be used on DATA_OBJECTS that have type MULTIFIELD
(e.g. the macro GetDOLength returns erroneous values if the type is not MULTIFIELD).

Examples
The following function returns the length of a multifield value. It returns -1 if an error occurs.

#include "clips.h"

/*
Use DefineFunction2("mfl",'1l',PTIF MFLength, "MFLength","11m");
*/

long int MFLength()

{
DATA_OBJECT argument;

/* */
/* Check for exactly one argument. */
/* */

if (ArgCountCheck("mfl",EXACTLY,1) == -1) return(-1L);

/* */
/* Check that the 1st argument is a multifield value. */
/* */

if (ArgTypeCheck("mfl",1,MULTIFIELD,&argument) == @)
{ returnC-1L); }

/* */
/* Return the length of the multifield value. */
/* */

return ((long) GetDOLength(argument));
}

The following function counts the number of characters in the symbols and strings contained
within a multifield value.

#include "clips.h"

CLIPS Advanced Programming Guide 29

CLIPS Reference Manual

/*

Use DefineFunction2("cmfc",'1l',PTIF CntMFChars,"CntMFChars",
llllmll);

*/

long int CntMFChars()
{
DATA_OBJECT argument;
void *multifieldPtr;
int end, 1i;
long count = 0;
char *tempPtr;

/* */

/* Check for exactly one argument. */

/* */

if (ArgCountCheck("cmfc",EXACTLY,1) == -1) return(@L);

/* */
/* Check that the first argument is a multifield value. */
/* */

if (ArgTypeCheck("cmfc",1,MULTIFIELD,&argument) == 0)
{ return(oL); }

/* */
/* Count the characters in each field. */
/* */

end = GetDOEnd(Cargument);
multifieldPtr = GetValue(argument);
for (i = GetDOBegin(argument); i <= end; i++)
{
if ((GetMFType(multifieldPtr,i) == STRING) ||
(GetMFType(multifieldPtr,i) == SYMBOL))
{
tempPtr = ValueToString(GetMFValue(multifieldPtr,i));
count += strlen(tempPtr);

}
}
/* */
/* Return the character count. */
/* */
return(count);

}

3.3 RETURNING VALUES TO CLIPS FROM EXTERNAL FUNCTIONS

Functions which return doubles, floats, integers, long integers, characters, external addresses,
and instance addresses can directly return these values to CLIPS. Other data types including the

30 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

unknown (or unspecified) data type and multifield data type, must use functions provided by
CLIPS to construct return values.

3.3.1 Returning Symbols, Strings, and Instance Names

CLIPS uses symbol tables to store all symbols, strings, and instance names. Symbol tables
increase both performance and memory efficiency during execution. If a user-defined function
returns a symbol, string, or an instance name (type 's', 'w', or 'o' in DefineFunction), the symbol
must be stored in the CLIPS symbol table prior to use. Other types of returns (such as unknown
and multifield values) may also contain symbols which must be added to the symbol table. These

symbols can be added by calling the function AddSymbol and using the returned pointer value.
#include "clips.h" /* or "symbol.h" */

void *AddSymbol(string);
char *string;

Example
This function reverses the character ordering in a string and returns the reversed string. The null

string is returned if an error occurs.

#include <stdlib.h> /* ANSI C library header file */

#include <stddef.h> /* ANSI C library header file */

#include "clips.h"

/*

Use DefineFunction2("reverse-str",'s',PTIF Reverse,"Reverse",
vlllsn);

*/

void *Reverse()
{
DATA_OBJECT temp;
char *lexeme, *tempString;
void *returnValue;
int i, length;

/* */

/* Check for exactly one argument. */

/* */

if (ArgCountCheck("reverse-str" ,EXACTLY,1) == -1)

{ return(AddSymbol1("")); }

/* */
/* Get the first argument using the ArgTypeCheck function. */
/* */

if (ArgTypeCheck("reverse-str",1,STRING,&temp) == 0)
{ return(AddSymbol1("")); }
lexeme = DOToString(temp);

CLIPS Advanced Programming Guide 31

CLIPS Reference Manual

/* */
/* Allocate temporary space to store the reversed string. */
/* */

length = strlen(lexeme);
tempString = (char *) malloc(length + 1);

/* */
/* Reverse the string. */
/* */

for (i = 0; 1 < length; i++)
{ tempString[length - (i + 1)] = lexeme[i]; }
tempString[length] = "\0@';

/* */
/* Return the reversed string. */
/* */
returnValue = AddSymbol(tempString);
free(tempString);
return(returnValue);
3

3.3.2 Returning Boolean Values

A user function may return a boolean value in one of two ways. The user may define an integer
function and use DefineFunction to declare it as a BOOLEAN type ('b'). The function should
then either return the value TRUE or FALSE. Alternatively, the function may be declare to
return a SYMBOL type ('w') or UNKNOWN type ('u') and return the value of FalseSymbol or
TrueSymbol macro.

#include "clips.h" /* or "symbol.h" */

#define FALSE 0
#define TRUE 1

void *FalseSymbol();
void *TrueSymbol();

Examples
This function returns true if its first argument is a number greater than zero. It uses a boolean

return value.

#include "clips.h"

/*

Use DefineFunction2("positivepl",'b',positivepl, "positivepl”,
llllnll);

*/

int positivepl()
{

32 Section 3 - Integrating CLIPS with External Functions

DATA_OBJECT temp;

/* */
/* Check for exactly one argument. */
/* */

if (ArgCountCheck("positivepl",EXACTLY,1) == -1)
{ return(FALSE); }

/*

/* Get the first argument using the ArgTypeCheck function.

/*

if (ArgTypeCheck("positivepl",1,INTEGER_OR_FLOAT,&temp) ==
{ return(FALSE); }

/* */
/* Determine if the value is positive. */
/* */

if (GetType(temp) == INTEGER)

{ if (DOToLong(temp) <= OL) return(FALSE); }
else /* the type must be FLOAT */

{ if (DOToDouble(temp) <= 0.0) return(FALSE); }

return(TRUE);
}

*/
*/
*/

)

CLIPS Reference Manual

This function also returns true if its first argument is a number greater than zero. It uses a

symbolic return value.

#include "clips.h"

/*
Use DefineFunction("positivep2",'w',PTIF positivep2,"positivep2",
vlllnn);
*/
void *positivep2()
{
DATA_OBJECT temp;
/* */
/* Check for exactly one argument. */
/* */
if (ArgCountCheck("positivepl",EXACTLY,1) == -1)

{ return(FalseSymbol()); }

/*

/* Get the first argument using the ArgTypeCheck function.

/*

if (ArgTypeCheck("positivepl",1,INTEGER_OR_FLOAT,&temp) ==
{ return(FalseSymbol()); }

CLIPS Advanced Programming Guide

*/
*/
*/

33

CLIPS Reference Manual

/* */
/* Determine if the value is positive. */
/* */

if (GetType(temp) == INTEGER)

{ if (DOToLong(temp) <= OL) return(FalseSymbol()); }
else /* the type must be FLOAT */

{ if (DOToDouble(temp) <= 0.0) return(FalseSymbol()); }

return(TrueSymbol());
}

3.3.3 Returning External Addresses and Instance Addresses

A user function may return an external address or an instance address. The user should use
DefineFunction to declare their function as returning an external address type (‘a') or an instance
address type ('x'). The function should then either return a pointer that has been typecast to (void
*). Within CLIPS, the printed representation of an external address is

<Pointer-XXXXXXXX>

where XXXXXXXX is the external address. Note that it is up to the user to make sure that
external addresses remain valid within CLIPS. The printed representation of an instance address
is

<Instance-XXX>
where XXX is the name of the instance.

Example
This function uses the memory allocation function malloc to dynamically allocated 100 bytes of

memory and then returns a pointer to the memory to CLIPS.

#include <stdlib.h>
#include "clips.h"

/*

Use DefineFunction2("malloc",'a',PTIF CLIPSmalloc,"CLIPSmalloc",
ll@@ll);

*/

void *CLIPSmalloc()
{ return((void *) malloc(100)); }

3.3.4 Returning Unknown Data Types

A user-defined function also may return values of an unknown type. The user must declare the
function as returning type unknown; i.e., place a 'u' for data type in the call to DefineFunction.

34 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

The user function will be passed a pointer to a structure of type DATA_OBIJECT
(DATA_OBJECT_PTR) which should be modified to contain the return value. The user should
set both the type and the value of the DATA_OBJECT. Note that the value of a DATA_OBJECT
cannot be directly set to a double or long value (the functions AddLong and AddDouble should
be used in a manner similar to AddSymbol). The actual return value of the user function is
ignored.

#include "clips.h" /* or "evaluatn.h" */

int SetType(argument, type);
int SetpType(&argument, type);

void *SetValue(argument,value);
void *SetpValue(&argument,value);

void *AddLong(longValue);
void *AddDouble(doubleValue);

void *GetValue(argument);
void *GetpValue(&argument);

char *ValueToString(value);
double ValueToDouble(value);
long long ValueTolLong(value);
int ValueToInteger(value);

long long longValue;
double doubleValue;
void *value;

int type;

DATA_OBJECT argument;

Macros SetType and SetpType can be used to set the type of a DATA_OBJECT or
DATA_OBJECT_PTR respectively. The type parameter should be one of the following CLIPS
defined constants (note that these are not strings): SYMBOL, STRING, INTEGER, FLOAT,
EXTERNAL_ADDRESS, INSTANCE_NAME, or INSTANCE_ADDRESS. Macros SetValue
(for DATA_OBJECTS) and SetpValue (for DATA_OBJECT_PTRs) can be used to set the value
of a DATA_OBIJECT. The functions AddSymbol (for symbols, strings and instance names),
AddLong (for integers) and AddDouble (for floats) can be used to produce values that can be
used with these macros (external addresses and instance addresses can be used directly). Macros
GetValue (for DATA_OBIJECTSs) and GetpValue (for DATA_OBJECT_PTRs) can be used to
retrieve the value of a DATA_OBJECT. Note that the value for an external address or an
instance address can be retrieved directly using one of these macros. For other data types, the
macros ValueToString (for symbols, strings, and instance names), ValueToLong (for integers),
ValueTolnteger (for integers), and ValueToDouble (for floats) can be used to convert the
retrieved value from a DATA_OBJECT to a C object of type char *, double, long, or integer
respectively.

CLIPS Advanced Programming Guide 35

CLIPS Reference Manual

Example
This function "cubes" its argument returning either an integer or float depending upon the type of

the original argument. It returns the symbol FALSE upon an error.

#include "clips.h"

/*
Use DefineFunction2("cube",'u',PTIF cube,"cube","11n");
*/

void cube(
DATA_OBJECT_PTR returnValuePtr)
{
void *value;
long long longValue;
double doubleValue;

/* */
/* Check for exactly one argument. */
/* */

if (ArgCountCheck("cube",EXACTLY,1) == -1)
{
SetpType(returnValuePtr,SYMBOL);
SetpValue(returnValuePtr,FalseSymbol());

return;
3
/* */
/* Get the first argument using the ArgTypeCheck function. */
/* */

if (! ArgTypeCheck("cube",1,INTEGER_OR_FLOAT,returnValuePtr))
{
SetpType(returnValuePtr,SYMBOL);
SetpValue(returnValuePtr,FalseSymbol());

return;
3
/* */
/* Cube the argument. Note that the return value DATA_OBJECT */
/* is used to retrieve the function's argument and return */
/* the function's return value. */
/* */

if (GetpType(returnValuePtr) == INTEGER)
{
value = GetpValue(returnValuePtr);
longValue = ValueTolLong(value);
value = AddLong(longValue * longValue * longValue);
ks
else /* the type must be FLOAT */
{
value = GetpValue(returnValuePtr);
doubleValue = ValueToDouble(value);
value = AddDouble(doubleValue * doubleValue * doubleValue);

36 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

/* */
/* Set the value of the return DATA_OBJECT. The return */
/* type does not have to be changed since it will be */

/* the same as the 1st argument to the function. */
/* */
SetpValue(returnValuePtr,value);

return;
3

3.3.5 Returning Multifield Values

Multifield values can also be returned from an external function. When defining such an external
function, the data type should be set to 'm' in the call to DefineFunction. Note that a multifield
value can also be returned from a 'u' function, whereas only a multifield value should be returned
from an 'm' function. As with returning unknown data types, the user function will be passed a
pointer of type DATA_OBJECT_PTR which can be modified to set up a multifield value. The
following macros and functions are useful for this purpose:

void *CreateMultifield(size);

int SetMFType(multifieldPtr,fieldPosition,type);
void *SetMFValue(multifieldPtr,fieldPosition,value);
int SetDOBegin(returnValue,fieldPosition);

int SetpDOBegin(&returnValue, fieldPosition);

int SetDOEnd(returnValue,fieldPosition);

int SetpDOEnd(&returnValue, fieldPosition);

void SetMultifieldErrorValue(&returnValue);

DATA_OBJECT returnValue;
Unsigned size;

int fieldPosition, type;
void *multifieldPtr;
void *value;

If a new multifield is to be created from an existing multifield, then the type and value of the
existing multifield can be copied and the begin and end indices can be modified to obtain the
appropriate subfields of the multifield value. If you wish to create a new multifield value that is
not part of an existing multifield value, then use the function CreateMultifield. Given an integer
argument, this function will create a multifield value of the specified size with valid indices
ranging from one to the given size (zero is a legitimate parameter to create a multifield value
with no fields). The macros SetMFType and SetMFValue can be used to set the types and
values of the fields of the newly created multifield value. Both macros accept as their first
argument the value returned by CreateMultifield. The second argument should be an integer
representing the position of the multifield value to be set. The third argument is the same as the
arguments used for SetType and SetValue macros.

CLIPS Advanced Programming Guide 37

CLIPS Reference Manual

Do not set the value or type of any field within a multifield value that has been returned to you
by CLIPS. Use these macros only on multifield values created using the CreateMultifield
function.

The macros SetDOBegin, SetpDOBegin, SetDOEnd, SetpDOEnd can be used to assign values
to the begin and end indices of a DATA_OBJECT or DATA_OBJECT_PTR containing a
multifield value. These macros are useful for creating “new” multifield values by manipulating
the indices of a currently existing multifield value. For example, a function that returns the first
field of a multifield value could do so by setting the end index equal to the begin index (if the
length of the multifield value was greater than zero).

The function SetMultifieldErrorValue can be used to create a multifield value of length zero
(which is useful to return as an error value). Its only parameter is a DATA_OBJECT_PTR which
is appropriately modified to create a zero length multifield value.

Examples
The following example creates a multifield value with two fields, a word and a number:

#include "clips.h"

/*
Use DefineFunction2("sample4",'m',PTIF sample4, "sample4","00");
*/

void sample4(
DATA_OBJECT_PTR returnValuePtr)

{
void *multifieldPtr;

/* */
/* Check for exactly zero arguments. */
/* */
if (ArgCountCheck("sample4" ,EXACTLY,0) == -1)
{
SetMultifieldErrorValue(returnValuePtr);
return;
3
/* */
/* Create a multi-field value of length 2 */
/* */

multifieldPtr = CreateMultifield(2);

/* */
/* The first field in the multi-field value */
/* will be a SYMBOL. Its value will be */
/* "altitude". */
/* */

SetMFType(multifieldPtr,1,SYMBOL);

38 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

SetMFValue(multifieldPtr,1,AddSymbol("altitude"));

/* */
/* The second field in the multi-field value */
/* will be a FLOAT. Its value will be 900. */
/* */

SetMFType(multifieldPtr,2,FLOAT);
SetMFValue(multifieldPtr,2,AddDoub1e(900.0));

/* */
/* Assign the type and value to the return DATA_OBJECT. */
/* */

SetpType(returnValuePtr ,MULTIFIELD);
SetpValue(returnValuePtr,multifieldPtr);

/* */
/* The length of our multi-field value will be 2. */
/* Since we will create our own multi-field value */
/* the begin and end indexes to our function will */
/* be 1 and the length of the multi-field value */
/* respectively. If we are examining a multi-field */
/* value, or using an existing multi-field value */

/* to create a new multi-field value, then the */
/* begin and end indexes may not correspond to 1 */
/* and the length of the multi-field value. */
/* */

SetpDOBegin(returnValuePtr,1);
SetpDOEnd(returnValuePtr,2);

return;

}

The following example returns all but the first field of a multifield value:

#include "clips.h"

/*
Use DefineFunction2("rest",'m',PTIF rest,"rest","11m");
*/

void rest(
DATA_OBJECT_PTR returnValuePtr)

{

/* */

/* Check for exactly one argument. */

/* */

if (ArgCountCheck("rest",EXACTLY,1) == -1)
{
SetMultifieldErrorValue(returnValuePtr);
return;
ks

/* */

CLIPS Advanced Programming Guide 39

CLIPS Reference Manual

/* Check for a MULTIFIELD. */

/* */
if (ArgTypeCheck("rest",1,MULTIFIELD, returnValuePtr) == 0)
{
SetMultifieldErrorValue(returnValuePtr);
return;
ks
/* */
/* Don't bother with a zero length multifield value. */
/* */

if (GetpDOBegin(returnValuePtr) > GetpDOEnd(returnValuePtr))
{ return; }

/* */
/* Increment the begin index by one. */
/* */

SetpDOBegin(returnValuePtr,GetpDOBegin(returnValuePtr) + 1);

3.4 USER-DEFINED FUNCTION EXAMPLE

This section lists the steps needed to define and implement a user-defined function. The example
given is somewhat trivial, but it demonstrates the point. The user function merely triples a
number and returns the new value.

1) Copy all of the CLIPS source code file to the user directory.

2) Define the user function in a new file.
#include "clips.h"

double TripleNumber()

{
return(3.0 * RtnDouble(1));

}

The preceding function does the job just fine. The following function, however, accomplishes the
same purpose while providing error handling on arguments and allowing either an integer or
double return value.

#include "clips.h"

void TripleNumber(
DATA_OBJECT_PTR returnValuePtr)

{

void *value;

long long longValue;
double doubleValue;

40 Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

/* */
/* If illegal arguments are passed, return zero. */
/* */
if (ArgCountCheck("triple",EXACTLY,1) == -1)

{

SetpType(returnValuePtr,INTEGER);
SetpValue(returnValuePtr,AddLong(QLL));
return;

ks
if (! ArgTypeCheck("triple",1,INTEGER_OR_FLOAT,returnValuePtr))
{

SetpType(returnValuePtr, INTEGER);
SetpValue(returnValuePtr,AddLong(@QLL));

return;
ks
/* */
/* Triple the number. */
/* */

if (GetpType(returnValuePtr) == INTEGER)
{

value = GetpValue(returnValuePtr);
longValue = 3 * ValueTolLong(value);
SetpValue(returnValuePtr,AddLong(longValue));
}

else /* the type must be FLOAT */
{
value = GetpValue(returnValuePtr);
doubleValue = 3.0 * ValueToDouble(value);
SetpValue(returnValuePtr,AddDouble(doubleValue));
}

return;

}

3) Define the constructs which use the new function in a new file (or in an existing constructs
file). For example:

(deffacts init-data
(data 34)
(data 13.2))

(defrule get-data
(data ?num)
=>
(printout t "Tripling " ?num crlf)
(assert (new-value (triple ?num))))

(defrule get-new-value
(new-value ?num)
=>
(printout t crlf "Now equal to " ?num crlf))

CLIPS Advanced Programming Guide 41

CLIPS Reference Manual

4) Modify the CLIPS userfunctions.c file to include the new UserFunctions definition.

void UserFunctions()

/* The following code is used with the second example */

/* of the TripleFunction listed in step 2.
extern void TripleNumber(DATA_OBJECT_PTR);

DefineFunction2("triple

/*
/*
/*
/*

/*

extern double TripleNumber(void);

1] 11n");

*/

u',PTIF TripleNumber, "TripleNumber",

Alternately, if the TripleFunction with a double return */
value from step 2 was used, the following declaration */
and DefineFunction2 call should be used in place of the */

one above.

*/

DefineFunction2("triple",'d',PTIF TripleNumber, "TripleNumber","11n");

*/

5) Compile the CLIPS files along with any files which contain user-defined functions.

6) Link all object code files.

7) Execute new CLIPS executable. Load the constructs file and test the new function.

42

Section 3 - Integrating CLIPS with External Functions

CLIPS Reference Manual

Section 4 - Embedding CLIPS

CLIPS was designed to be embedded within other programs. When CLIPS is used as an em-
bedded application, the user must provide a main program. Calls to CLIPS are made like any
other subroutine. To embed CLIPS, add the following include statements to the user's main
program file:

#include <stdio.h>
#include "clips.h"

(These statements may have to be tailored so the compiler on the user's system can find the
CLIPS include file.) The user’s main program must initialize CLIPS by calling the function
InitializeEnvironment at some time prior to loading constructs. UserFunctions and
EnvUserFunctions also must be defined, regardless of whether CLIPS calls any external
functions. Compile and link all of the user's code with all CLIPS files except the object version
of main.c. When running CLIPS as an embedded program, many of the capabilities available in
the interactive interface (in addition to others) are available through function calls. The functions
are documented in the following sections. Prototypes for these functions can be included by
using the clips.h header file.

4.1 ENVIRONMENT FUNCTIONS

The following function calls control the CLIPS environment:

4.1.1 AddClearFunction

int AddClearFunction(clearItemName,clearFunction,priority);
char *clearItemName;

void (*clearFunction)();

int priority;

void clearFunction();

Purpose: Adds a user defined function to the list of functions which are
called when the CLIPS clear command is executed.

Arguments: 1) The name of the new clear item.

2) A pointer to the function which is to be called whenever a clear
command is executed. This function must except an
environment pointer if the environment companion function is
used (see section 9.2).

3) The priority of the clear item which determines the order in
which clear items are called (higher priority items are called
first). The values -2000 to 2000 are reserved for CLIPS system

CLIPS Advanced Programming Guide 43

CLIPS Reference Manual

defined clear items and should not be used for user defined clear
items.

Returns: Returns a zero value if the clear item could not be added, otherwise
a non-zero value is returned.

4.1.2 AddPeriodicFunction

int AddPeriodicFunction(periodicItemName,periodicFunction,
priority);

char *periodicItemName;

void (*periodicFunction)();

int priority;

void periodicFunction();

Purpose: Adds a user defined function to the list of functions which are
called periodically while CLIPS is executing. This ability was
primarily included to allow interfaces to process events and update
displays during CLIPS execution. Care should be taken not to use
any operations in a periodic function which would affect CLIPS
data structures constructively or destructively, i.e. CLIPS internals
may be examined but not modified during a periodic function.

Arguments: 1) The name of the new periodic item.

2) A pointer to a function which is to be called periodically while
CLIPS is executing. This function must except an environment
pointer if the environment companion function is used (see
section 9.2).

3) The priority of the periodic item which determines the order in
which periodic items are called (higher priority items are called
first). The values -2000 to 2000 are reserved for CLIPS system
defined periodic items and should not be used for user defined
periodic items.

Returns: Returns a zero value if the periodic item could not be added,
otherwise a non-zero value is returned.

4.1.3 AddResetFunction

int AddResetFunction(resetItemName,resetFunction,priority);
char *resetItemName;

void (*resetFunction)();

int priority;

44 Section 4 - Embedding CLIPS

void resetFunction();

Purpose:

Arguments:

Returns:

4.1.4 BatchStar

CLIPS Reference Manual

Adds a user defined function to the list of functions which are
called when the CLIPS reset command is executed.

1) The name of the new reset item.

2) A pointer to the function which is to be called whenever a reset
command is executed. This function must except an
environment pointer if the environment companion function is
used (see section 9.2).

3) The priority of the reset item which determines the order in
which reset items are called (higher priority items are called
first). The values -2000 to 2000 are reserved for CLIPS system
defined reset items and should not be used for user defined reset
items.

Returns a zero value if the reset item could not be added, otherwise
a non-zero value is returned.

int BatchStar(fileName);

char *fileName;

Purpose:

Arguments:

Returns:

Other:

4.1.5 Bload

Evaluates the series of commands stored in the specified file
without replacing standard input (the C equivalent of the CLIPS
batch* command).

A string representing the name of the file.

Returns an integer; Zero if the file couldn’t be opened or 1 if the file
was opened.

The BatchStar function is not available for use in run-time
programs.

int Bload(fileName);

char *fileName;

Purpose:

Loads a binary image of constructs into the CLIPS data base (the C
equivalent of the CLIPS bload command).

CLIPS Advanced Programming Guide 45

CLIPS Reference Manual

Arguments: A string representing the name of the file.

Returns: Returns an integer; if zero, an error occurred. A positive one is
returned upon success.

4.1.6 Bsave

int Bsave(fileName);
char *fileName;

Purpose: Saves a binary image of constructs from the CLIPS data base (the C
equivalent of the CLIPS bsave command).

Arguments: A string representing the name of the file.

Returns: Returns an integer; if zero, an error occurred. A positive one is
returned upon success.

4.1.7 Build

int Build(constructString);
char *constructString;

Purpose: Allows a construct to be defined (the C equivalent of the CLIPS
build command).

Arguments: 1) A string containing the construct to be added.

Returns: Returns an integer. 1 if the construct was successfully parsed,
otherwise 0.

Other: The Build function is not available for use in run-time programs
(since individual constructs can’t be added or deleted).

4.1.8 Clear

void Clear(Q);

Purpose: Clears the CLIPS environment (the C equivalent of the CLIPS clear
command).

Arguments: None.

Returns: No meaningful return value.

46 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Other: This function can trigger garbage collection.

4.1.9 Eval

int Eval(expressionString,&result);
char *expressionString;
DATA_OBJECT result;

Purpose: Allows an expression to be evaluated (the C equivalent of the
CLIPS eval command).

Arguments: 1) A string containing the expression to be evaluated.
2) Caller’s buffer for storing the result of the evaluation. See
sections 3.2.3 and 3.2.4 for information on getting the value
stored in a DATA_OBJECT.

Returns: Returns an integer. 1 if the expression was successfully evaluated,
otherwise 0.

Other: The Eval function is not available for use in run-time programs.

4.1.10 FunctionCall

int FunctionCall(functionName,arguments,&result);
char *functionName,*arguments;
DATA_OBJECT result;

Purpose: Allows CLIPS system functions, deffunctions and generic functions
to be called from C.

Arguments: 1) The name of the system function, deffunction or generic
function to be called.
2) A string containing any constant arguments separated by blanks
(this argument can be NULL).
3) Caller’s buffer for storing the result of the function call. See
sections 3.2.3 and 3.2.4 for information on getting the value
stored in a DATA_OBJECT.

Returns: An integer; TRUE (1) if an error occurred while evaluating the
function, otherwise FALSE (0).

Other: This function can trigger garbage collection.

CLIPS Advanced Programming Guide 47

CLIPS Reference Manual

Example

DATA_OBJECT rtn;

FunctionCall("+","1 2",&rtn);

4.1.11 GetAutoFloatDividend

int GetAutoFloatDividend();

Purpose:

Arguments:

Returns:

Returns the current value of the auto-float dividend behavior (the C
equivalent of the CLIPS get-auto-float-dividend command).

None.

An integer; FALSE (0) if the behavior is disabled and TRUE (1) if
the behavior is enabled.

4.1.12 GetDynamicConstraintChecking

int GetDynamicConstraintChecking();

Purpose:

Arguments:

Returns:

Returns the current value of the dynamic constraint checking
behavior (the C equivalent of the CLIPS
get-dynamic-constraint-checking command).

None.

An integer; FALSE (0) if the behavior is disabled and TRUE (1) if
the behavior is enabled.

4.1.13 GetSequenceOperatorRecognition

int GetSequenceOperatorRecognition();

Purpose:

Arguments:

Returns:

48

Returns the current value of the sequence operator recognition
behavior (the C equivalent of the CLIPS get-sequence-operator-
recognition command).

None.

An integer; FALSE (0) if the behavior is disabled and TRUE (1) if

the behavior is enabled.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.1.14 GetStaticConstraintChecking

int GetStaticConstraintChecking();

Purpose:

Arguments:

Returns:

Returns the current value of the static constraint checking behavior
(the C equivalent of the CLIPS get-static-constraint-checking
command).

None.

An integer; FALSE (0) if the behavior is disabled and TRUE (1) if
the behavior is enabled.

4.1.15 InitializeEnvironment

void InitializeEnvironment();

Purpose:

Arguments:

Returns:

4.1.16 Load

int Load(fileName);
char *fileName;

Purpose:

Arguments:

Returns:

Other:

Initializes the CLIPS system. Must be called prior to any other
CLIPS function call. NOTE: This function should be called only
once.

None.

No meaningful return value.

Loads a set of constructs into the CLIPS data base (the C equivalent
of the CLIPS load command).

A string representing the name of the file.

Returns an integer; Zero if the file couldn’t be opened, -1 if the file
was opened but an error occurred while loading, and 1 if the file
was opened an no errors occurred while loading. If syntactic errors
are in the constructs, Load still will attempt to read the entire file
and error notices will be sent to werror.

The load function is not available for use in run-time programs
(since individual constructs can’t be added or deleted). To execute

CLIPS Advanced Programming Guide 49

CLIPS Reference Manual

different sets of constructs, the switching feature must be used in a
run-time program (see section 5 for more details).

4.1.17 RemoveClearFunction

int RemoveClearFunction(clearItemName);
char *clearItemName;

Purpose: Removes a named function from the list of functions to be called
during a clear command.

Arguments: The name associated with the user-defined clear function. This is
the same name that was used when the clear function was added
with the function AddClearFunction.

Returns: Returns the integer value 1 if the named function was found and
removed, otherwise O is returned.

4.1.18 RemovePeriodicFunction

int RemovePeriodicFunction(periodicItemName);
char *periodicItemName;

Purpose: Removes a named function from the list of functions which are
called periodically while CLIPS is executing.

Arguments: The name associated with the user-defined periodic function. This
is the same name that was used when the periodic function was
added with the function AddPeriodicFunction.

Returns: Returns the integer value 1 if the named function was found and
removed, otherwise O is returned.

4.1.19 RemoveResetFunction

int RemoveResetFunction(resetItemName);
char *resetItemName;

Purpose: Removes a named function from the list of functions to be called
during a reset command.

50 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Arguments: The name associated with the user-defined reset function. This is
the same name that was used when the reset function was added
with the function AddResetFunction.

Returns: Returns the integer value 1 if the named function was found and
removed, otherwise O is returned.

4.1.20 Reset

void Reset();

Purpose: Resets the CLIPS environment (the C equivalent of the CLIPS reset
command).
Arguments: None.
Returns: No meaningful return value.
Other: This function can trigger garbage collection.
4.1.21 Save

int Save(fileName);
char *fileName;

Purpose: Saves a set of constructs to the specified file (the C equivalent of
the CLIPS save command).

Arguments: A string representing the name of the file.

Returns: Returns an integer; if zero, an error occurred while opening the file.
If non-zero no errors were detected while performing the save.

4.1.22 SetAutoFloatDividend

int SetAutoFloatDividend(value);
int value;

Purpose: Sets the auto-float dividend behavior (the C equivalent of the
CLIPS set-auto-float-dividend command). When this behavior is
enabled (by default) the dividend of the division function is
automatically converted to a floating point number.

CLIPS Advanced Programming Guide 51

CLIPS Reference Manual

Arguments:

Returns:

The new value for the behavior: TRUE (1) to enable the behavior
and FALSE (0) to disable it.

Returns the old value for the behavior.

4.1.23 SetDynamicConstraintChecking

int SetDynamicConstraintChecking(value);

int value;

Purpose:

Arguments:

Returns:

Sets the value of the dynamic constraint checking behavior (the C
equivalent of the CLIPS command set-dynamic-constraint-
checking). When this behavior is disabled (FALSE by default),
newly created data objects (such as deftemplate facts and instances)
do not have their slot values checked for constraint violations.
When this behavior is enabled (TRUE), the slot values are checked
for constraint violations. The return value for this function is the old
value for the behavior.

The new value for the behavior: TRUE (1) to enable the behavior
and FALSE (0) to disable it.

Returns the old value for the behavior.

4.1.24 SetSequenceQOperator Recognition

int SetSequenceOperatorRecognition(value);

int value;

Purpose:

Arguments:

Returns:

52

Sets the sequence operator recognition behavior (the C equivalent
of the CLIPS set-sequence-operator-recognition command).
When this behavior is disabled (by default) multifield variables
found in function calls are treated as a single argument. When this
behaviour is enabled, multifield variables are expanded and passed
as separate arguments in the function call.

The new value for the behavior: TRUE (1) to enable the behavior
and FALSE (0) to disable it.

Returns the old value for the behavior.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.1.25 SetStaticConstraintChecking

int SetStaticConstraintChecking(value);
int value;

Purpose: Sets the value of the static constraint checking behavior (the C
equivalent of the CLIPS command set-static-constraint-checking).
When this behavior is disabled (FALSE), constraint violations are
not checked when function calls and constructs are parsed. When
this behavior is enabled (TRUE by default), constraint violations
are checked when function calls and constructs are parsed. The
return value for this function is the old value for the behavior.

Arguments: The new value for the behavior: TRUE (1) to enable the behavior
and FALSE (0) to disable it.

Returns: Returns the old value for the behavior.

4.2 DEBUGGING FUNCTIONS

The following function call controls the CLIPS debugging aids:

4.2.1 DribbleActive

int DribbleActive();

Purpose: Determines if the storing of dribble information is active.
Arguments: None.
Returns: Zero if dribbling is not active, non-zero otherwise.

4.2.2 DribbleOff

int DribbleOff();

Purpose: Turns off the storing of dribble information (the C equivalent of the
CLIPS dribble-off command).

Arguments: None.

Returns: A zero if an error occurred closing the file; otherwise a one.

CLIPS Advanced Programming Guide 53

CLIPS Reference Manual

4.2.3 DribbleOn

int
char *fileName;

DribbleOn(fileName);

Purpose: Allows the dribble function of CLIPS to be turned on (the C
equivalent of the CLIPS dribble-on command).
Arguments: The name of the file in which to store dribble information. Only one
dribble file may be opened at a time.
Returns: A zero if an error occurred opening the file; otherwise a one.
4.2.4 GetWatchltem
int GetWatchItem(item);

char *item;

Purpose:

Arguments:

Returns:

4.2.5 Unwatch

int Unwatch(item);
char *item;

Purpose:

Arguments:

Returns:

54

Returns the current value of a watch item.

The item to be activated or deactivated which should be one of the
following strings: facts, rules, activations, focus, compilations,
statistics, globals, instances, slots, messages, message-handlers,
generic-functions, method, or deffunctions.

Returns 1 if the watch item is enabled, O if the watch item is
disabled, and -1 if the watch item does not exist.

Allows the tracing facilities of CLIPS to be deactivated (the C
equivalent of the CLIPS unwatch command).

The item to be deactivated which should be one of the following
strings: facts, rules, activations, focus, compilations, statistics,
globals, deffunctions, instances, slots, messages, message-handlers,
generic-functions, methods, or all. If all is selected, all possible
watch items will not be traced.

A one if the watch item was successfully set; otherwise a zero.

Section 4 - Embedding CLIPS

4.2.6 Watch

int Watch(item);
char *item;

Purpose:

Arguments:

Returns:

CLIPS Reference Manual

Allows the tracing facilities of CLIPS to be activated (the C
equivalent of the CLIPS watch command).

The item to be activated which should be one of the following
strings: facts, rules, activations, focus, compilations, statistics,
globals, deffunctions, instances, slots, messages, message-handlers,
generic-functions, methods, or all. If all is selected, all possible
watch items will be traced.

A one if the watch item was successfully set; otherwise a zero.

4.3 DEFTEMPLATE FUNCTIONS

The following function calls are used for manipulating deftemplates.

4.3.1 DeftemplateModule

char *DeftemplateModule(deftemplatePtr);

void *deftemplatePtr;

Purpose:

Arguments:

Returns:

Returns the module in which a deftemplate is defined (the C
equivalent of the CLIPS deftemplate-module command).

A generic pointer to a deftemplate.

A string containing the name of the module in which the
deftemplate is defined.

4.3.2 DeftemplateSlotAllowed Values

void DeftemplateSlotAllowedValues(deftemplatePtr,slotName,&result);

void *deftemplatePtr;

char *slotName;
DATA_OBJECT result;

Purpose:

Arguments:

Groups the allowed-values for a slot into a multifield data object.
This function is the C equivalent of the CLIPS deftemplate-
slot-allowed-values function.

1) A generic pointer to a deftemplate data structure.

CLIPS Advanced Programming Guide 55

CLIPS Reference Manual

2) Name of the slot.

3) Pointer to the data object in which to store the multifield. The
multifield functions described in section 3.2.4 can be used to
retrieve the allowed values from the list.

Returns: No meaningful return value.

4.3.3 DeftemplateSlotCardinality

void DeftemplateSlotCardinality(deftemplatePtr,slotName,result);
void *deftemplatePtr;

char *slotName;

DATA_OBJECT *result;

Purpose: Groups the cardinality information for a slot into a multifield data
object. This function is the C equivalent of the CLIPS deftemplate-
slot-cardinality function.

Arguments: 1) A generic pointer to a deftemplate data structure.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.3.4 DeftemplateSlotDefaultP

int DeftemplateSlotDefaultP(deftemplatePtr,slotName);
void *deftemplatePtr,
char *slotName;

Purpose: Determines if the specified slot has a default value. This function is
the C equivalent of the CLIPS deftemplate-slot-defaultp function.

Arguments: 1) A generic pointer to a deftemplate data structure.
2) The name of the slot.

Returns: One of the following defined integer constants:
NO_DEFAULT

STATIC_DEFAULT
DYNAMIC_DEFAULT

56 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.3.5 DeftemplateSlotDefaultValue

void DeftemplateSlotDefaultValue(deftemplatePtr,slotName,result);
void *defclassPtr;

char *slotName;

DATA_OBJECT *result;

Purpose: Returns the default value in the data object. This function is the C
equivalent of the CLIPS deftemplate-slot-default-value function.

Arguments: 1) A generic pointer to a deftemplate data structure.
2) Name of the slot.
3) Pointer to the data object in which to store the default value.

Returns: No meaningful return value.

4.3.6 DeftemplateSlotExistP

int DeftemplateSlotExistP(deftemplatePtr,slotName);
void *deftemplatePtr,
char *slotName;

Purpose: Determines if the specified slot exists. This function is the C
equivalent of the CLIPS deftemplate-slot-existp function.

Arguments: 1) A generic pointer to a deftemplate data structure.
2) The name of the slot.

Returns: An integer: If the slot is defined in the specified deftemplate, then 1
is returned, otherwise O is returned.

4.3.7 DeftemplateSlotMultiP

int DeftemplateSlotMultiP(deftemplatePtr,slotName);
void *deftemplatePtr,
char *slotName;

Purpose: Determines if the specified slot is a multifield slot. This function is
the C equivalent of the CLIPS deftemplate-slot-multip function.

Arguments: 1) A generic pointer to a deftemplate data structure.
2) The name of the slot.

CLIPS Advanced Programming Guide 57

CLIPS Reference Manual

Returns: An integer: If the slot in the specified deftemplate is a multifield
slot, then 1 is returned, otherwise O is returned.

4.3.8 DeftemplateSlotNames

void DeftemplateSlotNames(deftemplatePtr,&theValue);
void *deftemplatePtr;
DATA_OBJECT slotNames;

Purpose: Retrieves the list of slot names associated with a deftemplate (the C
equivalent of the CLIPS deftemplate-slot-names function).

Arguments: 1) A generic pointer to a deftemplate data structure.

2) A pointer to a DATA_OBJECT in which to place a multifield
value containing the deftemplate’s slot name symbols. For
implied deftemplates, a multifield value containing the single
symbol implied is returned. See sections 3.2.3 and 3.2.4 for
information on getting the value stored in a DATA_OBJECT.

Returns: No meaningful value.

4.3.9 DeftemplateSlotRange

void DeftemplateSlotRange(deftemplatePtr,slotName,result);
void *deftemplatePtr;

char *slotName;

DATA_OBJECT *result;

Purpose: Groups the numeric range information for a slot into a multifield
data object. This function is the C equivalent of the CLIPS
deftemplate-slot-range function.

Arguments: 1) A generic pointer to a deftemplate data structure.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.3.10 DeftemplateSlotSingleP

int DeftemplateSlotSingleP(deftemplatePtr,slotName);
void *deftemplatePtr,
char *slotName;

58 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Purpose: Determines if the specified slot is a single-field slot. This function
is the C equivalent of the CLIPS deftemplate-slot-singlep function.

Arguments: 1) A generic pointer to a deftemplate data structure.
2) The name of the slot.

Returns: An integer: If the slot in the specified deftemplate is a single-field
slot, then 1 is returned, otherwise O is returned.

4.3.11 DeftemplateSlotTypes

void DeftemplateSlotTypes(deftemplatePtr,slotName,result);
void *deftemplatePtr;

char *slotName;
DATA_OBJECT *result;

Purpose: Groups the names of the primitive data types allowed for a slot into
a multifield data object. This function is the C equivalent of the
CLIPS deftemplate-slot-types function.

Arguments: 1) A generic pointer to a deftemplate data structure.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.3.12 FindDeftemplate

void *FindDeftemplate(deftemplateName);
char *deftemplateName;

Purpose: Returns a generic pointer to a named deftemplate.

Arguments: The name of the deftemplate to be found.

Returns: A generic pointer to the named deftemplate if it exists, otherwise
NULL.

CLIPS Advanced Programming Guide 59

CLIPS Reference Manual

4.3.13 GetDeftemplateList

void GetDeftemplatelList(&returnValue,theModule);
DATA_OBJECT returnValue;
void *theModule;

Purpose: Returns the list of deftemplates in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-deftemplate-list function).

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the deftemplate names from
the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

Returns: No meaningful return value.

4.3.14 GetDeftemplateName

char *GetDeftemplateName(deftemplatePtr);
void *deftemplatePtr;

Purpose: Returns the name of a deftemplate.
Arguments: A generic pointer to a deftemplate data structure.
Returns: A string containing the name of the deftemplate.

4.3.15 GetDeftemplatePPForm

char *GetDeftemplatePPForm(deftemplatePtr);
void *deftemplatePtr;

Purpose: Returns the pretty print representation of a deftemplate.
Arguments: A generic pointer to a deftemplate data structure.
Returns: A string containing the pretty print representation of the deftemplate

(or the NULL pointer if no pretty print representation exists).

60 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.3.16 GetDeftemplateWatch

unsigned GetDeftemplateWatch(deftemplatePtr);
void *deftemplatePtr;

Purpose: Indicates whether or not a particular deftemplate is being watched.

Arguments: A generic pointer to a deftemplate data structure.

Returns: An integer; one (1) if the deftemplate is being watched, otherwise a
zero (0).

4.3.17 GetNextDeftemplate

void *GetNextDeftemplate(deftemplatePtr);
void *deftemplatePtr;

Purpose: Provides access to the list of deftemplates.

Arguments: A generic pointer to a deftemplate data structure (or NULL to get
the first deftemplate).

Returns: A generic pointer to the first deftemplate in the list of deftemplates
if deftemplatePtr is NULL, otherwise a generic pointer to the
deftemplate immediately following deftemplatePtr in the list of
deftemplates. If deftemplatePtr is the last deftemplate in the list of
deftemplates, then NULL is returned.

4.3.18 IsDeftemplateDeletable

int IsDeftemplateDeletable(deftemplatePtr);
void *deftemplatePtr;

Purpose: Indicates whether or not a particular deftemplate can be deleted.

Arguments: A generic pointer to a deftemplate data structure.

Returns: An integer; zero (0) if the deftemplate cannot be deleted, otherwise
aone (1).

4.3.19 ListDeftemplates

void ListDeftemplates(logicalName,theModule);
char *logicalName;
void *theModule;

CLIPS Advanced Programming Guide 61

CLIPS Reference Manual

Purpose: Prints the list of deftemplates (the C equivalent of the CLIPS
list-deftemplates command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the deftemplates to
be listed. A NULL pointer indicates that deftemplate in all
modules should be listed.

Returns: No meaningful return value.

4.3.20 SetDeftemplateWatch

void SetDeftemplateWatch(newState,deftemplatePtr);
unsigned newState;
void *deftemplatePtr;

Purpose: Sets the facts watch item for a specific deftemplate.

Arguments: The new facts watch state and a generic pointer to a deftemplate
data structure.

4.3.21 Undeftemplate

int Undeftemplate(deftemplatePtr);
void *deftemplatePtr;

Purpose: Removes a deftemplate from CLIPS (the C equivalent of the CLIPS
undeftemplate command).

Arguments: A generic pointer to a deftemplate data structure. If the NULL
pointer is used, then all deftemplates will be deleted.

Returns: An integer; zero (0) if the deftemplate could not be deleted,
otherwise a one (1).

Other: This function can trigger garbage collection.

62 Section 4 - Embedding CLIPS

4.4 FACT FUNCTIONS

The following function calls

4.4.1 Assert

void *Assert(factPtr);
void *factPtr;

Purpose:

Arguments:

Returns:

Other:

WARNING:

4.4.2 AssertString

CLIPS Reference Manual

manipulate and display information about facts.

Adds a fact created using the function CreateFact to the fact-list. If
the fact was asserted successfully, Assert will return a pointer to the
fact. Otherwise, it will return NULL (i.e., the fact was already in the
fact-list).

A generic pointer to the fact created using CreateFact. The values
of the fact should be initialized before calling Assert.

A generic pointer to a fact structure. If the fact was asserted
successfully, Assert will return a generic pointer to the fact.
Otherwise, it will return NULL (i.e., the fact was already in the
fact-list).

This function can trigger garbage collection.

If the return value from Assert is stored as part of a persistent data
structure or in a static data area, then the function
IncrementFactCount should be called to insure that the fact cannot
be disposed while external references to the fact still exist.

void *AssertString(string);

char *string;

Purpose:

Arguments:

Returns:

Other:

Asserts a fact into the CLIPS fact-list (the C equivalent of the
CLIPS assert-string command).

One argument; a pointer to a string containing a list of primitive
data types (symbols, strings, integers, floats, and/or instance
names).

A generic pointer to a fact structure.

This function can trigger garbage collection.

CLIPS Advanced Programming Guide 63

CLIPS Reference Manual

WARNING: If the return value from AssertString is stored as part of a
persistent data structure or in a static data area, then the function
IncrementFactCount should be called to insure that the fact cannot
be disposed while external references to the fact still exist.

Examples
If the following deftemplate has been processed by CLIPS,

(deftemplate example
(multislot v)
(slot w (default 9))
(slot x)

(slot y)
(multislot z))

then the following fact

(example (x 3) (y red) (z 1.5 b))

can be added to the fact-list using the function shown below.

void AddExampleFactl1()

{
AssertString("(example (x 3) (y red) (z 1.5 b))");

}

To construct a string based on variable data, use the C library function sprintf as shown
following.

void VariableFactAssert(

int number,
char *status)

{
char tempBuffer[50];
sprintf(tempBuffer,"(example (x %d) (y %s))",number,status);

AssertString(tempBuffer);
3

4.4.3 AssignFactSlotDefaults

int AssignFactSlotDefaults(theFact);
void *theFact;

Purpose: Assigns default values to a fact.

Arguments: A generic pointer to a fact data structure.

64 Section 4 - Embedding CLIPS

Returns:

4.4.4 CreateFact

CLIPS Reference Manual

Boolean value. TRUE if the default values were successfully set,
otherwise FALSE.

void *CreateFact(deftemplatePtr);

void *deftemplatePtr;

Purpose:

Arguments:

Returns:

Other:

Function CreateFact returns a pointer to a fact structure with
factSize fields. Once this fact structure is obtained, the fields of the
fact can be given values by using PutFactSlot and
AssignFactSlotDefaults. Function Assert should be called when
the fact is ready to be asserted.

A generic pointer to a deftemplate data structure (which indicates
the type of fact being created).

A generic pointer to a fact data structure.

Use the CreateFact function to create a new fact and then the
PutFactSlot function to set one or more slot values. The
AssignFactSlotDefaults function is then used to assign default
values for slots not set with the PutFactSlot function. Finally, the
Assert function is called with the new fact.

Since CreateFact requires a generic deftemplate pointer, it is not
possible to use it to create ordered facts unless the associated
implied deftemplate has already been created. In cases where the
implied deftemplate has not been created, the function AssertString
can be used to create ordered facts.

This function allows individual fields of a fact to be assigned under
programmer control. This is useful, for example, if a fact asserted
from an external function needs to contain an external address or an
instance address (since the function AssertString does not permit
these data types). For most situations in which a fact needs to be
asserted, however, the AssertString function should be preferred (it
is slighter slower than using the CreateFact and Assert functions,
but it is much easier to use and less prone to being used
incorrectly).

CLIPS Advanced Programming Guide 65

CLIPS Reference Manual

Examples
If the following deftemplate has been processed by CLIPS,

(deftemplate example
(multislot v)
(slot w (default 9))
(slot x)

(slot y)
(multislot z))

then the following fact

(example (x 3) (y red) (z 1.5 b))

can be added to the fact-list using the function shown below.

void AddExampleFact2()
{
void *newFact;
void *templatePtr;
void *theMultifield;
DATA_OBJECT theValue;

/* */
/* Disable garbage collection. It's only necessary to disable */
/* garbage collection when calls are made into CLIPS from an */
/* embedding program. It's not necessary to do this when the */

/* the calls to user code are made by CLIPS (such as for */
/* user-defined functions) or in the case of this example, */
/* there dare no calls to functions which can trigger garbage */
/* collection (such as Send or FunctionCall. */
/* */
IncrementGCLocks();

/* */

/* Create the fact. */

/* */

templatePtr = FindDeftemplate("example");
newFact = CreateFact(templatePtr);
if (newFact == NULL) return;

/* */
/* Set the value of the x slot. */
/* */

theValue.type = INTEGER;
theValue.value = AddLong(3);
PutFactSlot(newFact,"x",&theValue);

/* */
/* Set the value of the y slot. */
/* */

66 Section 4 - Embedding CLIPS

CLIPS Reference Manual

theValue.type = SYMBOL;
theValue.value = AddSymbol("red");
PutFactSlot(newFact,"y" ,&theValue);

/* */
/* Set the value of the z slot. */
/* */

theMultifield = CreateMultifield(2);
SetMFType(theMultifield,1,FLOAT);
SetMFValue(theMultifield,1,AddDouble(1.5));
SetMFType(theMultifield,2,SYMBOL);
SetMFValue(theMultifield,2,AddSymbol("b"));
SetDOBegin(theValue,1);
SetDOEnd(theValue,?2);

theValue.type = MULTIFIELD;
theValue.value = theMultifield;
PutFactSlot(newFact,"z",&theValue);

/* */
/* Assign default values since all */
/* slots were not initialized. */
/* */

AssignFactSlotDefaults(newFact);

/* */
/* Enable garbage collection. Each call to IncrementGCLocks */
/* should have a corresponding call to DecrementGCLocks. */
/* */
DecrementGCLocks();

/* */

/* Assert the fact. */

/* */

Assert(newFact);

3

4.4.5 DecrementFactCount

void DecrementFactCount(factPtr);
void *factPtr;

Purpose: This function should only be called to reverse the effects of a
previous call to IncrementFactCount. As long as an fact's count is
greater than zero, the memory allocated to it cannot be released for
other use.

Arguments: A generic pointer to a fact.

CLIPS Advanced Programming Guide 67

CLIPS Reference Manual

Returns: No meaningful return value.

4.4.6 FactDeftemplate

void *FactDeftemplate(factPtr);
void *factPtr;

Purpose: Returns the deftemplate associated with a fact.
Arguments: A generic pointer to a fact data structure.
Returns: Returns a generic pointer to the deftemplate data structure

associated with the fact.

4.4.7 FactExistp

long FactExistp(factPtr);
void *factPtr;

Purpose: Indicates whether a fact is still in the fact-list or has been retracted
(the C equivalent of the CLIPS fact-existp function).

Arguments: 1) A generic pointer to a fact data structure.
Returns: An integer; zero (0) if the fact is not in the fact-list, otherwise a one
(1).
4.4.8 FactIndex

long long FactIndex(factPtr);
void *factPtr;

Purpose: Returns the fact index of a fact (the C equivalent of the CLIPS fact-
index command).

Arguments: A generic pointer to a fact data structure.
Returns: A long integer (the fact-index of the fact).
4.4.9 Facts

void Facts(logicalName,theModule,start,end,max);
char *logicalName;
void *theModule;

68 Section 4 - Embedding CLIPS

CLIPS Reference Manual

long long start, end, max;

Purpose:

Arguments:

Returns:

4.4.10 FactSlotNames

Prints the list of all facts currently in the fact-list (the C equivalent
of the CLIPS facts command). Output is sent to the logical name
wdisplay.

1y
2)

3)

4)

5)

The logical name to which the listing output is sent.

A generic pointer to the module containing the facts to be listed
(all facts visible to that module). A NULL pointer indicates that
all facts in all modules should be listed.

The start index of the facts to be listed. Facts with indices less
than this value are not listed. A value of -1 indicates that the
argument is unspecified and should not restrict the facts printed.
The end index of the facts to be listed. Facts with indices greater
than this value are not listed. A value of -1 indicates that the
argument is unspecified and should not restrict the facts printed.
The maximum number of facts to be listed. Facts in excess of
this limit are not listed. A value of -1 indicates that the argument
is unspecified and should not restrict the facts printed.

No meaningful return value.

void FactSlotNames(factPtr,&theValue);

void *factPtr;

DATA_OBJECT slotNames;

Purpose:

Arguments:

Returns:

4.4.11 GetFactDuplication

Retrieves the list of slot names associated with a fact (the C
equivalent of the CLIPS fact-slot-names function).

1) A generic pointer to a fact data structure.
2) A pointer to a DATA_OBJECT in which to place a multifield

value containing the fact’s slot name symbols. For ordered facts,
a multifield value containing the single symbol implied is
returned. See sections 3.2.3 and 3.2.4 for information on getting
the value stored in a DATA_OBJECT.

No meaningful value.

int GetFactDuplication(Q);

CLIPS Advanced Programming Guide 69

CLIPS Reference Manual

Purpose: Returns the current value of the fact duplication behavior (the C
equivalent of the CLIPS get-fact-duplication command).

Arguments: None.

Returns: An integer; FALSE (0) if the behavior is disabled and TRUE (1) if
the behavior is enabled.

4.4.12 GetFactList

void GetFactList(&returnValue,theModule);
DATA_OBJECT returnValue;
void *theModule;

Purpose: Returns the list of facts visible to the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-fact-list function).

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the deffacts names from the
list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

Returns: No meaningful return value.

4.4.13 GetFactListChanged
int GetFactListChanged();

Purpose: Determines if any changes to the fact list have occurred. If this
function returns a non-zero integer, it is the user's responsibility to
call SetFactListChanged(0) to reset the internal flag. Otherwise, this
function will continue to return non-zero even when no changes
have occurred. This function is primarily used to determine when to
update a display tracking the fact list.

Arguments: None.

Returns: 0 if no changes to the fact list have occurred, non-zero otherwise.

70 Section 4 - Embedding CLIPS

4.4.14 GetFactPPForm

CLIPS Reference Manual

void GetFactPPForm(buffer,bufferLength,factPtr);

char *buffer;

unsigned bufferLength;

void *factPtr;

Purpose:

Arguments:

Returns:

4.4.15 GetFactSlot

Returns the pretty print representation of a fact in the caller's buffer.

1) A pointer to the caller's character buffer.

2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null
character).

3) A generic pointer to a fact data structure.

No meaningful return value. The fact pretty print form is stored in
the caller's buffer.

int GetFactSlot(factPtr,slotName,&theValue);

void *factPtr;
char *slotName;
DATA_OBJECT theValue;

Purpose:

Arguments:

Returns:

4.4.16 GetNextFact

Retrieves a slot value from a fact.

1) A generic pointer to a fact data structure.

2) The name of the slot to be retrieved (NULL should be used for
the implied multifield slot of an implied deftemplate).

3) A pointer to a DATA_OBJECT in which to place the slot’s
value. See sections 3.2.3 and 3.2.4 for information on getting the
value stored in a DATA_OBIJECT.

Boolean value. TRUE if the slot value was successfully retrieved,
otherwise FALSE.

void *GetNextFact(factPtr);

void *factPtr;

Purpose:

Provides access to the fact-list.

CLIPS Advanced Programming Guide 71

CLIPS Reference Manual

Arguments:

Returns:

Other:

WARNING:

A generic pointer to a fact data structure (or NULL to get the first
fact in the fact-list).

A generic pointer to the first fact in the fact-list if factPtr is NULL,
otherwise a generic pointer to the fact immediately following
factPtr in the fact-list. If factPtr is the last fact in the fact-list, then
NULL is returned.

Once this generic pointer to the fact structure is obtained, the fields
of the fact can be examined by using the macros GetMFType and
GetMFValue. The values of a fact obtained using this function
should never be changed. See CreateFact for details on accessing
deftemplate facts.

Do not call this function with a pointer to a fact that has been
retracted. If the return value from GetNextFact is stored as part of a
persistent data structure or in a static data area, then the function
IncrementFactCount should be called to insure that the fact cannot
be disposed while external references to the fact still exist.

4.4.17 GetNextFactInTemplate

void *GetNextFactInTemplate(templatePtr,factPtr);

void *templatePtr;

void *factPtr;

Purpose:

Arguments:

Returns:

Other:

72

Provides access to the list of facts for a particular deftemplate.

1) A generic pointer to a deftemplate.
2) A generic pointer to a fact data structure (or NULL to get the
first fact from the deftemplate’s fact-list).

A generic pointer to the first fact of the specified deftemplate if
factPtr is NULL, otherwise a generic pointer to the next fact of the
specified deftemplate immediately following factPtr. If factPtr is
the last fact belonging to the deftemplate, then NULL is returned.

Once this generic pointer to the fact structure is obtained, the fields
of the fact can be examined by using the macros GetMFType and
GetMFValue. The values of a fact obtained using this function
should never be changed. See CreateFact for details on accessing
deftemplate facts.

Section 4 - Embedding CLIPS

WARNING:

CLIPS Reference Manual

Do not call this function with a pointer to a fact that has been
retracted. If the return value from GetNextFactInTemplate is
stored as part of a persistent data structure or in a static data area,
then the function IncrementFactCount should be called to insure
that the fact cannot be disposed while external references to the fact
still exist.

4.4.18 IncrementFactCount

void IncrementFactCount(factPtr);

void *factPtr;

Purpose:

Arguments:

Returns:

4.4.19 LoadFacts

This function should be called for each external copy of pointer to
a fact to let CLIPS know that such an outstanding external reference
exists. As long as an fact's count is greater than zero, CLIPS will
not release its memory because there may be outstanding pointers to
the fact. However, the fact can still be functionally retracted, i.e. the
fact will appear to no longer be in the fact-list. The fact address
always can be safely examined using the fact access functions as
long as the count for the fact is greater than zero. Retracting an
already retracted fact will have no effect, however, the function
AddFact should not be called twice for the same pointer created
using CreateFact. Note that this function only needs to be called if
you are storing pointers to facts that may later be referenced by
external code after the fact has been retracted.

A generic pointer to a fact.

No meaningful return value.

int LoadFacts(fileName);

char *fileName;

Purpose:

Arguments:

Returns:

Loads a set of facts into the CLIPS data base (the C equivalent of
the CLIPS load-facts command).

A string representing the name of the file.

Returns an integer; if zero, an error occurred while opening the file.
If non-zero no errors were detected while performing the load.

CLIPS Advanced Programming Guide 73

CLIPS Reference Manual

4.4.20 LoadFactsFromString

int LoadFactsFromString(inputString,maximumPosition);

char *inputString;
int maximumPosition;

Purpose:

Arguments:

Returns:

4.4.21 PPFact

Loads a set of facts into the CLIPS data base using a string as the
input source (in a manner similar to the CLIPS load-facts
command).

1) A string containing the fact definitions to be loaded.
2) The maximum number of characters to be read from the string.
A value of -1 indicates the entire string.

Returns an integer; if zero, an error occurred while processing the
string.

void PPFact(factPtr,logicalName,ignoreDefaultFlag);

void *factPtr;
char *logicalName;

int ignoreDefaultsFlag;

Purpose:

Arguments:

Returns:

4.4.22 PutFactSlot

Displays a single fact (the C equivalent of the CLIPS ppfact
command).

1) A generic pointer to a fact.

2) The logical name to which the listing output is sent.

3) The integer 1 to exclude slots from display where the current
value is the same as the static default, otherwise the integer O to
display all slots regardless of their current value.

No meaningful return value.

int PutFactSlot(factPtr,slotName,&theValue);

void *factPtr;
char *slotName;

DATA_OBJECT theValue;

Purpose:

Arguments:

74

Sets the slot value of a fact.

1) A generic pointer to a fact data structure.

Section 4 - Embedding CLIPS

Returns:

Warning:

4.4.23 Retract

int Retract(factPtr);

void *factPtr;

Purpose:

Arguments:

Returns:

Other:

4.4.24 SaveFacts

int

int

CLIPS Reference Manual

2) The name of the slot to be set (NULL should be used for the
implied multifield slot of an implied deftemplate).

3) A pointer to a DATA_OBJECT that contains the slot’s new
value. A multifield or implied multifield slot should only be
passed a multifield value. A single field slot should only be
passed a single field value. See sections 3.3.3 and 3.3.4 for
information on setting the value stored in a DATA_OBJECT.

Boolean value. TRUE if the slot value was successfully set,
otherwise FALSE.

Do not use this function to change the slot value of a fact that has
already been asserted. This function should only be used on facts
created using CreateFact.

Retracts a fact from the CLIPS fact-list (the C equivalent of the
CLIPS retract command).

A generic pointer to a fact structure (usually captured as the return
value from a call to AssertString or Assert). If the NULL pointer is
used, then all facts will be retracted.

An integer; zero (0) if fact already has been retracted, otherwise a
one (1).

The caller of RetractFact is responsible for insuring that the fact
passed as an argument is still wvalid. The functions
IncrementFactCount and DecrementFactCount can be used to
inform CLIPS whether a fact is still in use.

This function can trigger garbage collection.

SaveFacts(fileName,saveScope,NULL);
char *fileName;

saveScope;

CLIPS Advanced Programming Guide 75

CLIPS Reference Manual

Purpose:

Arguments:

Returns:

4.4.25 SetFactDuplication

Saves the facts in the fact-list to the specified file (the C equivalent
of the CLIPS save-facts command).

A string representing the name of the file and an integer constant
representing the scope for the facts being saved which should be
either LOCAL_SAVE or VISIBLE_SAVE. The third argument is
used internally by the CLIPS save-facts command and should be set
to NULL when called from user code.

Returns an integer; if zero, an error occurred while opening the file.
If non-zero no errors were detected while performing the save.

int SetFactDuplication(value);

int value;

Purpose:

Arguments:

Returns:

4.4.26 SetFactListChanged

Sets the fact duplication behavior (the C equivalent of the CLIPS
set-fact-duplication command). When this behavior is disabled (by
default), asserting a duplicate of a fact already in the fact-list
produces no effect. When enabled, the duplicate fact is asserted
with a new fact-index.

The new value for the behavior: TRUE (1) to enable the behavior
and FALSE (0) to disable it.

Returns the old value for the behavior.

void SetFactListChanged(changedFlag);

int changedFlag;

Purpose:

Arguments:

Returns:

76

Sets the internal boolean flag which indicates when changes to the
fact list have occurred. This function is normally used to reset the
flag to zero after GetFactListChanged() returns non-zero.

An integer indicating whether changes in the fact list have occurred
(non-zero) or not (0).

Nothing useful.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.5 DEFFACTS FUNCTIONS

The following function calls are used for manipulating deffacts.

4.5.1 DeffactsModule

char *DeffactsModule(theDeffacts);
void *theDeffacts;

Purpose: Returns the module in which a deffacts is defined (the C equivalent
of the CLIPS deffacts-module command).

Arguments: A generic pointer to a deffacts.
Returns: A string containing the name of the module in which the deffacts is
defined.
4.5.2 FindDeffacts

void *FindDeffacts(deffactsName);
char *deffactsName;

Purpose: Returns a generic pointer to a named deffacts.

Arguments: The name of the deffacts to be found.

Returns: A generic pointer to the named deffacts if it exists, otherwise
NULL.

4.5.3 GetDeffactsList

void GetDeffactsList(&returnValue,theModule);
DATA_OBJECT returnValue;
void *theModule;

Purpose: Returns the list of deffacts in the specified module as a multifield
value in the returnValue DATA_OBJECT (the C equivalent of the
CLIPS get-deffacts-list function).

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the deffacts names from the
list.

CLIPS Advanced Programming Guide 77

CLIPS Reference Manual

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

Returns: No meaningful return value.

4.5.4 GetDeffactsName

char *GetDeffactsName(deffactsPtr);
void *deffactsPtr;

Purpose: Returns the name of a deffacts.
Arguments: A generic pointer to a deffacts data structure.
Returns: A string containing the name of the deffacts.

4.5.5 GetDeffactsPPForm

char *GetDeffactsPPForm(deffactsPtr);
void *deffactsPtr;

Purpose: Returns the pretty print representation of a deffacts.
Arguments: A generic pointer to a deffacts data structure.
Returns: A string containing the pretty print representation of the deffacts (or

the NULL pointer if no pretty print representation exists).

4.5.6 GetNextDeffacts

void *GetNextDeffacts(deffactsPtr);
void *deffactsPtr;

Purpose: Provides access to the list of deffacts.

Arguments: A generic pointer to a deffacts data structure (or NULL to get the
first deffacts).

Returns: A generic pointer to the first deffacts in the list of deffacts if
deffactsPtr is NULL, otherwise a generic pointer to the deffacts
immediately following deffactsPtr in the list of deffacts. If
deffactsPtr is the last deffacts in the list of deffacts, then NULL is
returned.

78 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.5.7 IsDeffactsDeletable

int IsDeffactsDeletable(deffactsPtr);
void *deffactsPtr;

Purpose: Indicates whether or not a particular deffacts can be deleted.
Arguments: A generic pointer to a deffacts data structure.
Returns: An integer; zero (0) if the deffacts cannot be deleted, otherwise a
one (1).
4.5.8 ListDeffacts

void ListDeffacts(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of deffacts (the C equivalent of the CLIPS
list-deffacts command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the deffacts to be
listed. A NULL pointer indicates that deffacts in all modules
should be listed.

Returns: No meaningful return value.

4.5.9 Undeffacts

int Undeffacts(deffactsPtr);
void *deffactsPtr;

Purpose: Removes a deffacts construct from CLIPS (the C equivalent of the
CLIPS undeffacts command).

Arguments: A generic pointer to a deffacts data structure. If the NULL pointer is
used, then all deffacts will be deleted.

Returns: An integer; zero (0) if the deffacts could not be deleted, otherwise a
one (1).
Other: This function can trigger garbage collection.

CLIPS Advanced Programming Guide 79

CLIPS Reference Manual

4.6 DEFRULE FUNCTIONS

The following function calls are used for manipulating defrules.

4.6.1 DefruleHasBreakpoint

int DefruleHasBreakpoint(defrulePtr);
void *defrulePtr;

Purpose: Indicates whether or not a particular defrule has a breakpoint set.
Arguments: A generic pointer to a defrule data structure.
Returns: An integer; one (1) if a breakpoint exists for the rule, otherwise a
zero (0).
4.6.2 DefruleModule

char *DefruleModule(theDefrule);
void *theDefrule;

Purpose: Returns the module in which a defrule is defined (the C equivalent
of the CLIPS defrule-module command).

Arguments: A generic pointer to a defrule.
Returns: A string containing the name of the module in which the defrule is
defined.
4.6.3 FindDefrule

void *FindDefrule(defruleName);
char *defruleName;

Purpose: Returns a generic pointer to a named defrule.

Arguments: The name of the defrule to be found.

Returns: A generic pointer to the named defrule if it exists, otherwise NULL.
4.6.4 GetDefruleList

void GetDefrulelList(&returnValue,theModule);
DATA_OBJECT returnValue;

80 Section 4 - Embedding CLIPS

CLIPS Reference Manual

void *theModule;

Purpose: Returns the list of defrules in the specified module as a multifield
value in the returnValue DATA_OBJECT (the C equivalent of the
CLIPS get-defrule-list function)..

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the defrule names from the
list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

Returns: No meaningful return value.

4.6.5 GetDefruleName

char *GetDefruleName(defrulePtr);
void *defrulePtr;

Purpose: Returns the name of a defrule.
Arguments: A generic pointer to a defrule data structure.
Returns: A string containing the name of the defrule.

4.6.6 GetDefrulePPForm

char *GetDefrulePPForm(defrulePtr);
void *defrulePtr;

Purpose: Returns the pretty print representation of a defrule.
Arguments: A generic pointer to a defrule data structure.
Returns: A string containing the pretty print representation of the defrule (or

the NULL pointer if no pretty print representation exists).

4.6.7 GetDefruleWatchActivations

unsigned GetDefruleWatchActivations(defrulePtr);
void *defrulePtr;

CLIPS Advanced Programming Guide 81

CLIPS Reference Manual

Purpose: Indicates whether or not a particular defrule is being watched for
activations.

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; one (1) if the defrule is being watched for activations,

otherwise a zero (0).

4.6.8 GetDefruleWatchFirings

unsigned GetDefruleWatchFirings(defrulePtr);
void *defrulePtr;

Purpose: Indicates whether or not a particular defrule is being watched for
rule firings.

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; one (1) if the defrule is being watched for rule firings,
otherwise a zero (0).

4.6.9 GetIncrementalReset

int GetIncrementalReset();

Purpose: Returns the current value of the incremental reset behavior (the C
equivalent of the CLIPS get-incremental-reset command).

Arguments: None.

Returns: An integer; FALSE (0) if the behavior is disabled and TRUE (1) if
the behavior is enabled.

4.6.10 GetNextDefrule

void *GetNextDefrule(defrulePtr);
void *defrulePtr;

Purpose: Provides access to the list of defrules.

Arguments: A generic pointer to a defrule data structure (or NULL to get the
first defrule).

82 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Returns: A generic pointer to the first defrule in the list of defrules if
defrulePtr is NULL, otherwise a generic pointer to the defrule
immediately following defrulePtr in the list of defrules. If
defrulePtr is the last defrule in the list of defrules, then NULL is
returned.

4.6.11 IsDefruleDeletable

int IsDefruleDeletable(defrulePtr);
void *defrulePtr;

Purpose: Indicates whether or not a particular defrule can be deleted.
Arguments: A generic pointer to a defrule data structure.
Returns: An integer; zero (0) if the defrule cannot be deleted, otherwise a one
(1).
4.6.12 ListDefrules

void ListDefrules(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of defrules (the C equivalent of the CLIPS
list-defrules command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defrules to be
listed. A NULL pointer indicates that defrules in all modules

should be listed.
Returns: No meaningful return value.
4.6.13 Matches
int Matches(defrulePtr);
void *defrulePtr;
Purpose: Prints the partial matches and activations of a defrule (the C

equivalent of the CLIPS matches command).

Arguments: A generic pointer to a defrule data structure.

CLIPS Advanced Programming Guide 83

CLIPS Reference Manual

Returns: An integer; zero (0) if the rule was not found, otherwise a one (1).

4.6.14 Refresh

int Refresh(defrulePtr);
void *defrulePtr;

Purpose: Refreshes a rule (the C equivalent of the CLIPS refresh command).

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; zero (0) if the rule was not found, otherwise a one (1).
4.6.15 RemoveBreak

int RemoveBreak(defrulePtr);
void *defrulePtr;

Purpose: Removes a breakpoint for the specified defrule (the C equivalent of
the CLIPS remove-break command).

Arguments: A generic pointer to a defrule data structure.

Returns: An integer; zero (0) if a breakpoint did not exist for the rule,
otherwise a one (1).

4.6.16 SetBreak

void SetBreak(defrulePtr);
void *defrulePtr;

Purpose: Adds a breakpoint for the specified defrule (the C equivalent of the
CLIPS set-break command).

Arguments: A generic pointer to a defrule data structure.

Returns: No meaningful return value.

4.6.17 SetDefruleWatchActivations

void SetDefruleWatchActivations(newState,defrulePtr);
unsigned newState;
void *defrulePtr;

84 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Purpose: Sets the activations watch item for a specific defrule.

Arguments: The new activations watch state and a generic pointer to a defrule
data structure.

4.6.18 SetDefruleWatchFirings

void SetDefruleWatchFirings(newState,defrulePtr);
unsigned newState;
void *defrulePtr;

Purpose: Sets the rule firing watch item for a specific defrule.

Arguments: The new rule firing watch state and a generic pointer to a defrule
data structure.

4.6.19 SetIncrementalReset

int SetIncrementalReset(value);
int value;

Purpose: Sets the incremental reset behavior. When this behavior is enabled
(by default), newly defined rules are update based upon the current
state of the fact-list. When disabled, newly defined rules are only
updated by facts added after the rule is defined (the C equivalent of
the CLIPS set-incremental-reset command).

Arguments: The new value for the behavior: TRUE (1) to enable the behavior
and FALSE (0) to disable it.

Returns: Returns the old value for the behavior.

4.6.20 ShowBreaks

void ShowBreaks(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of all rule breakpoints (the C equivalent of the CLIPS
show-breaks command).

Arguments: 1) The logical name to which the listing output is sent.

CLIPS Advanced Programming Guide 85

CLIPS Reference Manual

2) A generic pointer to the module for which the breakpoints are to
be listed. A NULL pointer indicates that the the breakpoints in
all modules should be listed.

Returns: No meaningful return value.

4.6.21 Undefrule

int Undefrule(defrulePtr);
void *defrulePtr;

Purpose: Removes a defrule from CLIPS (the C equivalent of the CLIPS
undefrule command).

Arguments: A generic pointer to a defrule data structure. If the NULL pointer is
used, then all defrules will be deleted.

Returns: An integer; zero (0) if the defrule could not be deleted, otherwise a
one (1).
Other: This function can trigger garbage collection.
4.7 AGENDA FUNCTIONS

The following function calls are used for manipulating the agenda.

4.7.1 AddRunFunction

int AddRunFunction(runItemName, runFunction,priority);
char *runItemName;

void (*runFunction)();

int priority;

void runFunction(Q);

Purpose: Allows a user-defined function to be called after each rule firing.
Such a feature is useful, for example, when bringing data in from
some type of external device which does not operate in a
synchronous manner. A user may define an external function which
will be called by CLIPS after every rule is fired to check for the
existence of new data.

Arguments: 1) The name associated with the user-defined run function. This
name is used by the function RemoveRunFunction.

86 Section 4 - Embedding CLIPS

CLIPS Reference Manual

2) A pointer to the user-defined function which is to be called after
every rule firing. This function must except an environment
pointer if the environment companion function is used (see
section 9.2).

3) The priority of the run item which determines the order in which
run items are called (higher priority items are called first). The
values -2000 to 2000 are reserved for CLIPS system defined run
items and should not be used for user defined run items.

Returns: Returns a zero value if the run item could not be added, otherwise a
non-zero value is returned.

Example
This following function checks to see if a key on the keyboard has been hit. If a key has been hit,

then the fact (stop-processing) is asserted into the fact-list.

void CheckKB()
if (CheckKeyboardStatus() == KB_HIT)
{ AssertString("stop-processing”); }
3

This function can now be added to the list of functions called after every rule firing by making
the following function call.

AddRunFunction("check-kb", checkKB, 3000);

4.7.2 Agenda

void Agenda(logicalName,theModule)
char *logicalName;
void *theModule;

Purpose: Prints the list of rules currently on the agenda (the C equivalent of
the CLIPS agenda command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the agenda to be
listed. A NULL pointer indicates that the agendas of all modules
should be listed.

Returns: No meaningful return value.

CLIPS Advanced Programming Guide 87

CLIPS Reference Manual

4.7.3 ClearFocusStack
void ClearFocusStack();

Purpose: Removes all modules from the focus stack (the C equivalent of the
CLIPS clear-focus-stack command).

Arguments: None.

Returns: No meaningful return value.

4.7 .4 DeleteActivation

int DeleteActivation(activationPtr);
void *activationPtr;

Purpose: Removes an activation from the agenda.

Arguments: A generic pointer to an activation data structure. If the NULL
pointer is used, then all activations will be deleted.

Returns: An integer; zero (0) if the activation could not be deleted, otherwise
aone (1).

4.7.5 Focus

void Focus(defmodulePtr);
void *defmodulePtr;

Purpose: Sets the current focus (the C equivalent of the CLIPS focus
command).

Arguments: A generic pointer to a defmodule data structure.

Returns: No meaningful value.

4.7.6 GetActivationName

char *GetActivationName(activationPtr);
void *activationPtr;

Purpose: Returns the name of the defrule from which the activation was
generated.
Arguments: A generic pointer to an activation data structure.

88 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Returns: A string containing a defrule name.

4.7.7 GetActivationPPForm

void GetActivationPPForm(buffer,bufferLength,activationPtr);
char *buffer;

unsigned bufferlLength;

void *activationPtr;

Purpose: Returns the pretty print representation of an agenda activation in the
caller's buffer.

Arguments: 1) A pointer to the caller's character buffer.

2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null
character).

3) A generic pointer to an activation data structure.

4.7.8 GetActivationSalience

int GetActivationSalience(activationPtr);
void *activationPtr;

Purpose: Returns the salience value associated with an activation. This
salience value may be different from the the salience value of the
defrule which generated the activation (due to dynamic salience).

Arguments: A generic pointer to an activation data structure.

Returns: The integer salience value of an activation.

4.7.9 GetAgendaChanged

int GetAgendaChanged();

Purpose: Determines if any changes to the agenda of rule activations have
occurred. If this function returns a non-zero integer, it is the user's
responsibility to call SetAgendaChanged(0) to reset the internal
flag. Otherwise, this function will continue to return non-zero even
when no changes have occurred. This function is primarily used to
determine when to update a display tracking rule activations.

Arguments: None.

CLIPS Advanced Programming Guide 89

CLIPS Reference Manual

Returns: 0 if no changes to the agenda have occurred, non-zero otherwise.

4.7.10 GetFocus

void *GetFocus();

Purpose: Returns the module associated with the current focus (the C
equivalent of the CLIPS get-focus function).

Arguments: None.

Returns: A generic pointer to a defmodule data structure (or NULL if the
focus stack is empty).

4.7.11 GetFocusStack

void GetFocusStack(&returnValue);
DATA_OBJECT returnValue;

Purpose: Returns the module names in the focus stack as a multifield value in
the returnValue DATA_OBJECT (the C equivalent of the CLIPS
get-focus-stack function).

Arguments: A pointer to the caller’s DATA_OBJECT in which the return value
will be stored. The multifield functions described in section 3.2.4
can be used to retrieve the defrule names from the list.

4.7.12 GetNextActivation

void *GetNextActivation(activationPtr);
void *activationPtr;

Purpose: Provides access to the list of activations on the agenda.

Arguments: A generic pointer to an activation data structure (or NULL to get
the first activation on the agenda).

Returns: A generic pointer to the first activation on the agenda if
activationPtr is NULL, otherwise a generic pointer to the activation
immediately following activationPtr on the agenda. If activationPtr
is the last activation on the agenda, then NULL is returned.

90 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.7.13 GetSalienceEvaluation
int GetSalienceEvaluation();

Purpose: Returns the current salience evaluation behavior (the C equivalent
of the CLIPS get-salience-evaluation command).

Arguments: None.

Returns: An integer (see SetSalienceEvaluation for the list of defined
constants).

4.7.14 GetStrategy

int GetStrategy(Q);

Purpose: Returns the current conflict resolution strategy (the C equivalent of
the CLIPS get-strategy command).

Arguments: None.

Returns: An integer (see SetStrategy for the list of defined strategy
constants).

4.7.15 ListFocusStack

void ListFocusStack(logicalName);
char *logicalName;

Purpose: Prints the current focus stack (the C equivalent of the CLIPS list-
focus-stack command).

Arguments: The logical name to which the listing output is sent.
Returns: No meaningful return value.
4.7.16 PopFocus

void *PopFocus();

Purpose: Removes the current focus from the focus stack and returns the
module associated with that focus (the C equivalent of the CLIPS
pop-focus function).

CLIPS Advanced Programming Guide 91

CLIPS Reference Manual

Arguments:

Returns:

4.7.17 RefreshAgenda

None.

A generic pointer to a defmodule data structure.

void RefreshAgenda(theModule);

void *theModule;

Purpose:

Arguments:

Returns:

Recomputes the salience values for all activations on the agenda
and then reorders the agenda (the C equivalent of the CLIPS
refresh-agenda command).

A generic pointer to the module containing the agenda to be
refreshed. A NULL pointer indicates that the agendas of all

modules should be refreshed.

No meaningful return value.run

4.7.18 RemoveRunFunction

int RemoveRunFunction(runItemName);

char *runItemName;

Purpose:

Arguments:

Returns:

4.7.19 ReorderAgenda

Removes a named function from the list of functions to be called
after every rule firing.

The name associated with the user-defined run function. This is the
same name that was used when the run function was added with the
function AddRunFunction.

Returns the integer value 1 if the named function was found and
removed, otherwise O is returned.

void ReorderAgenda(theModule);

void *theModule;

Purpose:

92

Reorders the agenda based on the current conflict resolution
strategy and current activation saliences.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

Arguments: A generic pointer to the module containing the agenda to be
reordered. A NULL pointer indicates that the agendas of all
modules should be reordered.

Returns: No meaningful return value.

4.7.20 Run

long long Run(CrunLimit);
long long runLimit;

Purpose: Allows rules to execute (the C equivalent of the CLIPS run
command).
Arguments: An integer which defines how many rules should fire before

returning. If runLimit is a negative integer, rules will fire until the
agenda is empty.

Returns: Returns an integer value; the number of rules that were fired.

4.7.21 SetActivationSalience

int SetActivationSalience(activationPtr,newSalience);
void *activationPtr;
int newSalience;

Purpose: Sets the salience value of an activation. The salience value of the
defrule which generated the activation is unchanged.

Arguments: 1) A generic pointer to an activation data structure.
2) The new salience value (which is not restricted to the -10000 to
+10000 range).
Returns: The old salience value of the activation.
Other: The function ReorderAgenda should be called after salience values

have been changed to update the agenda.

4.7.22 SetAgendaChanged

void SetAgendaChanged(changedFlag);
int changedFlag;

CLIPS Advanced Programming Guide 93

CLIPS Reference Manual

Purpose: Sets the internal boolean flag which indicates when changes to the
agenda of rule activations have occurred. This function is normally
used to reset the flag to zero after GetAgendaChanged() returns
non-zero.

Arguments: An integer indicating whether changes in the agenda have occurred
(non-zero) or not (0).

Returns: Nothing useful.

4.7.23 SetSalienceEvaluation

int SetSalienceEvaluation(value);
int value;

Purpose: Sets the salience evaluation behavior (the C equivalent of the
CLIPS set-salience-evaluation command).

Arguments: The new value for the behavior — one of the following defined
integer constants:

WHEN_DEFINED
WHEN_ACTIVATED
EVERY_CYCLE

Returns: Returns the old value for the behavior.

4.7.24 SetStrategy

int SetStrategy(value);
int value;

Purpose: Sets the conflict resolution strategy (the C equivalent of the CLIPS
set-strategy command).

Arguments: The new value for the behavior — one of the following defined
integer constants:

DEPTH_STRATEGY
BREADTH_STRATEGY
LEX_STRATEGY
MEA_STRATEGY
COMPLEXITY_STRATEGY

94 Section 4 - Embedding CLIPS

CLIPS Reference Manual

SIMPLICITY_STRATEGY
RANDOM_STRATEGY

Returns: Returns the old value for the strategy.

4.8 DEFGLOBAL FUNCTIONS

The following function calls are used for manipulating defglobals.

4.8.1 DefglobalModule

char *DefglobalModule(theDefglobal);
void *theDefglobal;

Purpose: Returns the module in which a defglobal is defined (the C
equivalent of the CLIPS defglobal-module command).

Arguments: A generic pointer to a defglobal.
Returns: A string containing the name of the module in which the defglobal
is defined.
4.8.2 FindDefglobal

void *FindDefglobal(globalName);
char *globalName;

Purpose: Returns a generic pointer to a named defglobal.

Arguments: The name of the defglobal to be found (e.g. x for 7*x*).

Returns: A generic pointer to the named defglobal if it exists, otherwise
NULL.

4.8.3 GetDefglobalList

void GetDefgloballList(&returnValue,theModule);
DATA_OBJECT returnValue;
void *theModule;

Purpose: Returns the list of defglobals in the specified module as a multifield
value in the returnValue DATA_OBJECT (the C equivalent of the
CLIPS get-defglobal-list function).

CLIPS Advanced Programming Guide 95

CLIPS Reference Manual

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return

value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the defglobal names from
the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

Returns: No meaningful return value.

4.8.4 GetDefglobalName

char *GetDefglobalName(defglobalPtr);
void *defglobalPtr;

Purpose: Returns the name of a defglobal.
Arguments: A generic pointer to a defglobal data structure.
Returns: A string containing the name of the defglobal (e.g. x for 7#x*).

4.8.5 GetDefglobalPPForm

char *GetDefglobalPPForm(defglobalPtr);
void *defglobalPtr;

Purpose: Returns the pretty print representation of a defglobal.
Arguments: A generic pointer to a defglobal data structure.
Returns: A string containing the pretty print representation of the defglobal

(or the NULL pointer if no pretty print representation exists).

4.8.6 GetDefglobalValue

int GetDefglobalValue(globalName,&vPtr);
char *globalName;
DATA_OBJECT vPtr;

Purpose: Returns the value of a defglobal.

Arguments: 1) The name of the global variable to be retrieved (e.g. y for 7*y*).

96

2) A pointer to a DATA_OBJECT in which the value is stored (see
sections 3.2.3 and 3.3.4 for details on this data structure).

Section 4 - Embedding CLIPS

CLIPS Reference Manual

Returns: An integer; zero (0) if the defglobal was not found, otherwise a one
(1). The DATA_OBIJECT vPtr is assigned the current value of the
defglobal.

4.8.7 GetDefglobalValueForm

void GetDefglobalValueForm(buffer,bufferLength,defglobalPtr);
char *buffer;

unsigned bufferlLength;

void *defglobalPtr;

Purpose: Returns a printed representation of a defglobal and its current value
in the caller's buffer. For example,

Arguments: 1) A pointer to the caller’s character buffer.

2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null
character).

3) A generic pointer to a defglobal data structure.

4.8.8 GetDefglobalWatch

unsigned GetDefglobalWatch(defglobalPtr);
void *defglobalPtr;

Purpose: Indicates whether or not a particular defglobal is being watched.

Arguments: A generic pointer to a defglobal data structure.

Returns: An integer; one (1) if the defglobal is being watched, otherwise a
zero (0).

4.8.9 GetGlobalsChanged

int GetGlobalsChanged();

Purpose: Determines if any changes to global variables have occurred. If this
function returns a non-zero integer, it is the user's responsibility to
call SetGlobalsChanged(0) to reset the internal flag. Otherwise, this
function will continue to return non-zero even when no changes

CLIPS Advanced Programming Guide 97

CLIPS Reference Manual

have occurred. This function is primarily used to determine when to
update a display tracking global variables.

Arguments: None.
Returns: 0 if no changes to global variables have occurred, non-zero
otherwise.

4.8.10 GetNextDefglobal

void *GetNextDefglobal(defglobalPtr);
void *defglobalPtr;

Purpose: Provides access to the list of defglobals.

Arguments: A generic pointer to a defglobal data structure (or NULL to get the
first defglobal).

Returns: A generic pointer to the first defglobal in the list of defglobals if

defglobalPtr is NULL, otherwise a generic pointer to the defglobal
immediately following defglobalPtr in the list of defglobals. If
defglobalPtr is the last defglobal in the list of defglobals, then
NULL is returned.

4.8.11 GetResetGlobals

int GetResetGlobals();

Purpose: Returns the current value of the reset global variables behavior (the
C equivalent of the CLIPS get-reset-globals command).

Arguments: None.

Returns: An integer; FALSE (0) if globals are not reset and TRUE (1) if
globals are reset.

4.8.12 IsDefglobalDeletable

int IsDefglobalDeletable(defglobalPtr);
void *defglobalPtr;

Purpose: Indicates whether or not a particular defglobal can be deleted.

Arguments: A generic pointer to a defglobal data structure.

98 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Returns: An integer; zero (0) if the defglobal cannot be deleted, otherwise a
one (1).

4.8.13 ListDefglobals

void ListDefglobals(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of defglobals (the C equivalent of the CLIPS
list-defglobals command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defglobals to be
listed. A NULL pointer indicates that defglobals in all modules
should be listed.

Returns: No meaningful return value.

4.8.14 SetDefglobalValue

int SetDefglobalValue(globalName,&vPtr);
char *globalName;
DATA_OBJECT vPtr;

Purpose: Sets the value of a defglobal.

Arguments: 1) The name of the global variable to be set (e.g. y for 7¥y*).
2) A pointer to a DATA_OBJECT in which the new value is
contained (see sections 3.2.3 and 3.3.4 for details on this data

structure).
Returns: An integer; zero (0) if the defglobal was not found, otherwise a one
(1).
Other: This function can trigger garbage collection.

4.8.15 SetDefglobalWatch
void SetDefglobalWatch(newState,defglobalPtr);

unsigned newState;
void *defglobalPtr;

Purpose: Sets the globals watch item for a specific defglobal.

CLIPS Advanced Programming Guide 99

CLIPS Reference Manual

Arguments: The new globals watch state and a generic pointer to a defglobal
data structure.

4.8.16 SetGlobalsChanged

void SetGlobalsChanged(changedFlag);
int changedFlag;

Purpose: Sets the internal boolean flag which indicates when changes to
global variables have occurred. This function is normally used to
reset the flag to zero after GetGlobalsChanged() returns non-zero.

Arguments: An integer indicating whether changes in global variables have
occurred (non-zero) or not (0).

Returns: Nothing useful.

4.8.17 SetResetGlobals

int SetResetGlobals(value);
int value;

Purpose: Sets the reset-globals behavior (the C equivalent of the CLIPS
set-reset-globals command). When this behavior is enabled (by
default) global variables are reset to their original values when the
reset command is performed.

Arguments: The new value for the behavior: TRUE (1) to enable the behavior
and FALSE (0) to disable it.

Returns: Returns the old value for the behavior.

4.8.18 ShowDefglobals

void ShowDefglobals(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of defglobals and their current values (the C
equivalent of the CLIPS show-defglobals command).

Arguments: 1) The logical name to which the listing output is sent.

100 Section 4 - Embedding CLIPS

CLIPS Reference Manual

2) A generic pointer to the module containing the defglobals to be
displayed. A NULL pointer indicates that defglobals in all
modules should be displayed.

Returns: No meaningful return value.

4.8.19 Undefglobal

int Undefglobal(defglobalPtr);
void *defglobalPtr;

Purpose: Removes a defglobal from CLIPS (the C equivalent of the CLIPS
undefglobal command).

Arguments: A generic pointer to a defglobal data structure. If the NULL pointer
is used, then all defglobals will be deleted.

Returns: An integer; zero (0) if the defglobal could not be deleted, otherwise
aone (1).
Other: This function can trigger garbage collection.

4.9 DEFFUNCTION FUNCTIONS

The following function calls are used for manipulating deffunctions.

4.9.1 DeffunctionModule

char *DeffunctionModule(theDeffunction);
void *theDeffunction;

Purpose: Returns the module in which a deffunction is defined (the C
equivalent of the CLIPS deffunction-module command).

Arguments: A generic pointer to a deffunction.

Returns: A string containing the name of the module in which the
deffunction is defined.

4.9.2 FindDeffunction

void *FindDeffunction(deffunctionName);
char *deffunctionName;

CLIPS Advanced Programming Guide 101

CLIPS Reference Manual

Purpose:
Arguments:

Returns:

4.9.3 GetDeffunctionList

Returns a generic pointer to a named deffunction.
The name of the deffunction to be found.

A generic pointer to the named deffunction if it exists, otherwise
NULL.

void GetDeffunctionList(&returnValue,theModule);
DATA_OBJECT returnValue;

void *theModule;

Purpose:

Arguments:

Returns:

4.9 .4 GetDeffunctionName

Returns the list of deffunctions in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-deffunction-list function).

1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the deffunction names from
the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

No meaningful return value.

char *GetDeffunctionName(deffunctionPtr);

void *deffunctionPtr;

Purpose:
Arguments:

Returns:

Returns the name of a deffunction.
A generic pointer to a deffunction data structure.

A string containing the name of the deffunction.

4.9.5 GetDeffunctionPPForm

char *GetDeffunctionPPForm(deffunctionPtr);
void *deffunctionPtr;

Section 4 - Embedding CLIPS

CLIPS Reference Manual

Purpose: Returns the pretty print representation of a deffunction.
Arguments: A generic pointer to a deffunction data structure.
Returns: A string containing the pretty print representation of the deffunction

(or the NULL pointer if no pretty print representation exists).

4.9.6 GetDeffunctionWatch

unsigned GetDeffunctionWatch(deffunctionPtr);
void *deffunctionPtr;

Purpose: Indicates whether or not a particular deffunction is being watched.

Arguments: A generic pointer to a deffunction data structure.

Returns: An integer; one (1) if the deffunction is being watched, otherwise a
zero (0).

4.9.7 GetNextDeffunction

void *GetNextDeffunction(deffunctionPtr);
void *deffunctionPtr;

Purpose: Provides access to the list of deffunctions.

Arguments: A generic pointer to a deffunction data structure (or NULL to get
the first deffunction).

Returns: A generic pointer to the first deffunction in the list of deffunctions
if deffunctionPtr is NULL, otherwise a generic pointer to the
deffunction immediately following deffunctionPtr in the list of
deffunctions. If deffunctionPtr is the last deffunction in the list of
deffunctions, then NULL is returned.

4.9.8 IsDeffunctionDeletable

int IsDeffunctionDeletable(deffunctionPtr);
void *deffunctionPtr;

Purpose: Indicates whether or not a particular deffunction can be deleted.

Arguments: A generic pointer to a deffunction data structure.

CLIPS Advanced Programming Guide 103

CLIPS Reference Manual

Returns: An integer; zero (0) if the deffunction cannot be deleted, otherwise
aone (1).

4.9.9 ListDeffunctions

void ListDeffunctions(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of deffunction (the C equivalent of the CLIPS
list-deffunctions command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the deffunctions to
be listed. A NULL pointer indicates that deffunctions in all
modules should be listed.

Returns: No meaningful return value.

4.9.10 SetDeffunctionWatch

void SetDeffunctionWatch(newState,deffunctionPtr);
unsigned newState;
void *deffunctionPtr;

Purpose: Sets the deffunctions watch item for a specific deffunction.

Arguments: The new deffunctions watch state and a generic pointer to a
deffunction data structure.

4.9.11 Undeffunction

int Undeffunction(deffunctionPtr);
void *deffunctionPtr;

Purpose: Removes a deffunction from CLIPS (the C equivalent of the CLIPS
undeffunction command).

Arguments: A generic pointer to the deffunction (NULL means to delete all
deffunctions).
Returns: An integer; zero (0) if the deffunction could not be deleted,

otherwise a one (1).

104 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Other: This function can trigger garbage collection.

4.10 DEFGENERIC FUNCTIONS

The following function calls are used for manipulating generic functions.

4.10.1 DefgenericModule

char *DefgenericModule(theDefgeneric);
void *theDefgeneric;

Purpose: Returns the module in which a defgeneric is defined (the C
equivalent of the CLIPS defgeneric-module command).

Arguments: A generic pointer to a defgeneric.
Returns: A string containing the name of the module in which the defgeneric
is defined.

4.10.2 FindDefgeneric

void *FindDefgeneric(defgenericName);
char *defgenericName;

Purpose: Returns a generic pointer to a named generic function.

Arguments: The name of the generic to be found.

Returns: A generic pointer to the named generic function if it exists,
otherwise NULL.

4.10.3 GetDefgenericList

void GetDefgenericList(&returnValue,theModule);
DATA_OBJECT returnValue;
void *theModule;

Purpose: Returns the list of defgenerics in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-defgeneric-list function).

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in

CLIPS Advanced Programming Guide 105

CLIPS Reference Manual

section 3.2.4 can be used to retrieve the defgeneric names from
the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

Returns: No meaningful return value.

4.10.4 GetDefgenericName

char *GetDefgenericName(defgenericPtr);
void *defgenericPtr;

Purpose: Returns the name of a generic function.
Arguments: A generic pointer to a defgeneric data structure.
Returns: A string containing the name of the generic function.

4.10.5 GetDefgenericPPForm

char *GetDefgenericPPForm(defgenericPtr);
void *defgenericPtr;

Purpose: Returns the pretty print representation of a generic function.

Arguments: A generic pointer to a defgeneric data structure.

Returns: A string containing the pretty print representation of the generic
function (or the NULL pointer if no pretty print representation
exists).

4.10.6 GetDefgenericWatch

unsigned GetDefgenericWatch(defgenericPtr);
void *defgenericPtr;

Purpose: Indicates whether or not a particular defgeneric is being watched.

Arguments: A generic pointer to a defgeneric data structure.

Returns: An integer; one (1) if the defgeneric is being watched, otherwise a
zero (0).

106 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.10.7 GetNextDefgeneric

void *GetNextDefgeneric(defgenericPtr);
void *defgenericPtr;

Purpose: Provides access to the list of generic functions.

Arguments: A generic pointer to a defgeneric data structure (or NULL to get the
first generic function).

Returns: A generic pointer to the first generic function in the list of generic
functions if defgenericPtr is NULL, otherwise a generic pointer to
the generic function immediately following defgenericPtr in the list
of generic functions. If defgenericPtr is the last generic function in
the list of generic functions, then NULL is returned.

4.10.8 IsDefgenericDeletable

int IsDefgenericDeletable(defgenericPtr);
void *defgenericPtr;

Purpose: Indicates whether or not a particular generic function and all its
methods can be deleted.

Arguments: A generic pointer to a defgeneric data structure.

Returns: An integer: zero (0) if the generic function and all its methods
cannot be deleted, otherwise a one (1).

4.10.9 ListDefgenerics

void ListDefgenerics(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of defgenerics (the C equivalent of the CLIPS
list-defgenerics command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defgenerics to be
listed. A NULL pointer indicates that defgenerics in all modules
should be listed.

Returns: No meaningful return value.

CLIPS Advanced Programming Guide 107

CLIPS Reference Manual

4.10.10 SetDefgenericWatch

void SetDefgenericWatch(newState,defgenericPtr);
unsigned newState;
void *defgenericPtr;

Purpose: Sets the defgenerics watch item for a specific defgeneric.

Arguments: The new generic-functions watch state and a generic pointer to a
defgeneric data structure.

4.10.11 Undefgeneric

int Undefgeneric(defgenericPtr);
void *defgenericPtr;

Purpose: Removes a generic function and all its methods from CLIPS (the C
equivalent of the CLIPS undefgeneric command).

Arguments: A generic pointer to the generic function (NULL means to delete all
generic functions).

Returns: An integer: zero (0) if the generic function and all its methods could
not be deleted, otherwise a one (1).

Other: This function can trigger garbage collection.

4.11 DEFMETHOD FUNCTIONS

The following function calls are used for manipulating generic function methods.

4.11.1 GetDefmethodDescription

void GetDefmethodDescription(buffer,bufferLength,
defgenericPtr,methodIndex);

char *buf;

int buflength;

void *defgenericPtr;

unsigned methodIndex;

Purpose: Stores a synopsis of the method parameter restrictions in the caller's
buffer.
Arguments: 1) A pointer to the caller's buffer.

108 Section 4 - Embedding CLIPS

CLIPS Reference Manual

2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null
character).

3) A generic pointer to a defgeneric data structure.

4) The index of the generic function method.

Returns: No meaningful return value.

4.11.2 GetDefmethodList

void GetDefmethodList(defgenericPtr,&returnValue);
void *defgenericPtr;
DATA_OBJECT returnValue;

Purpose: Returns the list of currently defined defmethods for the specified
defgeneric. This function is the C equivalent of the CLIPS
get-defmethod-list command).

Arguments: 1) A generic pointer to the defgeneric (NULL for all defgenerics).
2) A pointer to the DATA_OBJECT in which the list of defmethod
constructs is to be stored.

Returns: A multifield value containing the list of defmethods constructs for
the specified defgeneric. The multifield functions described in
section 3.2.4 can be used to retrieve the defmethod names and
indices from the list. Note that the name and index for each
defmethod are stored as pairs in the return multifield value.

4.11.3 GetDefmethodPPForm

char *GetDefmethodPPForm(defgenericPtr,methodIndex);
void *defgenericPtr;
unsigned methodIndex;

Purpose: Returns the pretty print representation of a generic function method.

Arguments: 1) A generic pointer to a defgeneric data structure.
2) The index of the generic function method.

Returns: A string containing the pretty print representation of the generic

function method (or the NULL pointer if no pretty print
representation exists).

CLIPS Advanced Programming Guide 109

CLIPS Reference Manual

4.11.4 GetDefmethodWatch

unsigned GetDefmethodWatch(defgenericPtr,methodIndex);
void *defgenericPtr;
unsigned methodIndex

Purpose: Indicates whether or not a particular defmethod is being watched.

Arguments: A generic pointer to a defgeneric data structure and the index of the
generic function method.

Returns: An integer; one (1) if the defmethod is being watched, otherwise a
zero (0).

4.11.5 GetMethodRestrictions

void GetMethodRestrictions(defgenericPtr,methodIndex,

&returnValue);
void *defgenericPtr;
unsigned methodIndex;
DATA_OBJECT returnValue;
Purpose: Returns the restrictions for the specified method. This function is

the C equivalent of the CLIPS get-method-restrictions function.

Arguments: 1) A generic pointer to the defgeneric (NULL for all defgenerics).
2) The index of the generic function method.
3) A pointer to the DATA_OBJECT in which the method
restrictions are stored.

Returns: A multifield value containing the restrictions for the specified
method (the description of the get-method-restrictions function in
the Basic Programming Guide explains the meaning of the fields in
the multifield value). The multifield functions described in section
3.2.4 can be used to retrieve the method restrictions from the list.

4.11.6 GetNextDefmethod

unsigned GetNextDefmethod(defgenericPtr,methodIndex);
void *defgenericPtr;
unsigned methodIndex;

Purpose: Provides access to the list of methods for a particular generic
function.
Arguments: 1) A generic pointer to a defgeneric data structure.

110 Section 4 - Embedding CLIPS

CLIPS Reference Manual

2) The index of a generic function method (0 to get the first
method of the generic function).

Returns: The index of the first method in the list of methods for the generic
function if methodIndex is 0, otherwise the index of the method
immediately following methodIndex in the list of methods for the
generic function. If methodIndex is the last method in the list of
methods for the generic function, then O is returned.

4.11.7 IsDefmethodDeletable

int IsDefmethodDeletable(defgenericPtr,methodIndex);
void *defgenericPtr;
unsigned methodIndex;

Purpose: Indicates whether or not a particular generic function method can be
deleted.
Arguments: 1) A generic pointer to a defgeneric data structure.

2) The index of the generic function method.

Returns: An integer: zero (0) if the method cannot be deleted, otherwise a
one (1).

4.11.8 ListDefmethods

void ListDefmethods(logicalName,defgenericPtr);
char *logicalName;
void *defgenericPtr;

Purpose: Prints the list of methods for a particular generic function (the C
equivalent of the CLIPS list-defmethods command).

Arguments: 1) The logical name of the output destination to which tosend the
method listing
2) A generic pointer to the generic function (NULL to list methods
for all generic functions).

Returns: No meaningful return value.

4.11.9 SetDefmethod Watch

void SetDefmethodWatch(newState,defgenericPtr,methodIndex);
unsigned newState;

CLIPS Advanced Programming Guide 111

CLIPS Reference Manual

void *defgenericPtr;
unsigned methodIndex

Purpose: Sets the methods watch item for a specific defmethod.

Arguments: The new methods watch state, a generic pointer to a defgeneric data
structure, and the index of the generic function method.

4.11.10 Undefmethod

int Undefmethod(defgenericPtr,methodIndex);
void *defgenericPtr;
unsigned methodIndex;

Purpose: Removes a generic function method from CLIPS (the C equivalent
of the CLIPS undefmethod command).

Arguments: 1) A generic pointer to a defgeneric data structure (NULL to delete
all methods for all generic functions).

2) The index of the generic function method (0 to delete all

methods of the generic function - must be O if defgenericPtr is

NULL).
Returns: An integer: zero (0) if the method could not be deleted, otherwise a
one (1).
Other: This function can trigger garbage collection.

4.12 DEFCLASS FUNCTIONS

The following function calls are used for manipulating defclasses.

4.12.1 BrowseClasses

void BrowseClasses(logicalName,defclassPtr);
char *logicalName;
void *defclassPtr;

Purpose: Prints a “graph” of all classes which inherit from the specified class.
This function is the C equivalent of the CLIPS browse-classes
command.

Arguments: 1) The logical name of the output destination to which to send the

browse display.

112 Section 4 - Embedding CLIPS

CLIPS Reference Manual

2) A generic pointer to the class which is to be browsed.

Returns: No meaningful return value.

4.12.2 ClassAbstractP

int ClassAbstractP(defclassPtr);
void *defclassPtr;

Purpose: Determines if a class is concrete or abstract, i.e. if a class can have
direct instances or not. This function is the C equivalent of the
CLIPS class-abstractp command.

Arguments: A generic pointer to the class.

Returns: The integer 1 if the class is abstract, or 0 if the class is concrete.

4.12.3 ClassReactiveP

int ClassReactiveP(defclassPtr);
void *defclassPtr;

Purpose: Determines if a class is reactive or non-reactive, i.e. if objects of the
class can match object patterns. This function is the C equivalent of
the CLIPS class-reactivep command.

Arguments: A generic pointer to the class.
Returns: The integer 1 if the class is reactive, or 0 if the class is non-reactive.
4.12.4 ClassSlots

void ClassSlots(defclassPtr,&result,inheritFlag);
void *defclassPtr;

DATA_OBJECT result;

int inheritFlag;

Purpose: Groups the names of slots of a class into a multifield data object.
This function is the C equivalent of the CLIPS class-slots
command.

Arguments: 1) A generic pointer to the class.

CLIPS Advanced Programming Guide 113

CLIPS Reference Manual

Returns:

4.12.5 ClassSubclasses

2) Pointer to the data object in which to store the multifield. See
sections 3.3.3 and 3.3.4 for information on getting the value stored
in a DATA_OBJECT.

3) The integer 1 to include inherited slots or O to only include
explicitly defined slots.

No meaningful return value.

void ClassSubclasses(defclassPtr,&result,inheritFlag);

void *defclassPtr;
DATA_OBJECT result;
int inheritFlag;

Purpose:

Arguments:

Returns:

4.12.6 ClassSuperclasses

Groups the names of subclasses of a class into a multifield data
object. This function is the C equivalent of the CLIPS class-
subclasses command.

1) A generic pointer to the class.

2) Pointer to the data object in which to store the multifield. See
sections 3.3.3 and 3.3.4 for information on setting the value stored
in a DATA_OBJECT.

3) The integer 1 to include inherited subclasses or O to only include
direct subclasses.

No meaningful return value.

void ClassSuperclasses(defclassPtr,&result,inheritFlag);

void *defclassPtr;
DATA_OBJECT result;
int inheritFlag;

Purpose:

Arguments:

114

Groups the names of superclasses of a class into a multifield data
object. This function is the C equivalent of the CLIPS class-
superclasses command.

1) A generic pointer to the class.

2) Pointer to the data object in which to store the multifield.

3) The integer 1 to include inherited superclasses or O to only
include direct superclasses.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

Returns: No meaningful return value.

4.12.7 DefclassModule

char *DefclassModule(theDefclass);
void *theDefclass;

Purpose: Returns the module in which a defclass is defined (the C equivalent
of the CLIPS defclass-module command).

Arguments: A generic pointer to a defclass.
Returns: A string containing the name of the module in which the defclass is
defined.
4.12.8 DescribeClass

void DescribeClass(logicalName,defclassPtr);
char *logicalName;
void *defclassPtr;

Purpose: Prints a summary of the specified class including: abstract/concrete
behavior, slots and facets (direct and inherited) and recognized
message-handlers (direct and inherited). This function is the C
equivalent of the CLIPS describe-class command.

Arguments: 1) The logical name of the output destination to which to send the
description.
2) A generic pointer to the class which is to be described.

Returns: No meaningful return value.

4.12.9 FindDefclass

void *FindDefclass(defclassName);
char *defclassName;

Purpose: Returns a generic pointer to a named class.
Arguments: The name of the class to be found.
Returns: A generic pointer to the named class if it exists, otherwise NULL.

CLIPS Advanced Programming Guide 115

CLIPS Reference Manual

4.12.10 GetClassDefaultsMode

unsigned short GetClassDefaultsMode();

Purpose:

Arguments:

Returns:

4.12.11 GetDefclassList

Returns the current class defaults mode (the C equivalent of the
CLIPS get-class-defaults-mode command).

None.

An integer (see SetClassDefaultsMode for the list of mode
constants).

void GetDefclassList(&returnValue,theModule);
DATA_OBJECT returnValue;

void *theModule;

Purpose:

Arguments:

Returns:

4.12.12 GetDefclassName

Returns the list of defclasses in the specified module as a multifield
value in the returnValue DATA_OBJECT (the C equivalent of the
CLIPS get-defclass-list function).

1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the defclass names from the
list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

No meaningful return value.

char *GetDefclassName(defclassPtr);

void *defclassPtr;

Purpose:
Arguments:

Returns:

116

Returns the name of a class.
A generic pointer to a defclass data structure.

A string containing the name of the class.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.12.13 GetDefclassPPForm

char *GetDefclassPPForm(defclassPtr);
void *defclassPtr;

Purpose: Returns the pretty print representation of a class.
Arguments: A generic pointer to a defclass data structure.
Returns: A string containing the pretty print representation of the class (or

the NULL pointer if no pretty print representation exists).

4.12.14 GetDefclassWatchInstances

unsigned GetDefclassWatchInstances(defclassPtr);
void *defclassPtr;

Purpose: Indicates whether or not a particular defclass is being watched for
instance creation and deletions.

Arguments: A generic pointer to a defclass data structure.
Returns: An integer; one (1) if the defclass is being watched, otherwise a
zero (0).

4.12.15 GetDefclassWatchSlots

unsigned GetDefclassWatchSlots(defclassPtr);
void *defclassPtr;

Purpose: Indicates whether or not a particular defclass is being watched for
slot changes.

Arguments: A generic pointer to a defclass data structure.

Returns: An integer; one (1) if the defclass is being watched for slot changes,
otherwise a zero (0).

4.12.16 GetNextDefclass

void *GetNextDefclass(defclassPtr);
void *defclassPtr;

Purpose: Provides access to the list of classes.

CLIPS Advanced Programming Guide 117

CLIPS Reference Manual

Arguments: A generic pointer to a defclass data structure (or NULL to get the
first class).

Returns: A generic pointer to the first class in the list of classes if defclassPtr
is NULL, otherwise a generic pointer to the class immediately
following defclassPtr in the list of classes. If defclassPtr is the last
class in the list of classes, then NULL is returned.

4.12.17 IsDefclassDeletable

int IsDefclassDeletable(defclassPtr);
void *defclassPtr;

Purpose: Indicates whether or not a particular class and all its subclasses can
be deleted.

Arguments: A generic pointer to a defclass data structure.

Returns: An integer; zero (0) if the class cannot be deleted, otherwise a one
(1).

4.12.18 ListDefclasses

void ListDefclasses(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of defclasses (the C equivalent of the CLIPS
list-defclasses command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the module containing the defclasses to be
listed. A NULL pointer indicates that defclasses in all modules
should be listed.

Returns: No meaningful return value.

4.12.19 SetClassDefaultsMode

unsigned short Set(ClassDefaultsMode(value);
unsigned short value;

Purpose: Sets the current class defaults mode (the C equivalent of the CLIPS
set-class-defaults-mode command).

118 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Arguments: The new value for the mode — one of the following defined integer
constants:

CONVENIENCE_MODE
CONSERVATION_MODE

Returns: Returns the old value for the mode.

4.12.20 SetDefclassWatchInstances

void SetDefclassWatchInstances(newState,defclassPtr);
unsigned newState;
void *defclassPtr;

Purpose: Sets the instances watch item for a specific defclass.

Arguments: The new instances watch state and a generic pointer to a defclass
data structure.

4.12.21 SetDefclassWatchSlots

void SetDefclassWatchSlots(newState,defclassPtr);
unsigned newState;
void *defclassPtr;

Purpose: Sets the slots watch item for a specific defclass.
Arguments: The new slots watch state and a generic pointer to a defclass data
structure.

4.12.22 SlotAllowedClasses

void SlotAllowedClasses(defclassPtr,slotName,&result);
void *defclassPtr;

char *slotName;

DATA_OBJECT result;

Purpose: Groups the allowed-classes for a slot into a multifield data object.
This function is the C equivalent of the CLIPS slot-allowed-classes
function.

Arguments: 1) A generic pointer to the class.

2) Name of the slot.

CLIPS Advanced Programming Guide 119

CLIPS Reference Manual

Returns:

4.12.23 SlotAllowed Values

3) Pointer to the data object in which to store the multifield. The
multifield functions described in section 3.2.4 can be used to
retrieve the allowed values from the list.

No meaningful return value.

void SlotAllowedValues(defclassPtr,slotName,&result);

void *defclassPtr;
char *slotName;
DATA_OBJECT result;

Purpose:

Arguments:

Returns:

4.12.24 SlotCardinality

Groups the allowed-values for a slot into a multifield data object.
This function is the C equivalent of the CLIPS slot-allowed-values
function.

1) A generic pointer to the class.

2) Name of the slot.

3) Pointer to the data object in which to store the multifield. The
multifield functions described in section 3.2.4 can be used to
retrieve the allowed values from the list.

No meaningful return value.

void SlotCardinality(defclassPtr,slotName,result);

void *defclassPtr;
char *slotName;
DATA_OBJECT *result;

Purpose:

Arguments:

Returns:

120

Groups the cardinality information for a slot into a multifield data
object. This function is the C equivalent of the CLIPS slot-
cardinality function.

1) A generic pointer to the class.
2) Name of the slot.

3) Pointer to the data object in which to store the multifield.

No meaningful return value.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.12.25 SlotDefaultValue

void SlotDefaultValue(defclassPtr,slotName,result);
void *defclassPtr;

char *slotName;

DATA_OBJECT *result;

Purpose: Returns the default value in the data object. This function is the C
equivalent of the CLIPS slot-default-value function.

Arguments: 1) A generic pointer to the class.
2) Name of the slot.
3) Pointer to the data object in which to store the default value.

Returns: No meaningful return value.

4.12.26 SlotDirectAccessP

int SlotDirectAccessP(defclassPtr,slotName);
void *defclassPtr,
char *slotName;

Purpose: Determines if the specified slot is directly accessible.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: 1 if the slot is directly accessible, otherwise 0.

4.12.27 SlotExistP

int SlotExistP(defclassPtr,slotName,inheritFlag);
void *defclassPtr,

char *slotName;

int inheritFlag;

Purpose: Determines if the specified slot exists.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: If inheritFlag is O and the slot is directly defined in the
specified class, then 1 is returned, otherwise O is returned. If
inheritFlag is 1 and the slot is defined either in the specified class or
an inherited class, then 1 is returned, otherwise O is returned.

CLIPS Advanced Programming Guide 121

CLIPS Reference Manual

4.12.28 SlotFacets

void SlotFacets(defclassPtr,slotName,result);

void *defclassPtr;
char *slotName;
DATA_OBJECT *result;

Purpose:

Arguments:

Returns:

4.12.29 SlotInitableP

Groups the facet values of a class slot into a multifield data object.
This function is the C equivalent of the CLIPS slot-facets
command. See section 10.8.1.11 in the Basic Programming Guide
for more detail.

1) A generic pointer to the class.
2) Name of the slot.

3) Pointer to the data object in which to store the multifield.

No meaningful return value.

int SlotInitableP(defclassPtr,slotName);

void *defclassPtr,
char *slotName;

Purpose:

Arguments:

Returns:

4.12.30 SlotPublicP

Determines if the specified slot is initable.

1) A generic pointer to a defclass data structure.
2) The name of the slot.

An integer: 1 if the slot is initable, otherwise 0.

int SlotPublicP(defclassPtr,slotName);

void *defclassPtr,
char *slotName;

Purpose:

Arguments:

Returns:

122

Determines if the specified slot is public.

1) A generic pointer to a defclass data structure.
2) The name of the slot.

An integer: 1 if the slot is public, otherwise 0.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.12.31 SlotRange

void SlotRange(defclassPtr,slotName,result);
void *defclassPtr;

char *slotName;

DATA_OBJECT *result;

Purpose: Groups the numeric range information for a slot into a multifield
data object. This function is the C equivalent of the CLIPS
slot-range function.

Arguments: 1) A generic pointer to the class.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.12.32 SlotSources

void SlotSources(defclassPtr,slotName,result);
void *defclassPtr;

char *slotName;

DATA_OBJECT *result;

Purpose: Groups the names of the class sources of a slot into a multifield data
object. This function is the C equivalent of the CLIPS slot-sources
command. See section 10.8.1.12 in the Basic Programming Guide
for more detail.

Arguments: 1) A generic pointer to the class.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.12.33 SlotTypes

void SlotTypes(defclassPtr,slotName,result);
void *defclassPtr;

char *slotName;
DATA_OBJECT *result;

Purpose: Groups the names of the primitive data types allowed for a slot into
a multifield data object. This function is the C equivalent of the
CLIPS slot-types function.

CLIPS Advanced Programming Guide 123

CLIPS Reference Manual

Arguments: 1) A generic pointer to the class.
2) Name of the slot.
3) Pointer to the data object in which to store the multifield.

Returns: No meaningful return value.

4.12.34 SlotWritableP

int SlotWritableP(defclassPtr,slotName);
void *defclassPtr,
char *slotName;

Purpose: Determines if the specified slot is writable.

Arguments: 1) A generic pointer to a defclass data structure.
2) The name of the slot.

Returns: An integer: 1 if the slot is writable, otherwise 0.

4.12.35 SubclassP

int SubclassP(defclassPtrl,defclassPtr2);
void *defclassPtrl, *defclassPtr2;

Purpose: Determines if a class is a subclass of another class.

Arguments: 1) A generic pointer to a defclass data structure.
2) A generic pointer to a defclass data structure.

Returns: An integer: 1 if the first class is a subclass of the second class.

4.12.36 SuperclassP

int SuperclassP(defclassPtrl,defclassPtr2);
void *defclassPtrl, *defclassPtr2;

Purpose: Determines if a class is a superclass of another class.

Arguments: 1) A generic pointer to a defclass data structure.
2) A generic pointer to a defclass data structure.

Returns: An integer: 1 if the first class is a superclass of the second class.

124 Section 4 - Embedding CLIPS

CLIPS Reference Manual

4.12.37 Undefclass

int Undefclass(defclassPtr);
void *defclassPtr;

Purpose: Removes a class and all its subclasses from CLIPS (the C
equivalent of the CLIPS undefclass command).

Arguments: A generic pointer to a defclass data structure.

Returns: An integer; zero (0) if the class could not be deleted, otherwise a
one (1).

Other: This function can trigger garbage collection.

4.13 INSTANCE FUNCTIONS

The following function calls are used for manipulating instances.

4.13.1 BinaryLoadInstances

long BinarylLoadInstances(fileName);
char *fileName;

Purpose: Loads a set of instances from a binary file into the CLIPS data base
(the C equivalent of the CLIPS bload-instances command).

Arguments: A string representing the name of the binary file.

Returns: Returns the number of instances restored or -1 if the file could not
be accessed.

4.13.2 BinarySavelnstances

long BinarySavelnstances(fileName, saveCode,NULL,TRUE);
char *fileName;
int saveCode;

Purpose: Saves the instances in the system to the specified binary file (the C
equivalent of the CLIPS bsave-instances command).

Arguments: 1) A string representing the name of the binary file.

CLIPS Advanced Programming Guide 125

CLIPS Reference Manual

Returns:

4.13.3 CreateRawlInstance

2) An integer flag indicating whether to save local (current module
only) or visible instances. Use either the constant
LOCAL_SAVE or VISIBLE_SAVE.

3) Should always be NULL.

4) Should always be TRUE.

Returns the number of instances saved.

void *CreateRawInstance(defclassPtr,instanceName);

void *defclassPtr;
char *instanceName;

Purpose:

Arguments:

Returns:

WARNING:

Creates an empty instance with the specified name of the specified
class. No slot overrides or class default initializations are performed
for the instance.

1) A generic pointer to the class of the new instance.
2) The name of the new instance.

A generic pointer to the new instance, NULL on errors.

This function bypasses message-passing.

4.13.4 DecrementInstanceCount

void DecrementInstanceCount(instancePtr);

void *instancePtr;

Purpose:

Arguments:

Returns:

4.13.5 DeleteInstance

This function should only be called to reverse the effects of a
previous call to IncrementlnstanceCount(). As long as an instance's
count is greater than zero, the memory allocated to it cannot be
released for other use.

A generic pointer to the instance.

No meaningful return value.

int Deletelnstance(instancePtr);

void *instancePtr;

126

Section 4 - Embedding CLIPS

Purpose:

Arguments:

Returns:
Other:

WARNING:

4.13.6 DirectGetSlot

CLIPS Reference Manual

Deletes the specified instance(s).

A generic pointer to the instance to be deleted. If the pointer is
NULL, all instances in the system are deleted.

Non-zero if successful, O otherwise.
This function can trigger garbage collection.

This function bypasses message-passing.

void DirectGetSlot(instancePtr,slotName,result);

void *instancePtr;
char *slotName;
DATA_OBJECT *result;

Purpose:

Arguments:

Returns:

WARNING:

4.13.7 DirectPutSlot

Stores the value of the specified slot of the specified instance in the
caller's buffer (the C equivalent of the CLIPS dynamic-get
function).

1) A generic pointer to the instance.

2) The name of the slot.

3) The caller's buffer for the slot value. See sections 3.2.3 and 3.2.4
for information on getting the value stored in a
DATA_OBJECT.

No meaningful return value.

This function bypasses message-passing.

int DirectPutSlot(instancePtr,slotName,newValue);

void *instancePtr;
char *slotName;

DATA_OBJECT *newValue;

Purpose:

Arguments:

Stores a value in the specified slot of the specified instance (the C
equivalent of the CLIPS dynamic-put function).

1) A generic pointer to the instance.
2) The name of the slot.

CLIPS Advanced Programming Guide 127

CLIPS Reference Manual

Returns:

Other:

WARNING:

4.13.8 FindInstance

3) The caller's buffer containing the new value (an error is
generated if this value is NULL). See sections 3.3.3 and 3.3.4
for information on setting the value stored in a
DATA_OBJECT.

Returns an integer; if zero, an error occurred while setting the slot.
If non-zero, no errors occurred.

This function can trigger garbage collection.

This function bypasses message-passing.

void *FindInstance(theModule,instanceName, searchImports);

void *theModule;

char *instanceName;

unsigned searchImports;

Purpose:

Arguments:

Returns:

4.13.9 GetInstanceClass

Returns the address of the specified instance.

1) A generic pointer to the module to be searched (NULL to search
the current module).

2) The name of the instance (should not include a module
specifier).

3) A boolean flag indicating whether imported modules should
also be searched: TRUE to search imported modules, otherwise
FALSE.

A generic pointer to the instance, NULL if the instance does not
exist.

void *GetInstanceClass(instancePtr);

void *instancePtr;

Purpose:
Arguments:

Returns:

128

Determines the class of an instance.
A generic pointer to an instance.

A generic pointer to the class of the instance.

Section 4 - Embedding CLIPS

4.13.10 GetInstanceName

CLIPS Reference Manual

char *GetInstanceName(instancePtr);

void *instancePtr;

Purpose:
Arguments:

Returns:

Determines the name of an instance.
A generic pointer to an instance.

The name of the instance.

4.13.11 GetInstancePPForm

void GetInstancePPForm(buffer,bufferLength,instancePtr);

char *buffer;

unsigned bufferLength;

void *instancePtr;

Purpose:

Arguments:

Returns:

Returns the pretty print representation of an instance in the caller's
buffer.

1) A pointer to the caller's character buffer.

2) The maximum number of characters which could be stored in
the caller's buffer (not including space for the terminating null
character).

3) A generic pointer to an instance.

No meaningful return value. The instance pretty print form is stored
in the caller's buffer.

4.13.12 GetInstancesChanged

int GetInstancesChanged();

Purpose:

Arguments:

Determines if any changes to instances of user-defined instances
have occurred, e.g. instance creations/deletions or slot value
changes. If this function returns a non-zero integer, it is the user's
responsibility to call SetlnstancesChanged(0) to reset the internal
flag. Otherwise, this function will continue to return non-zero even
when no changes have occurred. This function is primarily used to
determine when to update a display tracking instances.

None.

CLIPS Advanced Programming Guide 129

CLIPS Reference Manual

Returns: 0 if no changes to instances of user-defined classes have occurred,
non-zero otherwise.

4.13.13 GetNextInstance

void *GetNextInstance(instancePtr);
void *instancePtr;

Purpose: Provides access to the list of instances.

Arguments: A generic pointer to an instance (or NULL to get the first instance
in the list).

Returns: A generic pointer to the first instance in the list of instances if
instancePtr is NULL, otherwise a pointer to the instance
immediately following instancePtr in the list. If instancePtr is the
last instance in the list, then NULL is returned.

4.13.14 GetNextInstanceInClass

void *GetNextInstanceInClass(defclassPtr,instancePtr);
void *defclassPtr,*instancePtr;

Purpose: Provides access to the list of instances for a particular class.

Arguments: 1) A generic pointer to a class.
2) A generic pointer to an instance (or NULL to get the first
instance in the specified class).

Returns: A generic pointer to the first instance in the list of instances for the
specified class if instancePtr is NULL, otherwise a pointer to the
instance immediately following instancePtr in the list. If
instancePtr is the last instance in the class, then NULL is returned.

4.13.15 GetNextInstanceInClassAndSubclasses

void *GetNextInstanceInClassAndSubclasses(defclassPtr,instancePtr,

iterationData);
void **defclassPtr,*instancePtr;
DATA_OBJECT *iterationData;
Purpose: Provides access to the list of instances for a particular class and its

subclasses.

130 Section 4 - Embedding CLIPS

Arguments:

Returns:

Example

DATA_OBJECT iterate;
void *thelnstance;
void *theClass;

CLIPS Reference Manual

1) A generic pointer to a generic pointer to a class.

2) A generic pointer to an instance (or NULL to get the first
instance in the specified class).

3) A pointer to a DATA_OBJECT in which instance iteration is
stored. No initialization of this argument is required and the
values stored in this argument are not intended for examination
by the calling function.

A generic pointer to the first instance in the list of instances for the
specified class and its subclasses if instancePtr is NULL, otherwise
a pointer to the instance immediately following instancePtr in the
list or the next instance in a subclass of the class. If instancePtr is
the last instance in the class and all its subclasses, then NULL is
returned.

As the subclasses of the specified class are iterated through to find
instances, the value stored in defclassPtr is updated to indicate the
class of the instance returned by this function.

theClass = FindDefclass("USER™);

for (thelnstance = GetNextInstanceInClassAndSubclasses(&the(Class,

thelnstance != NULL;

NULL,&iterate);

thelnstance = GetNextInstanceInClassAndSubclasses(&the(Class,

{

thelnstance,&iterate))

PrintRouter(WDISPLAY,GetInstanceName(thelnstance));
PrintRouter(WDISPLAY, "\n");

}

4.13.16 IncrementInstanceCount

void IncrementInstanceCount(instancePtr);

void *instancePtr;

Purpose:

This function should be called for each external copy of an instance
address to let CLIPS know that such an outstanding external
reference exists. As long as an instance's count is greater than zero,
CLIPS will not release its memory because there may be
outstanding pointers to the instance. However, the instance can still

CLIPS Advanced Programming Guide 131

CLIPS Reference Manual

Arguments:

Returns:

be functionally deleted, i.e. the instance will appear to no longer be
in the system. The instance address always can be safely passed to
instance access functions as long as the count for the instance is
greater than zero. These functions will recognize when an instance
has been functionally deleted.

A generic pointer to the instance.

No meaningful return value.

void InstanceReferenceExample()

{

void *myInstancePtr;

myInstancePtr = FindInstance(NULL,"my-instance",TRUE);
/* */
/* Instance my-instance could be potentially */
/* deleted during the run. */
/* */
Run(-1L);
/* */
/* This next function call could dereference */
/* a dangling pointer and cause a crash. */
/* */
DeleteInstance(myInstancePtr);
3
[F=========*/
/* Correct */
[F=========*/

void InstanceReferenceExample()

{

void *myInstancePtr;

myInstancePtr = FindInstance(NULL,"my-instance",TRUE);

/* */
/* The instance is correctly marked so that a dangling */
/* pointer cannot be created during the run. */
/* */

IncrementInstanceCount(myInstancePtr);

132

Section 4 - Embedding CLIPS

CLIPS Reference Manual

Run(-1L);
DecrementInstanceCount(myInstancePtr);

/* */
/* The instance can now be safely deleted using the pointer. */
/* */

DeleteInstance(myInstancePtr);

4.13.17 Instances

void Instances(logicalName,modulePtr,className,subclassFlag);
char *logicalName;

void *defmodulePtr;

char *className;

int subclassFlag;

Purpose: Prints the list of all direct instances of a specified class currently in
the system (the C equivalent of the CLIPS instances command).

Arguments: 1) The logical name to which output is sent.

2) A generic pointer to a defmodule data structure (NULL
indicates to list all instances of all classes in all modules—the
third and fourth arguments are ignored).

3) The name of the class for which to list instances (NULL
indicates to list all instances of all classes in the specified
module —the fourth argument is ignored).

4) A flag indicating whether or not to list recursively direct
instances of subclasses of the named class in the specified
module. O indicates no, and any other value indicates yes.

Returns: No meaningful return value.

4.13.18 LoadInstances

long LoadInstances(fileName);
char *fileName;

Purpose: Loads a set of instances into the CLIPS data base (the C equivalent
of the CLIPS load-instances command).

Arguments: A string representing the name of the file.
Returns: Returns the number of instances loaded or -1 if the file could not be
accessed.

CLIPS Advanced Programming Guide 133

CLIPS Reference Manual

4.13.19 LoadInstancesFromString

long LoadInstancesFromString(inputString,maximumPosition);
char *inputString;
int maximumPosition;

Purpose: Loads a set of instances into the CLIPS data base using a string as
the input source (in a manner similar to the CLIPS load-instances
command).

Arguments: 1) A string containing the instance definitions.

2) The maximum number of characters to be read from the string.
A value of -1 indicates the entire string.

Returns: Returns the number of instances loaded or -1 if there were problems
using the string as an input source.

4.13.20 Makelnstance

void *MakeInstance(makeCommand);
char *makeCommand;

Purpose: Creates and initializes an instance of a user-defined class (the C
equivalent of the CLIPS make-instance function).

Arguments: A string containing a make-instance command in the format
below:

(<instance-name> of <class-name> <slot-override>*)
<slot-override> :== (<slot-name> <constant>*)

Returns: A generic pointer to the new instance, NULL on errors.
Other: This function can trigger garbage collection.
Example

MakeInstance("(henry of boy (age 8))");

4.13.21 Restorelnstances

long RestoreInstances(fileName);
char *fileName;

134 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Purpose: Loads a set of instances into the CLIPS data base (the C equivalent
of the CLIPS restore-instances command).

Arguments: A string representing the name of the file.

Returns: Returns the number of instances restored or -1 if the file could not
be accessed.

4.13.22 RestorelnstancesFromString

long RestorelnstancesFromString(inputString,maximumPosition);
char *inputString;
int maximumPosition;

Purpose: Loads a set of instances into the CLIPS data base using a string as
the input source (in a manner similar to the CLIPS restore-
instances command).

Arguments: 1) A string containing the instance definitions.
2) The maximum number of characters to be read from the string.
A value of -1 indicates the entire string.

Returns: Returns the number of instances loaded or -1 if there were problems
using the string as an input source.

4.13.23 Savelnstances

long Savelnstances(fileName,saveCode,NULL,TRUE);
char *fileName;
int saveCode;

Purpose: Saves the instances in the system to the specified file (the C
equivalent of the CLIPS save-instances command).

Arguments: 1) A string representing the name of the file.
2) An integer flag indicating whether to save local (current module
only) or visible instances. Use either the constant
LOCAL_SAVE or VISIBLE_SAVE.
3) Should always be NULL.
4) Should always be TRUE.

Returns: Returns the number of instances saved.

CLIPS Advanced Programming Guide 135

CLIPS Reference Manual

4.13.24 Send

void Send(instanceBuffer,msg,msgArgs,result);
DATA_OBJECT *instanceBuffer, *result;
char *msg, *msgArgs;

Purpose: Message-passing from C Sends a message with the specified
arguments to the specified object and stores the result in the caller's
buffer (the C equivalent of the CLIPS send function).

Arguments: 1) A data value holding the object (instance, symbol, float, etc.)

which will receive the message.

2) The message.

3) A string containing any constant arguments separated by blanks
(this argument can be NULL).

4) Caller's buffer for storing the result of the message. See sections
3.2.3 and 3.2.4 for information on getting the value stored in a
DATA_OBJECT.

Returns: No meaningful return value.
Other: This function can trigger garbage collection.
Example

void SendMessageExample()

{
DATA_OBJECT insdata, rtn;

void *myInstancePtr;

myInstancePtr = MakeInstance("(my-instance of MY-CLASS");
SetType(insdata, INSTANCE_ADDRESS);
SetValue(insdata,myInstancePtr);

Send(&insdata, "my-msg","1 abc 3",&rtn);

4.13.25 SetInstancesChanged

void SetInstancesChanged(changedFlag);
int changedFlag;

Purpose: Sets the internal boolean flag which indicates when changes to
instances of user-defined classes have occurred. This function is
normally used to reset the flag to zero after GetInstancesChanged()
returns non-zero.

136 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Arguments: An integer indicating whether changes in instances of user-defined
classes have occurred (non-zero) or not (0).

Returns: Nothing useful.

4.13.26 Unmakelnstance

int UnmakeInstance(instancePtr);
void *instancePtr;

Purpose: This function is equivalent to Deletelnstance except that it uses
message-passing instead of directly deleting the instance(s).

Arguments: A generic pointer to the instance to be deleted. If the pointer is
NULL, all instances in the system are deleted.

Returns: Non-zero if successful, O otherwise.

Other: This function can trigger garbage collection.

4.13.27 ValidInstanceAddress

int ValidInstanceAddress(instancePtr);
void *instancePtr;

Purpose: Determines if an instance referenced by an address still exists. See
the description of IncrementInstanceCount.

Arguments: The address of the instance.

Returns: The integer 1 if the instance still exists, 0 otherwise.

4.14 DEFMESSAGE-HANDLER FUNCTIONS

The following function calls are used for manipulating defmessage-handlers.

4.14.1 FindDefmessageHandler

unsigned FindDefmessageHandler(defclassPtr,
handlerName,handlerType);

void *defclassPtr,

char *handlerName, *handlerType;

CLIPS Advanced Programming Guide 137

CLIPS Reference Manual

Purpose:

Arguments:

Returns:

Returns an index to the specified message-handler within the list of
handlers for a particular class.

1) A generic pointer to the class to which the handler is attached.
2) The name of the handler.
3) The type of the handler: around, before, primary or after.

An index to the specified handler if it exists, otherwise 0.

4.14.2 GetDefmessageHandlerList

void GetDefmessageHandlerList(defclassPtr,&returnValue,

void *defclassPtr;

includeInheritedp);

DATA_OBJECT returnValue;
int includelnheritedp;

Purpose:

Arguments:

Returns:

Returns the list of currently defined defmessage-handlers for the
specified class. This function is the C equivalent of the CLIPS
get-defmessage-handler-list command).

1) A generic pointer to the class (NULL for all classes).

2) A pointer to the DATA_OBJECT in which the list of
defmessage-handler constructs is to be stored.

3) An integer flag indicating whether to list inherited handlers
(TRUE to list them or FALSE to not list them).

No meaningful value. The second argument to this function is set to
a multifield value containing the list of defmessage-handler
constructs for the specified class. The multifield functions described
in section 3.2.4 can be used to retrieve the defmessage-handler
class, name, and type from the list. Note that the class, name, and
type for each defmessage-handler are stored as triplets in the return
multifield value.

4.14.3 GetDefmessageHandlerName

char *GetDefmessageHandlerName(defclassPtr,handlerIndex);

void *defclassPtr;

unsigned handlerIndex;

Purpose:

138

Returns the name of a message-handler.

Section 4 - Embedding CLIPS

CLIPS Reference Manual

Arguments: 1) A generic pointer to a defclass data structure.
2) The index of a message-handler.

Returns: A string containing the name of the message-handler.

4.14.4 GetDefmessageHandlerPPForm

char *GetDefmessageHandlerPPForm(defclassPtr,handlerIndex);

void *defclassPtr;
unsigned handlerIndex;

Purpose: Returns the pretty print representation of a message-handler.

Arguments: 1) A generic pointer to a defclass data structure.
2) The index of a message-handler.

Returns: A string containing the pretty print representation of the
message-handler (or the NULL pointer if no pretty print
representation exists).

4.14.5 GetDefmessageHandlerType

char *GetDefmessageHandlerType(defclassPtr,handlerIndex);
void *defclassPtr;
unsigned handlerIndex;

Purpose: Returns the type (around, before, primary or after) of a
message-handler.

Arguments: 1) A generic pointer to a defclass data structure.
2) The index of a message-handler.

Returns: A string containing the type of the message-handler.

4.14.6 GetDefmessageHandlerWatch

unsigned GetDefmessageHandlerWatch(defclassPtr,handlerIndex);
void *defclassPtr;
unsigned handlerIndex;

Purpose: Indicates whether or not a particular defmessage-handler is being
watched.

CLIPS Advanced Programming Guide 139

CLIPS Reference Manual

Arguments: A generic pointer to a defclass data structure and the index of the
message-handler.

Returns: An integer; one (1) if the defmessage-handler is being watched,
otherwise a zero (0).

4.14.7 GetNextDefmessageHandler

unsigned GetNextDefmessageHandler(defclassPtr,handlerIndex);
void *defclassPtr;
unsigned handlerIndex;

Purpose: Provides access to the list of message-handlers.

Arguments: 1) A generic pointer to a defclass data structure.
2) An index to a particular message-handler for the class (or O to
get the first message-handler).

Returns: An index to the first handler in the list of handlers if handlerIndex is
0, otherwise an index to the handler immediately following
handlerIndex in the list of handlers for the class. If handlerIndex is
the last handler in the list of handlers for the class, then O is
returned.

4.14.8 IsDefmessageHandlerDeletable

int IsDefmessageHandlerDeletable(defclassPtr,handlerIndex);
void *defclassPtr;
unsigned handlerIndex;

Purpose: Indicates whether or not a particular message-handler can be
deleted.
Arguments: 1) A generic pointer to a defclass data structure.

2) The index of a message-handler.

Returns: An integer; zero (0) if the message-handler cannot be deleted,
otherwise a one (1).

4.14.9 ListDefmessageHandlers

void ListDefmessageHandlers(logicalName,defclassPtr,
includelnheritedp);

char *logicalName;

void *defclassPtr;

140 Section 4 - Embedding CLIPS

CLIPS Reference Manual

int includelnheritedp;

Purpose: Prints the list of message-handlers for the specified class. This
function is the C equivalent of the CLIPS
list-defmessage-handlers command).

Arguments: 1) The logical name to which the listing output is sent.
2) A generic pointer to the class (NULL for all classes).
3) An integer flag indicating whether to list inherited handlers
(TRUE to list them or FALSE to not list them).

Returns: No meaningful return value.

4.14.10 PreviewSend

void PreviewSend(logicalName,defclassPtr,messageName);
char *logicalName;
void *defclassPtr;
char *messageName;

Purpose: Prints a list of all applicable message-handlers for a message sent to
an instance of a particular class (the C equivalent of the CLIPS
preview-send command). Output is sent to the logical name
wdisplay.

Arguments: 1) The logical name to which output is sent.
2) A generic pointer to the class.

3) The message name.

Returns: No meaningful return value.

4.14.11 SetDefmessageHandler Watch

void SetDefmessageHandlerWatch(newState,defclassPtr,

handlerIndex);
int newState;
void *defclassPtr;
unsigned handlerIndex;
Purpose: Sets the message-handlers watch item for a specific defmessage-
handler.
Arguments: The new message-handlers watch state, a generic pointer to a

defclass data structure, and the index of the message-handler.

CLIPS Advanced Programming Guide 141

CLIPS Reference Manual

4.14.12 UndefmessageHandler

int UndefmessageHandler(defclassPtr,handlerIndex);
void *defclassPtr;
unsigned handlerIndex;

Purpose: Removes a message-handler from CLIPS (similar but not
equivalent to the CLIPS undefmessage-handler command - see
WildDeleteHandler).

Arguments: 1) A generic pointer to a defclass data structure (NULL to delete

all message-handlers in all classes).

2) The index of the message-handler (0 to delete all
message-handlers in the class - must be 0 if defclassPtr is
NULL).

Returns: An integer; zero (0) if the message-handler could not be deleted,
otherwise a one (1).

Other: This function can trigger garbage collection.

4.15 DEFINSTANCES FUNCTIONS

The following function calls are used for manipulating definstances.

4.15.1 DefinstancesModule

char *DefinstancesModule(theDefinstances);
void *theDefinstances;

Purpose: Returns the module in which a definstances is defined (the C
equivalent of the CLIPS definstances-module command).

Arguments: A generic pointer to a definstances.

Returns: A string containing the name of the module in which the
definstances is defined.

4.15.2 FindDefinstances

void *FindDefinstances(definstancesName);
char *definstancesName;

Purpose: Returns a generic pointer to a named definstances.

142 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Arguments: The name of the definstances to be found.
Returns: A generic pointer to the named definstances if it exists, otherwise
NULL.

4.15.3 GetDefinstancesList

void GetDefinstancesList(&returnValue,theModule);
DATA_OBJECT returnValue;
void *theModule;

Purpose: Returns the list of definstances in the specified module as a
multifield value in the returnValue DATA_OBJECT (the C
equivalent of the CLIPS get-definstances-list function).

Arguments: 1) A pointer to the caller’s DATA_OBJECT in which the return
value will be stored. The multifield functions described in
section 3.2.4 can be used to retrieve the definstances names
from the list.

2) A generic pointer to the module from which the list will be
extracted. A NULL pointer indicates that the list is to be
extracted from al 1 modules.

Returns: No meaningful return value.

4.15.4 GetDefinstancesName

char *GetDefinstancesName(definstancesPtr);
void *definstancesPtr;

Purpose: Returns the name of a definstances.
Arguments: A generic pointer to a definstances data structure.
Returns: A string containing the name of the definstances.

4.15.5 GetDefinstancesPPForm

char *GetDefinstancesPPForm(definstancesPtr);
void *definstancesPtr;

Purpose: Returns the pretty print representation of a definstances.

CLIPS Advanced Programming Guide 143

CLIPS Reference Manual

Arguments: A generic pointer to a definstances data structure.

Returns: A string containing the pretty print representation of the
definstances (or the NULL pointer if no pretty print representation
exists).

4.15.6 GetNextDefinstances

void *GetNextDefinstances(definstancesPtr);
void *definstancesPtr;

Purpose: Provides access to the list of definstances.

Arguments: A generic pointer to a definstances data structure (or NULL to get
the first definstances).

Returns: A generic pointer to the first definstances in the list of definstances
if definstancesPtr is NULL, otherwise a generic pointer to the
definstances immediately following definstancesPtr in the list of
definstances. If definstancesPtr is the last definstances in the list of
definstances, then NULL is returned.

4.15.7 IsDefinstancesDeletable

int IsDefinstancesDeletable(definstancesPtr);
void *definstancesPtr;

Purpose: Indicates whether or not a particular class definstances can be
deleted.

Arguments: A generic pointer to a definstances data structure.

Returns: An integer; zero (0) if the definstances cannot be deleted, otherwise
aone (1).

4.15.8 ListDefinstances

void ListDefinstances(logicalName,theModule);
char *logicalName;
void *theModule;

Purpose: Prints the list of definstances (the C equivalent of the CLIPS
list-definstances command).

144 Section 4 - Embedding CLIPS

Arguments:

Returns:

4.15.9 Undefinstances

CLIPS Reference Manual

1) The logical name to which the listing output is sent.

2) A generic pointer to the module containing the definstances to
be listed. A NULL pointer indicates that definstances in all
modules should be listed.

No meaningful return value.

int Undefinstances(definstancesPtr);
void *definstancesPtr;

Purpose:

Arguments:

Returns:

Other:

Removes a definstances from CLIPS (the C equivalent of the
CLIPS undefinstances command).

A generic pointer to a definstances data structure.

An integer; zero (0) if the definstances could not be deleted,
otherwise a one (1).

This function can trigger garbage collection.

4.16 DEFMODULE FUNCTIONS

The following function calls are used for manipulating defmodules.

4.16.1 FindDefmodule

void *FindDefmodule(defmoduleName);

char *defmoduleName;

Purpose:
Arguments:

Returns:

4.16.2 GetCurrentModule

Returns a generic pointer to a named defmodule.
The name of the defmodule to be found.

A generic pointer to the named defmodule if it exists, otherwise
NULL.

void *GetCurrentModule();

CLIPS Advanced Programming Guide 145

CLIPS Reference Manual

Purpose: Returns the current module (the C equivalent of the CLIPS get-
current-module function).

Arguments: None.

Returns: A generic pointer to the generic defmodule data structure that is the
current module.

4.16.3 GetDefmoduleList

void GetDefmodulelList(&returnValue);
DATA_OBJECT returnValue;

Purpose: Returns the list of defmodules as a multifield value in the
returnValue DATA_OBJECT (the C equivalent of the CLIPS get-
defmodule-list function).

Arguments: A pointer to the caller’s DATA_OBJECT in which the return value
will be stored. The multifield functions described in section 3.2.4
can be used to retrieve the defmodule names from the list.

Returns: No meaningful return value.

4.16.4 GetDefmoduleName

char *GetDefmoduleName(defmodulePtr);
void *defmodulePtr;

Purpose: Returns the name of a defmodule.
Arguments: A generic pointer to a defmodule data structure.
Returns: A string containing the name of the defmodule.

4.16.5 GetDefmodulePPForm

char *GetDefmodulePPForm(defmodulePtr);
void *defmodulePtr;

Purpose: Returns the pretty print representation of a defmodule.

Arguments: A generic pointer to a defmodule data structure.

146 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Returns: A string containing the pretty print representation of the defmodule
(or the NULL pointer if no pretty print representation exists).

4.16.6 GetNextDefmodule

void *GetNextDefmodule(defmodulePtr);
void *defmodulePtr;

Purpose: Provides access to the list of defmodules.

Arguments: A generic pointer to a defmodule data structure (or NULL to get the
first defmodule).

Returns: A generic pointer to the first defmodule in the list of defmodules if

defmodulePtr is NULL, otherwise a generic pointer to the
defmodule immediately following defmodulePtr in the list of
defmodules. If defmodulePtr is the last defmodule in the list of
defmodules, then NULL is returned.

4.16.7 ListDefmodules

void ListDefmodules(logicalName);
char *logicalName;

Purpose: Prints the list of defmodules (the C equivalent of the CLIPS
list-defmodules command).

Arguments: 1) The logical name to which the listing output is sent.

Returns: No meaningful return value.

4.16.8 SetCurrentModule

void *SetCurrentModule(defmodulePtr);
void *defmodulePtr;

Purpose: Sets the current module to the specified module (the C equivalent of
the CLIPS set-current-module function).

Arguments: A generic pointer to a defmodule data structure.

Returns: A generic pointer to the previous current defmodule data structure.

CLIPS Advanced Programming Guide 147

CLIPS Reference Manual

4.17 EMBEDDED APPLICATION EXAMPLES

4.17.1 User-Defined Functions

This section lists the steps needed to define and use an embedded CLIPS application. The
example given is the same system used in section 3.4, now set up to run as an embedded
application.

1) Copy all of the CLIPS source code file to the user directory.

2) Define the user function (TripleNumber) and a new main routine in a new file. These could
go in separate files if desired. For this example, they will all be included in a single file.

#include "clips.h"

main()

{

InitializeEnvironment();
Load("constructs.clp");
Reset();

Run(-1L)

}

void TripleNumber(

148

DATA_OBJECT_PTR returnValuePtr)

{
void *value;
long long longValue;
double doubleValue;
/*
/* If illegal arguments are passed, return zero.
/*
if (ArgCountCheck("triple",EXACTLY,1) == -1)
{

SetpType(returnValuePtr,INTEGER);
SetpValue(returnValuePtr,AddLong(@QLL));
return;

}

*/
*/
*/

if (! ArgTypeCheck("triple",1,INTEGER_OR_FLOAT,returnValuePtr))
{

SetpType(returnValuePtr,INTEGER);
SetpValue(returnValuePtr,AddLong(@LL));
return;

}

Section 4 - Embedding CLIPS

CLIPS Reference Manual

/* */
/* Triple the number. */
/* */

if (GetpType(returnValuePtr) == INTEGER)
{

value = GetpValue(returnValuePtr);

longValue = 3 * ValueTolLong(value);
SetpValue(returnValuePtr,AddLong(longValue));

}

else /* the type must be FLOAT */

{

value = GetpValue(returnValuePtr);

doubleValue = 3.0 * ValueToDouble(value);
SetpValue(returnValuePtr,AddDouble(doubleValue));
}

return;

}

3) Modify UserFunctions in the CLIPS userfunctions.c file.

void UserFunctions()

{
extern void TripleNumber(DATA_OBJECT_PTR);
DefineFunction2("triple",'u',PTIF TripleNumber, "TripleNumber",
n 11nll);
ks

void EnvUserFunctions(
void *theEnv))
{
}

4) Define constructs which use the new function in a file called constructs.clp (or any file; just
be sure the call to Load loads all necessary constructs prior to execution).

(deffacts init-data
(data 34)
(data 13.2))

(defrule get-data
(data ?num)
=>
(printout t "Tripling " ?num crlf)
(assert (new-value (triple ?num))))

(defrule get-new-value
(new-value ?num)

=>
(printout t crlf "Now equal to " ?num crlf))

5) Compile all CLIPS files, except main.c, along with all user files.

CLIPS Advanced Programming Guide 149

CLIPS Reference Manual

6) Link all object code files.

7) Execute new CLIPS executable.

4.17.2 Manipulating Objects and Calling CLIPS Functions

This section lists the steps needed to define and use an embedded CLIPS application. The
example illustrates how to call deffunctions and generic functions as well as manipulate objects
from C.

1) Copy all of the CLIPS source code file to the user directory.

2) Define a new main routine in a new file.

#include <stdio.h>
#include "clips.h"

main()
{
void *cl,*c2,*c3;
DATA_OBJECT insdata,result;
char numbuf[20];

InitializeEnvironment();

/* */
/* Load the classes, message-handlers, generic functions */
/* and generic functions necessary for handling complex */
/* numbers. */
/* */

Load("complex.clp");

/* */
/* Create two complex numbers. Message-passing is used to */
/* create the first instance cl, but c2 is created and has */

/* its slots set directly. */
/* */
cl = MakeInstance("(cl of COMPLEX (real 1) (imag 10))");

c2 CreateRawInstance(FindDefclass("COMPLEX"),"c2");
result.type = INTEGER;

result.value = AddLong(3LL);
DirectPutSlot(c2,"real",&result);

result.type = INTEGER;

result.value = AddLong(-7LL);
DirectPutSlot(c2,"imag" ,&result);

150 Section 4 - Embedding CLIPS

/*
/*

/* complex numbers. The result of the complex addition is
/* stored in a new instance of the COMPLEX class.

/*

FunctionCall("+","[c1] [c2]",&result);

c3 = FindInstance(NULL,DOToString(result),TRUE);

/* */
/* Print out a summary of the complex addition using the */
/* "print" and "magnitude" messages to get information */
/* about the three complex numbers. */
/* */
PrintRouter("stdout","The addition of\n\n");
SetType(insdata, INSTANCE_ADDRESS);

SetValue(insdata,cl);

Send(&insdata,"print" ,NULL,&result);

PrintRouter("stdout", "\nand\n\n");

SetType(insdata, INSTANCE_ADDRESS);

SetValue(insdata,c2);

Send(&insdata,"print" ,NULL,&result);

PrintRouter("stdout", "\nis\n\n");

SetType(insdata, INSTANCE_ADDRESS);

SetValue(insdata,c3);

Send(&insdata,"print" ,NULL,&result);
PrintRouter("stdout","\nand the resulting magnitude is\n\n");

Call the function '+' which has been overloaded to handle

SetType(insdata, INSTANCE_ADDRESS);
SetValue(insdata,c3);

Send(&insdata, "magnitude"” ,NULL,&result);
sprintf(numbuf, "%1f\n",D0ToDouble(result));
PrintRouter("stdout",numbuf);

*/
*/
*/
*/
*/

CLIPS Reference Manual

3) Define constructs which use the new function in a file called complex.clp (or any file; just
be sure the call to Load loads all necessary constructs prior to execution).

(defclass COMPLEX (is-a USER)
(role concrete)

(slot real (create-accessor read-write))
(slot imag (create-accessor read-write)))

(defmethod + ((?a COMPLEX) (?b COMPLEX))
(make-instance of COMPLEX

(real (+ (send ?a get-real) (send ?b get-real)))
(imag (+ (send ?a get-imag) (send ?b get-imag)))))

CLIPS Advanced Programming Guide

151

CLIPS Reference Manual

(defmessage-handler COMPLEX magnitude (O
(sgrt (+ (** ?self:real 2) (** ?self:imag 2))))

4) Compile all CLIPS files, except main.c, along with all user files.

5) Link all object code files.

6) Execute new CLIPS executable.

152 Section 4 - Embedding CLIPS

CLIPS Reference Manual

Section S - Creating a CLIPS Run-time Program

5.1 COMPILING THE CONSTRUCTS

This section describes the procedure for creating a CLIPS run-time module. A run-time program
compiles all of the constructs (defrule, deffacts, deftemplate, etc.) into a single executable and
reduces the size of the executable image. A run-time program will not run any faster than a
program loaded using the load or bload commands. The constructs-to-c command used to
generate a run-time program creates files containing the C data structures that would
dynamically be allocated if the load or bload command was used. With the exception of some
initialization routines, the constructs-to-c command does not generate any executable code. The
primary benefits of creating a run-time program are: applications can be delivered as a single
executable file; loading constructs as part of an executable is faster than loading them from an
text or binary file; the CLIPS portion of the run-time program is smaller because the code needed
to parse constructs can be discarded; and less memory is required to represent your program’s
constructs since memory for them is statically rather than dynamically allocated.

Creating a run-time module can be achieved with the following steps:

1) Start CLIPS and load in all of the constructs that will constitute a run-time module. Call the
constructs-to-c command using the following syntax:

(constructs-to-c <file-name> <id> [<target-path> [<max-elements>]])

where <file-name> is a string or a symbol, <id> is an integer, <target-path> is a string or
symbol, and the <max-elements> is an integer. For example, if the construct file loaded was
named "expert.clp", the conversion command might be

(constructs-to-c exp 1)

This command would store the converted constructs in several output files ("expl_1.c",
"expl_2.c", ..., "exp7_1.c") and use a module id of 1 for this collection of constructs. The
use of the module id will be discussed in greater detail later. Once the conversion is
complete, exit CLIPS. For large systems, this output may be very large (> 200K). If
<target-path> is specified, it is prepended to the name of the file when it is created,
allowing target directory to be specified for the generated files. For example, specifying the
target path Temp\ on a Unix system would place the generated files in the directory Temp
(assuming that it already exists).

It is possible to limit the size of the generated files by using the <max-elements> argument.
This argument indicates the maximum number of structures which may be placed in a

CLIPS Advanced Programming Guide 153

CLIPS Reference Manual

2)

3)

single array stored in a file. Where possible, if this number is exceeded new files will be
created to store additional information. This feature is useful for compilers that may place a
limitation on the size of a file that may be compiled.

Note that the .c extension is added by CLIPS. When giving the file name prefix, users
should consider the maximum number of characters their system allows in a file name. For
example, under MS-DOS, only eight characters are allowed in the file name. For very large
systems, it is possible for CLIPS to add up to 5 characters to the file name prefix. Therefore,
for system which allow only 8 character file names, the prefix should be no more than 3
characters.

Constraint information associated with constructs is not saved to the C files generated by the
constructs-to-c command unless dynamic constraint checking is enabled (using the set-
dynamic-constraint-checking command).

Set the RUN_TIME setup flag in the setup.h header file to 1 and compile all of the c files
just generated.

Modify the main.c module for embedded operation. Unless the user has other specific uses,
the argc and argv arguments to the main function should be eliminated. The function
InitializeEnvironment should not be called. Also do not call the CommandLoop or
RerouteStdin functions which are normally called from the main function of a command
line version of CLIPS. Do not define any functions in the UserFunctions or
EnvUserFunctions functions. These functions are not called during initialization. All of the
function definitions have already been compiled in the 'C' constructs code. In order for your
run-time program to be loaded, a function must be called to initialize the constructs module.
This function is defined in the 'C' constructs code, and its name is dependent upon the id
used when translating the constructs to 'C' code. The name of the function is
InitCImage_<id> where <id> is the integer used as the construct module <id>. In the
example above, the function name would be InitCImage_1. The return value of this
function is a pointer to an environment (see section 9) which was created and initialized to
contain your run-time program. This initialization steps probably would be followed by any
user initialization, then by a reset and run. Finally, when you are finished with a run-time
module, you can call DestroyEnvironment to remove it. An example main.c file would be

#include <stdio.h>
#include "clips.h"

main()

154

{

void *theEnv;
extern void *InitCImage_1Q);

theEnv = InitCImage_1Q);

Section 5 - Creating a CLIPS Run-time Program

CLIPS Reference Manual

[
° /* Any user Initialization */
[

EnvReset(theEnv);

EnvRun(theEnv,-1);
[]

° /* Any other code */
[

DestroyEnvironment(theEnv);

}

4) Recompile all of the CLIPS source code (the RUN_TIME flag should still be 1). This causes
several modifications in the CLIPS code. The run-time CLIPS module does not have the
capability to load new constructs. Do NOT change any other compiler flags! Because of the
time involved in recompiling CLIPS, it may be appropriate to recompile the run-time
version of CLIPS into a separate library from the full version of CLIPS.

5) Link all regular CLIPS modules together with any user-defined function modules and the 'C'
construct modules. Make sure that any user-defined functions have global scope. Do not
place the construct modules within a library for the purposes of linking (the regular CLIPS
modules, however, can be placed in a library). Some linkers (most notably the VAX VMS
linker) will not correctly resolve references to global data that is stored in a module
consisting only of global data.

6) The run-time module which includes user constructs is now ready to run.

Note that individual constructs may not be added or removed in a run-time environment.
Because of this, the load function is not available for use in run-time programs. The clear
command will also not remove any constructs (although it will clear facts and instances). Use
calls to the InitCImage_... functions to clear the environment and replace it with a new set of
constructs. In addition, the eval and build functions do not work in a run-time environment.

Since new constructs can’t be added, a run-time program can’t dynamically load a deffacts or
definstances construct. To dynamically load facts and/or instances in a run-time program, the
CLIPS load-facts and load-instances functions or the C LoadFacts and LoadlInstances
functions should be used in place of deffacts and definstances constructs.

Important Note

In prior versions of CLIPS, it was possible to switch between different images by calling the
InitCImage function of the desired run-time program while execution was halted. This
mechanism is no longer available. Each call to separate InitCImage functions creates a unique
environment into which the run-time program is loaded. You can thus switch between various
runtime programs by using the environment API to specify which environment is the target of a
command. Also note that only the first call to a given InitCImage function will create an
environment containing the specified run-time program. Subsequent calls have no effect and a

CLIPS Advanced Programming Guide 155

CLIPS Reference Manual

value of NULL is returned by the function. Once the DestroyEnvironment function has been

called to remove an environment created by an InitCImage call, there is no way to reload the
run-time program.

156 Section 5 - Creating a CLIPS Run-time Program

CLIPS Reference Manual

Section 6 - Integrating CLIPS with Other Languages and Environments

CLIPS is developed in C and is most easily combined with user functions written in C. However,
other languages can be used for user-defined functions, and CLIPS even may be embedded
within a program written in another language.

6.1 INTRODUCTION

Three basic capabilities are needed for complete language mixing.
* A program in another language may be used as the main program.

e The C access functions to CLIPS can be called from the other language and have parameters
passed to them.

* Functions written in the other language can be called by CLIPS and have parameters passed
to them.

The integration of CLIPS (and C) with other languages requires an understanding of how each
language passes parameters between routines. In general, interface functions will be needed to
pass parameters from C to another language and from another language to C. The basic concepts
of mixed language parameter passing are the same regardless of the language or machine.
However, since every machine and operating system passes parameters differently, specific
details (and code) may differ from machine to machine. To improve usability and to minimize
the amount of recoding needed for each machine, interface packages can be developed which
allow user routines to call the standard CLIPS embedded command functions. The details of
passing information from external routines to CLIPS generally are handled inside of the interface
package. To pass parameters from CLIPS fo an external routine, users will have to write inter-
face functions. Example interface packages for VMS FORTRAN and VMS Ada to selected
CLIPS functions are listed in appendix A. Section 6.9 will discuss how to construct an interface
package for other machines/compilers.

CLIPS Advanced Programming Guide 157

CLIPS Reference Manual

Section 7 - I/O Router System

The I/O router system provided in CLIPS is quite flexible and will allow a wide variety of
interfaces to be developed and easily attached to CLIPS. The system is relatively easy to use and
is explained fully in sections 7.1 through 7.4. The CLIPS 1/O functions for using the router
system are described in sections 7.5 and 7.6, and finally, in appendix B, some examples are
included which show how I/O routing could be used for simple interfaces.

7.1 INTRODUCTION

The problem that originally inspired the idea of I/O routing will be considered as an introduction
to I/O routing. Because CLIPS was designed with portability as a major goal, it was not possible
to build a sophisticated user interface that would support many of the features found in the
interfaces of commercial expert system building tools. A prototype was built of a semi-portable
interface for CLIPS using the CURSES screen management package. Many problems were
encountered during this effort involving both portability concerns and CLIPS internal features.
For example, every statement in the source code which used the C print function, printf, for
printing to the terminal had to be replaced by the CURSES function, wprintw, which would
print to a window on the terminal. In addition to changing function call names, different types of
I/O had to be directed to different windows. The tracing information was to be sent to one
window, the command prompt was to appear in another window, and output from printout
statements was to be sent to yet another window.

This prototype effort pointed out two major needs: First, the need for generic I/O functions that
would remain the same regardless of whether I/O was directed to a standard terminal interface or
to a more complex interface (such as windows); and second, the need to be able to specify
different sources and destinations for I/O. I/O routing was designed in CLIPS to handle these
needs. The concept of I/O routing will be further explained in the following sections.

7.2 LOGICAL NAMES

One of the key concepts of I/O routing is the use of logical names. An analogy will be useful in
explaining this concept. Consider the Acme company which has two computers: computers X
and Y. The Acme company stores three data sets on these two computers: a personnel data set,
an accounting data set, and a documentation data set. One of the employees, Joe, wishes to
update the payroll information in the accounting data set. If the payroll information was located
in directory A on computer Y, Joe's command would be

update Y:[A]lpayroll

If the data were moved to directory B on computer X, Joe’s command would have to be changed
to

CLIPS Advanced Programming Guide 159

CLIPS Reference Manual

update X:[B]payroll

To update the payroll file, Joe must know its location. If the file is moved, Joe must be informed
of its new location to be able to update it. From Joe’s point of view, he does not care where the
file is located physically. He simply wants to be able to specify that he wants the information
from the accounting data set. He would rather use a command like

update accounting:payroll

By using logical names, the information about where the accounting files are located physically
can be hidden from Joe while still allowing him to access them. The locations of the files are
equated with logical names as shown here.

accounting = X:[A]
documentation = X:[(]
personnel = Y:[B]

Now, if the files are moved, Joe does not have to be informed of their relocation so long as the
logical names are updated. This is the power of using logical names. Joe does not have to be
aware of the physical location of the files to access them; he only needs to be aware that
accounting is the logical name for the location of the accounting data files. Logical names allow
reference to an object without having to understand the details of the implementation of the
reference.

In CLIPS, logical names are used to send I/O requests without having to know which device
and/or function is handling the request. Consider the message that is printed in CLIPS when rule
tracing is turned on and a rule has just fired. A typical message would be

FIRE 1 example-rule: f-0

The routine that requests this message be printed should not have to know where the message is
being sent. Different routines are required to print this message to a standard terminal, a window
interface, or a printer. The tracing routine should be able to send this message to a logical name
(for example, trace-out) and should not have to know if the device to which the message is
being sent is a terminal or a printer. The logical name trace-out allows tracing information to be
sent simply to “the place where tracing information is displayed.” In short, logical names allow
I/O requests to be sent to specific locations without having to specify the details of how the I/0O
request is to be handled.

Many functions in CLIPS make use of logical names. Both the printout and format functions
require a logical name as their first argument. The read function can take a logical name as an
optional argument. The open function causes the association of a logical name with a file, and
the close function removes this association.

160 Section 7 - I/O Router System

CLIPS Reference Manual

Several logical names are predefined by CLIPS and are used extensively throughout the system
code. These are

Name Description
stdin The default for all user inputs. The read and readline functions
read from stdin if t is specified as the logical name.

stdout The default for all user outputs. The format and printout functions
send output to stdout if t is specified as the logical name.

wprompt The CLIPS prompt is sent to this logical name.
wdialog All informational messages are sent to this logical name.
wdisplay Requests to display CLIPS information, such as facts or rules, are

sent to this logical name.

werror All error messages are sent to this logical name.
wwarning All warning messages are sent to this logical name.
wtrace All watch information is sent to this logical name (with the

exception of compilations which is sent to wdialog).

7.3 ROUTERS

The use of logical names has solved two problems. Logical names make it easy to create generic
I/O functions, and they allow the specification of different sources and destinations for I/O. The
use of logical names allows CLIPS to ignore the specifics of an I/O request. However, such
requests must still be specified at some level. I/O routers are provided to handle the specific
details of a request.

A router consists of three components. The first component is a function which can determine
whether the router can handle an I/O request for a given logical name. The router which
recognizes I/O requests that are to be sent to the serial port may not recognize the same logical
names as that which recognizes I/O requests that are to be sent to the terminal. On the other
hand, two routers may recognize the same logical names. A router that keeps a log of a CLIPS
session (a dribble file) may recognize the same logical names as that which handles I/0 requests
for the terminal.

CLIPS Advanced Programming Guide 161

CLIPS Reference Manual

The second component of a router is its priority. When CLIPS receives an I/O request, it begins
to question each router to discover whether it can handle an I/O request. Routers with high
priorities are questioned before routers with low priorities. Priorities are very important when
dealing with one or more routers that can each process the same I/O request. This is particularly
true when a router is going to redefine the standard user interface. The router associated with the
standard interface will handle the same I/O requests as the new router; but, if the new router is
given a higher priority, the standard router will never receive any 1/O requests. The new router
will "intercept" all of the I/O requests. Priorities will be discussed in more detail in the next
section.

The third component of a router consists of the functions which actually handle an I/O request.
These include functions for printing strings, getting a character from an input buffer, returning a
character to an input buffer, and a function to clean up (e.g., close files, remove windows) when
CLIPS is exited.

7.4 ROUTER PRIORITIES

Each I/O router has a priority. Priority determines which routers are queried first when
determining the router that will handle an I/O request. Routers with high priorities are queried
before routers with low priorities. Priorities are assigned as integer values (the higher the integer,
the higher the priority). Priorities are important because more than one router can handle an I/O
request for a single logical name, and they enable the user to define a custom interface for
CLIPS. For example, the user could build a custom router which handles all logical names
normally handled by the default router associated with the standard interface. The user adds the
custom router with a priority higher than the priority of the router for the standard interface. The
custom router will then intercept all I/O requests intended for the standard interface and specially
process those requests to the custom interface.

Once the router system sends an I/O request out to a router, it considers the request satisfied. If a
router is going to share an I/O request (i.e., process it) then allow other routers to process the
request also, that router must deactivate itself and call PrintRouter again. These types of routers
should use a priority of either 30 or 40. An example is given in appendix B.2.

Priority Router Description
50 Any router that uses "unique" logical names and does not want to
share I/0 with catch-all routers.

40 Any router that wants to grab standard I/O and is willing to share it
with other routers. A dribble file is a good example of this type of
router. The dribble file router needs to grab all output that normally
would go to the terminal so it can be placed in the dribble file, but

162 Section 7 - I/O Router System

30

20

10

CLIPS Reference Manual

this same output also needs to be sent to the router which displays
output on the terminal.

Any router that uses "unique" logical names and is willing to share
I/O with catch-all routers.

Any router that wants to grab standard logical names and is not
willing to share them with other routers.

This priority is used by a router which redefines the default user
interface I/O router. Only one router should use this priority.

This priority is used by the default router for handling standard and
file logical names. Other routers should not use this priority.

7.5 INTERNAL I/0O FUNCTIONS

The following functions are called internally by CLIPS. These functions search the list of active
routers and determine which router should handle an I/O request. Some routers may wish to
deactivate themselves and call one of these functions to allow the next router to process an 1/0O
request. Prototypes for these functions can be included by using the clips.h header file or the

router.h header file.

7.5.1 ExitRouter

void ExitRouter(exitCode);

int exitCode;

Purpose:

Arguments:

Returns:

Info:

The function ExitRouter calls the exit function associated with
each active router before exiting CLIPS.

The exitCode argument corresponds to the value that normally
would be sent to the system exit function. Consult a C system
manual for more details on the meaning of this argument.

No meaningful return value.
The function ExitRouter calls the system function exit with the

argument num after calling all exit functions associated with I/O
routers.

CLIPS Advanced Programming Guide 163

CLIPS Reference Manual

7.5.2 GetcRouter

int GetcRouter(logicalName);

char *logicalName;

Purpose:

Arguments:

Returns:

Info:

7.5.3 PrintRouter

The function GetcRouter queries all active routers until it finds a
router that recognizes the logical name associated with this I/O re-
quest to get a character. It then calls the get character function asso-
ciated with that router.

The logical name associated with the get character I/0 request.
An integer; the ASCII code of the character.

This function should be used by any user-defined function in place
of getc to ensure that character input from the function can be
received from a custom interface. On machines which default to
unbuffered I/O, user code should be prepared to handle special
characters like the backspace.

int PrintRouter(logicalName,str);
char *logicalName, *str;

Purpose:

Arguments:

Returns:

Info:

7.5.4 UngetcRouter

164

The function PrintRouter queries all active routers until it finds a
router that recognizes the logical name associated with this I/O re-
quest to print a string. It then calls the print function associated with
that router.

1) The logical name associated with the location at which the
string is to be printed.
2) The string that is to be printed.

Returns a non-zero value if the logical name is recognized,
otherwise it returns zero.

This function should be used by any user-defined function in place
of printf to ensure that output from the function can be sent to a
custom interface.

int UngetcRouter(ch,logicalName);

Section 7 - I/O Router System

int ch;
char *logicalName;

Purpose:

Arguments:

Returns:

Info:

CLIPS Reference Manual

The function UngetcRouter queries all active routers until it finds a
router that recognizes the logical name associated with this I/O re-
quest. It then calls the ungetc function associated with that router.

1) The ASCII code of the character to be returned.
2) The logical name associated with the ungetc character I/O
request.

Returns ch if successful, otherwise -1.

This function should be used by any user-defined function in place
of UngetcRouter to ensure that character input from the function
can be received from a custom interface. As with GetcRouter, user
code should be prepared to handle special characters like the
backspace on machines with unbuffered /0.

7.6 ROUTER HANDLING FUNCTIONS

The following functions are used for creating, deleting, and handling I/O routers. They are
intended for use within user-defined functions. Prototypes for these functions can be included by
using the clips.h header file or the router.h header file.

7.6.1 ActivateRouter

int ActivateRouter(routerName);

char *routerName;

Purpose:

Arguments:

Returns:

The function ActivateRouter activates an existing I/O router. This
router will be queried to see if it can handle an I/O request. Newly
created routers do not have to be activated.

The name of the I/O router to be activated.

Returns a non-zero value if the logical name is recognized,
otherwise it returns zero.

CLIPS Advanced Programming Guide 165

CLIPS Reference Manual

7.6.2 AddRouter

Purpose:

int AddRouter(routerName,priority,queryFunction,printFunction,
getcFunction,ungetcFunction,exitFunction);

char *routerName;

int
int
int

int
int
int
int
int

char *logicalName,

int

priority;

(*queryFunction)(), (*printFunction)();
(*getcFunction)(), (*ungetcFunction)(), (*exitFunction)();

queryFunction(logicalName);
printFunction(logicalName,str);
getcFunction(logicalName);
ungetcFunction(ch,logicalName);
exitFunction(exitCode);

ch, exitCode;

*str;

The function AddRouter adds a new I/O router to the list of I/O

routers.

Arguments: 1)

166

2)

3)

4)

5)

6)

The name of the I/O router. This name is used to reference the
router by the other I/O router handling functions.

The priority of the I/O router. I/O routers are queried in
descending order of priorities.

A pointer to the query function associated with this router. This
query function should accept a single argument, a logical name,
and return either TRUE (1) or FALSE (0) depending upon
whether the router recognizes the logical name.

A pointer to the print function associated with this router. This
print function should accept two arguments: a logical name and
a character string. The return value of the print function is not
meaningful.

A pointer to the get character function associated with this
router. The get character function should accept a single ar-
gument, a logical name. The return value of the get character
function should be an integer which represents the character or
end of file (EOF) read from the source represented by logical
name.

A pointer to the ungetc character function associated with this
router. The ungetc character function accepts two arguments: a
logical name and a character. The return value of the unget
character function should be an integer which represents the
character which was passed to it as an argument if the ungetc is
successful or end of file (EOF) is the ungetc is not successful.

Section 7 - I/O Router System

Returns:

Info:

7.6.3 DeactivateRouter

CLIPS Reference Manual

7) A pointer to the exit function associated with this router. The
exit function should accept a single argument: the exit code
represented by num.

Returns a zero value if the router could not be added, otherwise a
non-zero value is returned.

I/O routers are active upon being created. See the examples in ap-
pendix B for further information on how to use this function. Each
of the router functions must except an environment pointer if the
environment companion function is used (see section 9.2).

int DeactivateRouter(routerName);

char *routerName;

Purpose:

Arguments:

Returns:

7.6.4 DeleteRouter

The function DeactivateRouter deactivates an existing 1/O router.
This router will not be queried to see if it can handle an I/O request.
The syntax of the DeactivateRouter function is as follows.

The name of the I/O router to be deactivated.

Returns a non-zero value if the logical name is recognized,
otherwise it returns zero.

int DeleteRouter(routerName);

char *routerName;

Purpose:

Arguments:

Returns:

The function DeleteRouter removes an existing I/O router from the
list of I/O routers.

The name of the I/O router to be deleted.

Returns a non-zero value if the logical name is recognized,
otherwise it returns zero.

CLIPS Advanced Programming Guide 167

CLIPS Reference Manual

Section 8 - Memory Management

Efficient use of memory is a very important aspect of an expert system tool. Expert systems are
highly memory intensive and require comparatively large amounts of memory. To optimize both
storage and processing speed, CLIPS does much of its own memory management. Section 8.1
describes the basic memory management scheme used in CLIPS. Section 8.2 describes some
functions that may be used to monitor/ control memory usage.

8.1 HOW CLIPS USES MEMORY

The CLIPS internal data structures used to represent constructs and other data entities require the
allocation of dynamic memory to create and execute. Memory can also be released as these data
structures are no longer needed and are removed. All requests, either to allocate memory or to
free memory, are routed through the CLIPS memory management functions. These functions
request memory from the operating system and store previously used memory for reuse. By
providing its own memory management, CLIPS is able to reduce the number of malloc calls to
the operating system. This is very important since malloc calls are handled differently on each
machine, and some implementations of malloc are very inefficient.

When new memory is needed by any CLIPS function, CLIPS first checks its own data buffers
for a pointer to a free structure of the type requested. If one is found, the stored pointer is
returned. Otherwise, a call is made to malloc for the proper amount of data and a new pointer is
returned.

When a data structure is no longer needed, CLIPS saves the pointer to that memory against the
next request for a structure of that type. Memory actually is released to the operating system only
under limited circumstances. If a malloc call in a CLIPS function returns NULL ,all free memory
internally stored by CLIPS is released to the operating system and the malloc call is tried again.
This usually happens during rule execution, and the message

*k DEALLOCATING MEMORY #**

i MEMORY DEALLOCATED ***

will be printed out to the wdialog stream. Users also may force memory to be released to the
operating system (see section 8.2).

CLIPS uses the generic C function malloc to request memory. Some machines provide
lower-level memory allocation/deallocation functions that are considerably faster than malloc.
Generic CLIPS memory allocation and deallocation functions are stored in the memalloc.c file
and are called genalloc and genfree. The call to malloc and free in these functions could be
replaced to improve performance on a specific machine.

CLIPS Advanced Programming Guide 169

CLIPS Reference Manual

Some machines have very inefficient memory management services. When running on the such
machines, CLIPS can be made to request very large chunks of memory and internally allocate
smaller chunks of memory from the larger chunks. This technique bypasses numerous calls to
malloc thus improving performance. This behavior can be enabled by setting the
BLOCK_MEMORY compiler option in the setup.h header file to 1 (see section 2.2). In general,
this option should not be enabled unless memory allocation routines are very slow since the
CLIPS block memory routines tend to trade increased overhead for memory requests for faster
speed.

Extensive effort has gone into making CLIPS garbage free. Theoretically, if an application can
fit into the available memory on a machine, CLIPS should be able to run it forever. Of course,
user-defined functions that use dynamic memory may affect this.

8.2 STANDARD MEMORY FUNCTIONS

CLIPS currently provides a few functions that can be used to monitor and control memory usage.
Prototypes for these functions can be included by using the clips.h header file or the memalloc.h
header file.

8.2.1 GetConserveMemory

int GetConserveMemory();

Purpose: Returns the current value of the conserve memory behavior.
Arguments: None.
Returns: An integer; FALSE (0) if the behavior is disabled and TRUE (1) if

the behavior is enabled.

8.2.2 MemRequests

long int MemRequests();

Purpose: The function MemRequests will return the number of times CLIPS
has requested memory from the operating system (the C equivalent
of the CLIPS mem-requests command).

Arguments: None.
Returns: A long integer representing the number of requests CLIPS has
made.

170 Section 8 — Memory Management

Other:

8.2.3 MemUsed

long int MemUsed();

Purpose:

Arguments:

Returns:

Other:

8.2.4 ReleaseMem

CLIPS Reference Manual

When used in conjunction with MemoryUsed, the user can
estimate the number of bytes CLIPS requests per call to malloc.

The function MemUsed will return the number of bytes CLIPS has
currently in use or has held for later use (the C equivalent of the
CLIPS mem-used command).

None.
A long integer representing the number of bytes requested.

The number of bytes used does not include any overhead for
memory management or data creation. It does include all free
memory being held by CLIPS for later use; therefore, it is not a
completely accurate measure of the amount of memory actually
used to store or process information. It is used primarily as a
minimum indication.

long int ReleaseMem(ChowMuch, printMessage);

long int howMuch;
int printMessage;

Purpose:

Arguments:

Returns:

The function ReleaseMem will cause all free memory, or a
specified amount, being held by CLIPS to be returned to the
operating system (the C equivalent of the CLIPS release-mem
command).

1) The number of bytes to be released. If this argument is -1, all
memory will be released; otherwise, the specified number of
bytes will be released.

2) A non-zero value causes a memory deallocation message to be
printed when this function is called.

A long integer representing the actual amount of memory freed to
the operating system.

CLIPS Advanced Programming Guide 171

CLIPS Reference Manual

Other:

8.2.5 SetConserveMemory

This function can be useful if a user-defined function requires
memory but cannot get any from a malloc call. However, it should
be used carefully. Excessive calls to ReleaseMemory will cause
CLIPS to call malloc more often, which can reduce the
performance of CLIPS.

int SetConserveMemory(value);

int value;

Purpose:

Arguments:

Returns:

Other:

The function SetConserveMemory allows a user to turn on or off
the saving of pretty print information. Normally, this information is
saved. If constructs are never going to be pretty printed or saved, a
significant amount of memory can be saved by not keeping the
pretty print representation.

A boolean value: FALSE (0) to keep pretty print information for
newly loaded constructs and TRUE (1) to not keep this information
for newly loaded constructs.

Returns the old value for the behavior.

This function can save considerable memory space. It should be
turned on before loading any constructs. It can be turned on or off
as many times as desired. Constructs loaded while this is turned off
can be displayed only by reloading the construct, even if the option
is turned on subsequently.

8.2.6 SetOutOfMemoryFunction

int (*SetOutOfMemoryFunctionCoutOfMemoryFunction))();
int (*outOfMemoryFunction)();

int outOfMemoryFunction(theEnv,size);

void *theEnv;
unsigned long size;

Purpose:

Arguments:

172

Allows the user to specify a function to be called when CLIPS
cannot satisfy a memory request.

A pointer to the function to be called when CLIPS cannot satisfy a

memory request. This function is passed the size of the memory
request which could not be satisfied and a pointer to the

Section 8 — Memory Management

CLIPS Reference Manual

environment. It should return a non-zero value if CLIPS should not
attempt to allocate the memory again (and exit because of lack of
available memory) or a zero value if CLIPS should attempt to
allocate memory again.

Returns: Returns a pointer to the previously called out of memory function.
Other: Because the out of memory function can be called repeatedly for a

single memory request, any user-defined out of memory function
should return zero only if it has released memory.

CLIPS Advanced Programming Guide 173

CLIPS Reference Manual

Section 9 - Environments

CLIPS provides the ability to create multiple environments into which programs can be loaded.
Each environment maintains its own set of data structures and can be run independently of the
other environments.

9.1 CREATING, SELECTING, AND DESTROYING ENVIRONMENTS

If you have no need for multiple CLIPS programs loaded concurrently, there is no need to use
any of the environment functions described in this section. The call to InitializeEnvironment
automatically creates an environment for you and any subsequent calls to CLIPS functions will
be applied to that environment. Environments can also be created using the CreateEnvironment
function. The return value of the CreateEnvironment function is an anonymous (void *) pointer
to an environmentData data structure. Environments created using the CreateEnvironment
function are automatically initialized, so there is no need to call the InitializeEnvironment
function.

Once multiple environments have been created, it is necessary to specify to which environment
CLIPS function calls should be applied. This can be done in one of two ways. First, each of the
CLIPS embedded function calls has a companion function call of the same name prefaced with
“Env.” These companion function call accept an additional first argument: a generic pointer to an
environment data structure. The CLIPS embedded function call is applied to this argument.
CLIPS also supports the notion of a current environment. CLIPS embedded function calls that do
not specify an environment are applied to the current environment. Environments newly created
by the CreateEnvironment function call automatically become the current environment. The
current environment can also be set by using the SetCurrentEnvironment function call.
Environments also have an integer index associated with them that can be retrieved using the
GetEnvironmentIndex function. The current environment can also be set by passing this index
to the SetCurrentEnvironmentByIndex function.

Once you are done with an environment, it can be deleted with the DestroyEnvironment
function call. This will deallocate all memory associated with that environment. Alternately if
the ALLOW_ENVIRONMENT_GLOBALS compiler directive is enabled and you are ready
to terminate execution of your program, the DeallocateEnvironmentData function call can be
used to delete all existing environments and release the global memory used to keep track of
environments.

If you have added your own user-defined functions or extensions to CLIPS and you want these to
work properly with multiple environments, you need to make them environment aware.
Principally this involves using the environment companion functions in place of the standard
embedded function calls. In addition, any functions or extensions which use global data should
allocate this data for each environment by using the AllocateEnvironmentData function.

CLIPS Advanced Programming Guide 175

CLIPS Reference Manual

Shown following are two example main programs which make use of environments. The first
example uses the environment companion embedded function calls and the second example uses
the standard embedded function calls.

Environments Using Environment Embedded Calls
void main()

{

void *theEnvl, *theEnvZ;

theEnvl
theEnv2

CreateEnvironment();
CreateEnvironment();

EnvLoad(theEnvl, "programl.clp");
EnvLoad(theEnv2,"program2.clp");

EnvReset(theEnvl);
EnvReset(theEnv2);

EnvRun(theEnvl,-1);
EnvRun(theEnv2,-1);

DestroyEnvironment(theEnvl);
DestroyEnvironment(theEnv2);

}

Environments Using Standard Embedded Calls

void main()

{
void *theEnvl, *theEnvZ;

theEnvl
theEnv2

CreateEnvironment();
CreateEnvironment();

SetCurrentEnvironment(theEnvl);
Load("programl.clp");

Reset();

Run(-1);

SetCurrentEnvironment(theEnv2);
Load("program2.clp");

Reset();

Run(-1);

DestroyEnvironment(theEnvl);
DestroyEnvironment(theEnv2);

176 176 Section 1 - Introduction

CLIPS Reference Manual

9.2 ENVIRONMENT COMPANION FUNCTIONS

With a few exceptions, all of the CLIPS embedded function calls described in sections 3 through
8 have a companion function of the same name preceded with “Env”. The first argument to these
companion functions is a generic pointer to an environment data structure and the remaining
arguments are the same as the standard embedded function. For example, the standard embedded
function call for Run is defined as follows:

long int Run(runLimit);

long int runLimit;
The environment companion function for Run is defined as follows:

long int EnvRun(theEnv,runLimit);

void *theEknv;
long int runLimit;

The pointers to functions passed in to the companion functions for the AddClearFunction,
AddResetFunction, AddPeriodicFunction, AddRunFunction, and AddRouter should have as
an additional first argument a generic pointer to an environment. For example, the standard
embedded function call for AddClearFunction is defined as follows:

int AddClearFunction(clearItemName,clearFunction,priority);

char *clearItemName;

void (*clearFunction)();

int priority;

void clearFunction();

The environment companion function for AddClearFunction is defined as follows:

int EnvAddClearFunction(theEnv,clearItemName,envClearFunction,priority);

void *theEnv;

char *clearItemName;
void (*clearFunction)();
int priority;

void envClearFunction(theEnv);

void *theEnv;
The InitializeEnvironment function does not have a companion function since this function is
unnecessary when you explicitly create environments using the CreateEnvironment function.

The following embedded functions all have environment companion functions, but it is not
necessary to use the companion functions in order to be environment aware:

CLIPS Advanced Programming Guide 177

CLIPS Reference Manual

GetType DOToString GetDOLength ValueToString
GetpType DOPToString GetpDOLength ValueToDouble
SetType DOToDouble GetDOBegin ValueToLong
SetpType DOPToDouble GetpDOBegin ValueTolnteger
GetValue DOToFloat GetDOEnd

GetpValue DOPToFloat GetpDOEnd

SetValue DOToLong SetDOBegin

SetpValue DOPToLong SetpDOBegin

GetMFType DOTolnteger SetDOEnd

GetMFValue DOPTolnteger SetpDOEnd

SetMFType DOToPointer

SetMFValue DOPToPointer

If the ENVIRONMENT_API_ONLY compiler directive is enabled, then the standard
embedded functions require their first argument to be a generic pointer to an environment. For
example, the function Run would be defined as follows:

long int Run(theEnv,runLimit);

void *theEnv;
long int runLimit;

This change only applies to the functions that are required in order to be environment aware. For
example, the GetType function would not require an additional argument if this compiler
directive were enabled. In addition, even with this compiler directive enabled, the “Env”
companion functions are still available. Use of this compiler directive is a good way to verify
that any code you have written is environment aware. It is also useful if, for whatever reason,
you prefer that the CLIPS embedded function calls do not all begin with the “Env” prefix. By
default, the ENVIRONMENT_API_ONLY compiler directive is disabled.

9.3 STANDARD ENVIRONMENT FUNCTIONS

The following functions are used to create and manipulate environments. Prototypes for these
functions can be included by using the clips.h header file or the envrnmnt.h header file.

9.3.1 AddEnvironmentCleanupFunction

int AddEnvironmentCleanupFunction(theEnv,theName,theFunction,priority);
struct environmentData *theEnv;

char *theName;

void (*)(void *theFunction);

int priority;

void theFunction(void *);

178 178 Section 1 - Introduction

CLIPS Reference Manual

Purpose: Adds a cleanup function that is called when an environment is
destroyed.
Arguments: 1) A generic pointer to an environment data structure.

2)
3)

4)

The name associated with the environment cleanup function.

A pointer to the environment cleanup function which is to be
called when the environment is deleted. When called, the
function is passed a generic pointer to the environment being
destroyed.

The priority of the environment cleanup function which
determines the order in which cleanup functions are called
(higher priority items are called first). The values -2000 to 2000
are reserved for CLIPS system defined run items and should not
be used for user defined run items.

Returns: Boolean value. TRUE if the cleanup function was successfully
added, otherwise FALSE.

Other: Environment cleanup functions created using this function are
called after all the cleanup functions associated with environment
data created using AllocateEnvironmentData have been called.

9.3.2 AllocateEnvironmentData

int AllocateEnvironmentData(theEnv,position,size,cleanupFunction);

void *theEknv;
unsigned int position;
unsigned long size;

void (*)(void *cleanupFunction);

void cleanupFunction(void *);

Purpose: Allocates environment specific data of the specified size.

Arguments: 1) A generic pointer to an environment data structure.
2) The integer position index used to reference the data.
3) The amount of environment data that needs to be allocated.
4) A pointer to a cleanup function that is called when the

environment is destroyed. When called, the function is passed a
generic pointer to the environment being destroyed. CLIPS
automatically handles the allocation and deallocation of the base
environment data created by this function (the amount of data
specified by the size argument). You do not need to supply a
cleanup function for this purpose and can supply NULL as this

CLIPS Advanced Programming Guide 179

CLIPS Reference Manual

Returns:

Other:

9.3.3 CreateEnvironment

argument. If your base environment data contains pointers to
memory that you allocate, then you need to either supply a
cleanup function as this argument or add a cleanup function
using AddEnvironmentCleanupFunction.

Boolean value. TRUE if the environment data was successfully
allocated, otherwise FALSE.

Environment cleanup functions specified using this function are
called in ascending order of the position indices. If the deallocation
of your environment data has order dependencies, you can either
assign the position indices appropriately to achieve the proper order
or you can use the AddEnvironmentCleanupFunction function to
more explicitly specify the order in which your environment data
must be deallocated.

void *CreateEnvironment();

Purpose:
Arguments:

Returns:

Creates an environment and initializes it.
None.

A generic pointer to an environment data structure. NULL is
returned in the event of an error.

9.3.4 DeallocateEnvironmentData

int DeallocateEnvironmentData();

Purpose:

Arguments:

Returns:

Other:

180 180

Calls DestroyEnvironment to deallocate each existing environment
and then deallocates the remaining memory used to keep track of
environment allocations.

None.

Boolean value. TRUE if the function was able to successfully
deallocate the environment data, otherwise FALSE.

You should not call this function if any environments are currently
executing or you are not terminating your program. If the compiler

Section 1 - Introduction

CLIPS Reference Manual

directive ALLOW_ENVIRONMENT_GLOBALS is FALSE, this
function does nothing.

9.3.5 DestroyEnvironment

int DestroyEnvironment(theEnv);
void *theEknv;

Purpose: Destroys the specified environment deallocating all memory
associated with it.

Arguments: A generic pointer to an environment data structure.

Returns: Boolean value. TRUE if the environment was successfully
destroyed, otherwise FALSE.

Other: You should not call this function to destroy an an environment that
is currently executing.

9.3.6 GetCurrentEnvironment

void *GetCurrentEnvironment();

Purpose: Returns a generic pointer to the current environment.
Arguments: None.
Returns: A generic pointer to the current environment. NULL is returned if

there is no current environment.

9.3.7 GetEnvironmentByIndex

void *GetEnvironmentByIndex(envIndex);
unsigned long envIndex;

Purpose: Returns a generic pointer to the environment associated with the
specified environment index.

Arguments: An unsigned long integer; the environment index of the
environment to become the current environment.

Returns: A generic pointer to the environment associated with the specified
environment index. NULL is returned if there is no such
environment.

CLIPS Advanced Programming Guide 181

CLIPS Reference Manual

9.3.8 GetEnvironmentData

void *GetEnvironmentData(theEnv,position);
void *theEnv;
unsigned int position;

Purpose: Returns a generic pointer to the environment data associated with
the specified position index.

Arguments: 1) A generic pointer to an environment data structure.
2) An unsigned integer; the position index of the desired
environment data.

Returns: A generic pointer; the environment data associated with the
specified position index.

9.3.9 GetEnvironmentIndex

unsigned long GetEnvironmentIndex(theEnv);
void *theEknv;

Purpose: Returns the unique integer index asssociated with the specified
environment.

Arguments: A generic pointer to an environment data structure.

Returns: An integer; the index associated with the specified environment.

9.3.10 SetCurrentEnvironment

void SetCurrentEnvironment(thekEnv);
void *theEknv;

Purpose: Sets the current environment to the specified environment.
Arguments: A generic pointer to an environment data structure.
Returns: No meaningful return value.

9.3.11 SetCurrentEnvironmentByIndex

int SetCurrentEnvironmentByIndex(envIndex);
unsigned long envIndex;

182 182 Section 1 - Introduction

CLIPS Reference Manual

Purpose: Sets the current environment to the environment associated with the
specified environment index.

Arguments: An unsigned long integer; the environment index of the
environment to become the current environment.

Returns: Boolean value. TRUE if the environment with the specified index
existed and was set as the current environment, otherwise FALSE.

9.4 ENVIRONMENT AWARE USER-DEFINED FUNCTIONS

In order to support all environment features fully, any user-defined functions that you create
must be environment aware. To be environment aware, user-defined function must satisfy the
following conditions:

1) The user-defined function must be registered using either EnvDefineFunction or
EnvDefineFunction2. Use of these functions inform CLIPS that your user-defined function
is environment aware and accepts a generic pointer to an environment as its first argument.

2) You should register your functions from within EnvUserFunctions instead of
UserFunctions. EnvUserFunctions is located in userfunctions.c and its single argument is
a generic pointer to an environment. This pointer should be passed into your calls to either
EnvDefineFunction or EnvDefineFunction2. The macro identifier PTIEF can be placed in
front of a function name to cast it as a pointer to a function which accepts a generic pointer
(the environment) as its single argument and returns an integer. This macro is analogous to
the PTIF macro with the addition of the generic pointer to theenvironment.

3) Your user-defined function should accept an additional argument as its first argument: a
generic pointer to an environment.

4) Your user-defined function should use the environment companion functions where required
to be environment aware.

5) If your user-defined functions (or other extensions) make use of global data that could differ
for each environment, you should allocate this data with the AllocateEnvironmentData
function (see section 9.5).

Example
The following example shows the necessary modifications to the code from section 3.4 in order

for the user-defined function to be environment aware.

void EnvUserFunctions(
void *theEnv)

{
EnvDefineFunction2(theEnv,"triple", 'u',PTIEF TripleNumber, "TripleNumber",

"11n");
}

CLIPS Advanced Programming Guide 183

CLIPS Reference Manual

void TripleNumber(
void *theEnv,
DATA_OBJECT_PTR returnValuePtr)

{
void *value;
long long longValue;
double doubleValue;
/* */
/* If illegal arguments are passed, return zero. */
/* */
if (EnvArgCountCheck(theEnv,"triple" ,EXACTLY,1) == -1)
{
SetpType(returnValuePtr,INTEGER);
SetpValue(returnValuePtr,EnvAddLong(theEnv,QLL));
return;
ks
if (! EnvArgTypeCheck(theEnv, "triple",1,INTEGER_OR_FLOAT,returnValuePtr))
{
SetpType(returnValuePtr,INTEGER);
SetpValue(returnValuePtr,EnvAddLong(theEnv,QLL));
return;
ks
/* */
/* Triple the number. */
/* */

if (GetpType(returnValuePtr) == INTEGER)

{
value = GetpValue(returnValuePtr);

longValue = 3 * ValueTolLong(value);
SetpValue(returnValuePtr,EnvAddLong(theEnv,longValue));

3
else /* the type must be FLOAT */

{
value = GetpValue(returnValuePtr);

doubleValue = 3.0 * ValueToDouble(value);
SetpValue(returnValuePtr,EnvAddDouble(theEnv,doubleValue));

}

return;

}

9.5 ALLOCATING ENVIRONMENT DATA

If your user-defined functions (or other extensions) make use of global data that could differ for
each environment, you should allocate this data with the AllocateEnvironmentData function. A
call to this function has four arguments. The first is a generic pointer to the environment to which
the data is being added.

184 184 Section 1 - Introduction

CLIPS Reference Manual

The second argument is the integer position index. This is the value that you will pass in to the
GetEnvironmentData function to retrieve the allocated environment data. This position index
must be unique and if you attempt to use an index that has already been allocated, then the call to
AllocateEnvironmentData will fail returning FALSE. To avoid collisions with environment
positions predefined by CLIPS, use the macro constant USER_ENVIRONMENT_DATA as the
base index for any position indices you define. This constant will always be greater than the
largest predefined position index used by CLIPS. The maximum number of environment position
indices is specified by the macro constant MAXIMUM_ENVIRONMENT_POSITIONS found
in the envrnmnt.h header file. A call to AllocateEnvironmentData will fail if the position index
is greater than or equal this value. If this happens, you can simply increase the value of this
macro constant to provide more environment positions.

The third argument is an integer indicating the size of the environment data that needs to be
allocated. Typically you’ll define a struct containing the various values you want stored in the
environment data and use the sizeof operator to pass in the size of the struct to the function.
When an environment is created directly using CreateEnvironment or indirectly using
InitializeEnvironment, CLIPS automatically allocates memory of the size specified, initializes
the memory to contain all zeroes, and stores the memory in the environment position associated
with position index. When the environment is destroyed using DestroyEnvironment, CLIPS
automatically deallocates the memory originally allocated for each environment data position. If
the environment data contains pointers to memory that you allocate, it is your responsibility to
deallocate this memory. You can do this by either specifying a cleanup function as the fourth
argument in your AllocateEnvironmentData call or by adding a cleanup function using the
AddEnvironmentCleanupFunction function.

The fourth argument is a pointer to a cleanup function. If this argument is not NULL, then the
cleanup function associated with this environment position is called whenever an environment is
deallocated using the DestroyEnvironment function. The cleanup functions are called in
ascending order of the position indices.

As an example of allocating environment data, we’ll look at a get-index function that returns an
integer index starting with one and increasing by one each time it is called. For example:

CLIPS> (get-index)
:—ILIPS> (get-index)
gLIPS> (get-index)
2LIPS>

Each environment will need global data to store the current value of the index. The C source

code that implements the environment data first needs to specify the position index and specify a
data structure for storing the data:

CLIPS Advanced Programming Guide 185

CLIPS Reference Manual

#define INDEX_DATA USER_ENVIRONMENT_DATA + 0

struct indexData

{
long index;

1

#define IndexData(theEnv) \
((struct indexData *) GetEnvironmentData(theEnv,INDEX_DATA))

First, the position index GET_INDEX_DATA is defined as USER_ENVIRONMENT_DATA
with an offset of zero. If you were to define additional environment data, the offset would be
increased each time by one to get to the next available position. Next, the indexData struct is
defined. This struct contains a single member, index, which will use to store the next value
returned by the get-index function. Finally, the IndexData macro is defined which merely
provides a convenient mechanism for access to the environment data.

The next step in the C source code is to add the initialization code to the EnvUserFunctions
function:

void EnvUserFunctions(
void *theEnv)

{
if (! AllocateEnvironmentData(theEnv,INDEX_DATA,
sizeof(struct indexData),NULL))
{

printf("Error allocating environment data for INDEX_DATA\n");
exit(EXIT_FAILURE);
ks

IndexData(theEnv)->index = 1;

EnvDefineFunction2(theEnv, "get-index",'1' ,PTIEF GetIndex, "GetIndex",
ll@@");
ks

First, the call to AllocateEnvironmentData is made. If this fails, then an error message is
printed and a call to exit is made to terminate the program. Otherwise, the index member of the
environment data is initialized to one. If a starting value of zero was desired, it would not be
necessary to perform any initialization since the value of index is automatically initialized to zero
when the environment data is initialized. Finally, EnvDefineFunction2 is called to register the
get-index function.

The last piece of the C source code is the GetIndex C function which implements the get-index
function:

long GetIndex(
void *theEnv)

{
if (EnvArgCountCheck(theEnv,"get-index" ,EXACTLY,0) == -1)

186 186 Section 1 - Introduction

CLIPS Reference Manual

{ return(@); }

return(IndexData(theEnv)->index++);

}

This function is fairly straightforward. A generic pointer to the current environment is passed to
the function since it was registered using EnvDefineFunction2. First a check for the correct
number of arguments is made and then a call to the IndexData macro is made to retrieve the
index member of struct which is the return value. Use of the ++ operator increments the current
value of the index member before the function returns.

9.6 ENVIRONMENT GLOBALS

The only global variables in the C source code for CLIPS are used to keep track of the current
environment and the environment indices. If it is desired to remove these global variables, the
ALLOW_ENVIRONMENT_GLOBALS compiler directive can be disabled. If disabled, you
can no longer use the following functions: GetCurrentEnvironment,
GetEnvironmentByIndex, GetEnvironmentIndex, SetCurrentEnvironment, and
SetCurrentEnvironmentByIndex. In addition, if disabled the ENVIRONMENT_API_ONLY
compiler directive is enabled and the EMACS_EDITOR compiler directive is disabled.

9.7 OTHER CONSIDERATIONS

The mechanism for loading run-time program has changed with the introduction of
environments. See section 5 for more details.

CLIPS Advanced Programming Guide 187

CLIPS Reference Manual

Section 10 — CLIPS Java Native Interface

This section describes the CLIPS Java Native Inteface (CLIPSJNI) and the examples
demonstrating the integration of CLIPS with a Swing interface. The examples have been tested

using Java version 1.5.0_13 running on Mac OS X 10.5.1 and Java version 1.6.0_02 running on
Windows XP SP2.

10.1 CLIPSJNI DIRECTORY STRUCTURE

When unzipped the CLIPSJINI project file contains the following directory structure:

CLIPSJINI
examples
AnimalDemo
resources
AutoDemo
resources
SudokuDemo
resources
WineDemo
resources
java-src
CLIPSJINI
library-src

If you are using the CLIPSINI with either Windows XP or Mac OS X, then the native CLIPS
library is already contained in the top level CLIPSINI directory. On other systems, you must
created a native library using the source files contained in the library-src directory before you
can utilize the CLIPSJNI. The CLIPSJINI jar file is also contained in the top level CLIPSJNI
directory. The source files used to create the jar file are contained in the java-src directory.

10.2 RUNNING CLIPSJNI IN COMMAND LINE MODE

You can invoke the command line mode of CLIPS through CLIPSJNI to interactively enter
commands while running within a Java environment.

On Windows XP, launch the Command Prompt application (select Start > All Programs >
Accessories > Command Prompt). Set the directory to the CLIPSJINI top level directory (using
the cd command).

On Mac OS X, launch the Terminal application (located in the Applications/Utilities directory).
Set the directory to the CLIPSJNI top level directory (using the cd command).

CLIPS Advanced Programming Guide 189

CLIPS Reference Manual

From the CLIPSJINI directory, enter the following command:

java -cp CLIPSINI.jar CLIPSINI.Environment

The CLIPS banner and command prompt should appear:

CLIPS (Quicksilver Beta 1/30/08)
CLIPS>

10.3 RUNNING THE SWING DEMO PROGRAMS

The Swing CLIPSJNI demonstration programs can be run on Windows XP or Mac OS X using
the precompiled native libraries in the CLIPSJINI top level directory. On other systems a native
library must first be created before the programs can be run.

10.3.1 Running the Demo Programs on Mac OS X

Launch the Terminal application (located in the Applications/Utilities directory). Set the
directory to the CLIPSINI/examples/SudokuDemo directory (using the cd command). To run the
Sudoku demo, enter the following command:

java -cp .:../../CLIPSINI.jar -Djava.library.path=../.. SudokuDemo

The Sudoku Demo window should appear:

enoe Sudoku Demao

Clear

Salve

Select cell and enter digit 1-9 or press backspace/delete.

To run the Wine demo, set the directory to the CLIPSJNI/examples/WineDemo directory and
enter the following command:

190 190 Section 1 - Introduction

CLIPS Reference Manual

java -cp .:../../CLIPSINI.jar -Djava.library.path=../.. WineDemo

The Wine Demo window should appear:

ene Wine Demo

Preferences Meal

Color: Don't Care | 21| |Main Course: ‘Don't Know | & |
Body: ‘Don't Care | 4 || sauce: ‘Don't Know | & |
Sweetness: Don't Care | & l Flavaor: Don't Know | & !

Wine Recommendation Weight

Chardonnay =00 @Zz@ —————————
Riesing ~ ————————
Soave ——

Chenin Blanc ——

Gamay ——
Cabernet Sauvignon -_—————
Zinfandel B ——

Chablis -

Sauvignon Blanc -
Geverztraminer -

Valpolicella -

Pinot Moir -

Burgundy P

To run the Auto demo, set the directory to the CLIPSINI/examples/AutoDemo directory and
enter the following command:

java -cp .:../../CLIPSINI.jar -Djava.library.path=../.. AutoDemo

The Auto Demo window should appear:

ene Auto Demo

Welcome to the Engine Diagnosis Expert System.

Mext

To run the Animal demo, set the directory to the CLIPSJNI/examples/AnimalDemo directory
and enter the following command:

java -cp .:../../CLIPSINI.jar -Djava.library.path=../.. AnimalDemo

CLIPS Advanced Programming Guide 191

CLIPS Reference Manual

The Animal Demo window should appear:

e00 Animal Demo
Welcome to the Animal Identification Expert System.

{ Next)

10.3.2 Running the Demo Programs on Windows XP

Launch the Command Prompt application (select Start > All Programs > Accessories >
Command Prompt). Set the directory to the CLIPSINI/examples/SudokuDemo directory (using
the cd command). To run the Sudoku demo, enter the following command:

java -cp .;../../CLIPSINI.jar -Djava.library.path=../.. SudokuDemo

The Sudoku Demo window should appear:

B Sudoku Demo g@@

Clear

Reset

Techniques

Select cell and enter digit 1-3 or press backspace/delete.

To run the Wine demo, set the directory to the CLIPSJNI/examples/WineDemo directory and
enter the following command:

java -cp .;../../CLIPSINI.jar -Djava.library.path=../.. WineDemo

The Wine Demo window should appear:

192 192 Section 1 - Introduction

Wine Demo

Preferences

Color:

Don't Care

Body:

Don't Care

h 4

Sweetness:

Don't Care

v

Main Course:

Sauce:

Flavor:

B=Ed

Meal

Don't Know | v

Don't Know | v

Don't Know | v

Wine

Chardonnay

Recommendation Weight

Riesling

Soave

Chenin Blanc

Gamay

Cabernet Sauvighon

Zinfandel

Chablis

Sauvignhon Blanc

Geverztraminer

Valpolicella

Pinot Noir

Burgundy

CLIPS Reference Manual

To run the Auto demo, set the directory to the CLIPSJNI/examples/WineDemo directory and

enter the following command:

java -cp

.3../../CLIPSINI. jar -Djava.library.path=../..

The Auto Demo window should appear:

Auto Demo

CEX

Welcome to the Engine Diagnosis Expert System.

AutoDemo

To run the Animal demo, set the directory to the CLIPSJNI/examples/AnimalDemo directory
and enter the following command:

java -cp

.3../../CLIPSINI. jar -Djava.library.path=../..

The Animal Demo window should appear:

CLIPS Advanced Programming Guide

AnimalDemo

193

CLIPS Reference Manual

Animal Demo

Welcome to the Animal Identification Expert System.

10.4 CREATING THE CLIPSJNI JAR FILE

If you wish to add new functionality to the CLIPSJNI package, such as new Java methods which
may call existing or new native functions, it is necessary to recreate the CLIPSINI jar file. The
CLIPSJNI distribution already contains the precompiled CLIPSINI jar file in the top level
CLIPSJNI directory, so if you are not adding new functionality to the CLIPSINI package, you do
not need to recreate the jar file (unless you want to create a jar file using a Java version prior to
version 1.5.0_13).

To create the jar file, first open a terminal window where you can enter Java tool commands. On
Mac OS X, launch the Terminal application (located in the Applications/Ultilities directory). On
Windows XP, launch the Command Prompt application (select Start > All Programs >
Accessories > Command Prompt).

Using the appropriate commands (cd on Mac OS X and Windows XP), set the current directory
to CLIPSJNI/java-src , then enter the following command to compile the CLIPSJNI java source:

javac CLIPSINI/*.java
Once compiled, enter the following command to place the class files in a jar file:
jar -cf CLIPSINI.jar CLIPSINI/*.class

Once the CLIPSJINI jar file is created, move it from the CLIPSJNI/java-src directory to the top
level CLIPSJNI directory.

If you are adding new native functions to the CLIPSINI package, it is also necessary to create the
JNI header file which will be used to compile the native library. While you are still in the
CLIPSJNI/java-src directory, enter the following command:

javah -jni CLIPSINI.Environment

194 194 Section 1 - Introduction

CLIPS Reference Manual

This command creates a file named CLIPSJNI_Environment.h which must be moved from the
CLIPSJNI/java-src directory to the CLIPSJNI/library-src directory.
10.5 CREATING THE CLIPSJNI NATIVE LIBRARY

The CLIPSJNI distribution already contains a precompiled universal library for Mac OS X,
libCLIPSJINI jnilib, and for Windows, CLIPSJNI.dII, in the top level CLIPSINI directory. It is
necessary to create a native library only if you are using the CLIPSJNI with an operating system
other than Mac OS X or Windows. You must also create the native library if you want to add
new functionality to the CLIPSJNI package by adding additional native functions. The steps for
creating a native library varies between operating systems, so some research may be necessary to
determine how to create one for your operating system.

10.5.1 Creating the Native Library on Mac OS X

Launch the Terminal application (located in the Applications/Utilities directory). Set the
directory to the CLIPSJNI/Ibrary-src directory (using the cd command).

To create a universal native library that can run on both Intel and Power PC architectures, enter
the following command:

make -f makefile.macunv

You can ignore the following warnings generated when the CLIPSINI_Environment.c file is
compiled:

CLIPSINI_Environment.c:###: warning: cast to pointer from integer of different size

To create a native library that runs only on the Intel architecture, enter the following command:

make -f makefile.macint

To create a native library that runs only on the Power PC architecture, enter the following
command:

make -f makefile.macppc

Once you have create the native library, copy the libCLIPSINI jnilib file from the
CLIPSJNI/library-src to the top level CLIPSJNI directory.

CLIPS Advanced Programming Guide 195

CLIPS Reference Manual

10.5.2 Creating the Native Library on Windows XP

The following steps assume you have Microsoft Visual C++ 2008 Express installed. First, launch
the Command Prompt application (select Start > All Programs > Accessories > Command
Prompt). Set the directory to the CLIPSJNI/Ibrary-src directory (using the cd command).

To create the native library DLL, enter the following command:

nmake -f makefile.win

Once you have create the native library, copy the CLIPSINI.dII file from the CLIPSINI/library-
src to the top level CLIPSJINI directory.

10.5.3 Creating the Native Library On Other Systems

The file makefile.linux is intended to generate a native library for Linux systems using Java
version 1.4.2. It can be invoked using the following command:

make -f makefile.linux

The shared library generated by this makefile is l[ibCLIPSINI.so. You will likely need to change
the directory paths in the makefile to the appropriate location for your Java installation.

10.6 RECOMPILING THE SWING DEMO PROGRAMS

If you want to make modification to the Swing Demo programs and recompile them, you can use
one of the following commands to do so (assuming you are in the appropriate directory for the
example and the CLIPSJNI jar file is present in the top level CLIPSJINI directory):

javac -classpath ../../CLIPSINI.jar SudokuDemo.java
javac -classpath ../../CLIPSINI.jar WineDemo. java
javac -classpath ../../CLIPSINI.jar AutoDemo.java

javac -classpath ../../CLIPSINI.jar AnimalDemo.java

10.7 INTERNATIONALIZING THE SWING DEMO PROGRAMS

The Swing Demo Programs have been designed for internationalization. Several software
generated example translations have been provided including Japanese (language code ja),
Russian (language code ru), Spanish (language code es), and Arabic (language code ar). To make
use of one of the translations, specify the language code when starting the demonstration

196 196 Section 1 - Introduction

CLIPS Reference Manual

program. For example, to run the Animal Demo in Japanese on Mac OS X, use the following
command:

java -cp .:../../CLIPSINI.jar -Djava.library.path=../.. -Duser.language=ja AnimalDemo

The welcome screen for the program should appear in Japanese rather than English:

e 0o HYTE
IFXx AN RATLREBHPIANELS %,

It may be necessary to install additional fonts to view some languages. On Mac OS X, you can
see which languages are supported by launching System Preferences and selecting the Language
tab from the International preference category. On Windows XP, you can see which languages
are supported by launching Control Panel and selecting the Languages tab from Regional and
Language Options.

To create translations for other languages, first determine the two character language code for the
target language. Make a copy in the resources directory of the ASCII English properties file for
the demo program and save it as a UTF-8 encoded file including the language code in the name
and using the .source extension. A list of language code 1is available at
http://ftp.ics.uci.edu/pub/ietf/http/related/is0639.txt. For example, to create a Greek translation
file for the Wine Demo, create the UTF-8 encoded WineResources_el.source file from the ASCII
WineResources.properties file. Note that this step requires that you to do more than just duplicate
the property file and rename it. You need to use a text editor that allows you to change the
encoding from ASCII to UTF-8.

Once you’ve created the translation source file, edit the values for the properties keys and
replaced the English text following each = symbol with the appropriate translation. When you
have completed the translation, use the Java native2ascii utility to create an ASCII text file from
the source file. For example, to create a Greek translation for the Wine Demo program, you’d
use the following command:

nativeZ2ascii -encoding UTF-8 WineResources_el.source WineResources_el.properties

Note that the properties file for languages containing non-ASCII characters will contain Unicode
escape sequences and is therefore more difficult to read (assuming of course that you can read
the language in the original source file). This is the reason that two files are used for creating the
translation. The UTF-8 source file is encoded so that you can read and edit the translation and the

CLIPS Advanced Programming Guide 197

CLIPS Reference Manual

ASCII properties file is encoded in the format expected for use with Java internationalization
features.

198 198 Section 1 - Introduction

CLIPS Reference Manual

Section 11 — Microsoft Windows Integration

This section describes various techniques for integrating CLIPS and creating executables when
using the Microsoft Windows operating system. The examples in this section have been tested
running on Windows XP SP2.

11.1 INSTALLING THE SOURCE CODE

In order to run the integration examples, you must install the source code by running the CLIPS
6.30 Windows Source Code Installer. The source code (compressed in the file Projects.zip) will
be installed in the directory selected for installation (typically C:\Program Files\CLIPS). Once
installed, you must then extract the contents of the Projects.zip file by right clicking on it and
selecting the “Extract All...” menu item.

11.2 BUILDING THE CLIPS LIBRARIES AND EXECUTABLES

The Windows integration source code includes six projects for building libraries and
executables. They are:

e CLIPSCPP
* CLIPSDOS
e CLIPSJINI
* CLIPSWin

* CLIPSWin32
* CLIPSWin32CPP

CLIPSCPP is a starter project that demonstrates how to build a CLIPS C++ library that is
statically linked with an executable. CLIPSDOS is a project that creates a DOS command-line
version of CLIPS. CLIPSJNI is a starter project that demonstrates how to build a CLIPS library
for use with the Java Native Interface. CLIPSWin is a project that creates the CLIPSWin
Integrated Development Environment (that is described in greater detail in the CLIPS Interfaces
Guide). CLIPSWin32 is a starter project that demonstrates how to build a CLIPS Dynamic Link
Library (DLL) that is dynamically linked with an executable. CLIPSWin32CPP is a C++
“wrapper” library that simplifies the use of the CLIPS DLL.

Unless you want to make changes to the executables or libraries, there is no need to build them.
The executables are installed during the installation process when you check the Executables
checkbox when selecting components. The precompiled libraries are installed when you check
the Source Code checkbox. Libraries for use with Microsoft products are installed in the
Projects\Libraries\Microsoft directory and libraries for use with Borland products are installed in
the Projects\Libraries\Borland directory.

CLIPS Advanced Programming Guide 199

CLIPS Reference Manual

11.2.1 Building the Projects Using Microsoft Visual C++ Express 2008

From the root CLIPS directory (typically C:\Program Files\CLIPS) navigate to the
Projects\MVC2008 directory. Open the file CLIPS.sIn by double clicking on it or right click on it
and select the Open menu item. After the file opens in the Visual C++ application, select the
Build Solution menu item from the Build menu. When compilation is complete, the executables
CLIPSWin.exe and CLIPS.exe will be in the Projects\MVC2008 directory and the library files
will be in the Projects\Libraries\Microsoft directory.

To compile projects individually, right click on the project name in the Solution Explorer pane
and select the Build menu item. If the Solution Explorer pane is not visible, select the Solution
Explorer menu item from the View Menu.

The CLIPSJNI project assumes that Java SE 6 is installed on your computer and that the Java
header files are contained in the directories C:\Program Files\Java\jdk1.6.0\include and
C:\Program Files\Java\jdk1.6.0\include\win32. To change the directory setting for the location of
the headers files, right click on the CLIPSJNI project and select the Properties menu item. In the
tree view control, open the Configuration Properties and C/C++ branches, then select the
General leaf item. Edit the value in the Additional Include Directories editable text box to
include the appropriate directory for the Java include files.

11.2.2 Building the Projects Using Borland Turbo C++ 2006

From the root CLIPS directory (typically C:\Program Files\CLIPS) navigate to the
Projects\BTC2006 directory. Open the file CLIPS.bdsgroup by double clicking on it or right
click on it and select the Open menu item. After the file opens in the Turbo C++ application,
select the Make All Projects menu item from the Project menu. When compilation is complete,
the executables CLIPSWin.exe and CLIPS.exe will be in the Projects\BTC2006 directory and the
library files will be in the Projects\Libraries\Borland directory.

To compile projects individually, right click on the project name in the Project Manager pane
and select the Make menu item. If the Project Manager pane is not visible, select the Project
Manager menu item from the View Menu.

The CLIPSJNI.dII project assumes that Java SE 6 is installed on your computer and that the Java
header files are contained in the directories C:\Program Files\Java\jdk1.6.0\include and
C:\Program Files\Java\jdk1.6.0\include\win32. To change the directory setting for the location of
the headers files, right click on the CLIPSJNI.dII project and select the Options... menu item. In
the tree view control, open the C++ Compiler (bcc32) branch, then select the Paths and Defines
leaf item. Edit the value in the Include Search Path (-1) editable text box to include the
appropriate directory for the Java include files.

200 Section 9 - Environments

CLIPS Reference Manual

11.3 RUNNING THE LIBRARY EXAMPLES

The Windows integration source code includes four projects that demonstrate the use of the static
and dynamic libraries from Section 11.2. They are:

* ExplicitDLLExample
* ImplicitDLLExample
* SimpleLibExample

* WrappedDLLExample

The ExplicitDLLExample project demonstrates how to dynamically load the CLIPS DLL
(CLIPSWin32.dll). The example code explicitly loads the DLL using the LoadLibrary system
call and then locates the exported functions using the GetProcAddress system call. The
ImplicitDLLExample project demonstrates how to statically load the CLIPS DLL. The example
code links with the DLL import library (CLIPSWin32.lib) which handles the task of loading the
DLL and locating the exported functions. The SimpleLibExample project demonstrates how to
statically load the CLIPS C++ library (CLIPSCPP.lib). The C++ class CLIPSCPPEnv is used to
provide a C++ wrapper to the CLIPS API. The WrappedDLLExample demonstrates the use of a
C++ wrapper to simplify the use of the DLL. The example code used in this project is identical
to the code used with the SimpleLibExample project.

In order for the DLL examples to work properly, the directory containing the DLL must be on
the system search path. To set the path, open the Control Panel from the Start menu and double
click on the System control panel. Select the Advanced tab and then click the Environment
Variables button. In the User variables list box select the path variable and then click the Edit
button. Add the directory containing the DLL to the path (which typically would be C:\Program
Files\CLIPS\Projects\Libraries\Microsoft). Note that if you are using Microsoft Visual C++ you
want to use the libraries contained in the Projects\Libraries\Microsoft directory and if you are
using Borland Turbo C++ you want to wuse the libraries contained in the
Projects\Libraries\Borland directory.

11.3.1 Running the ExplicitDLLExample Project

From the root CLIPS directory (typically C:\Program Files\CLIPS) navigate to the
Projects\Integration Examples\ExplicitDLLExample directory. If you’re using Microsoft Visual
C++, open the ExplicitDLLExample.sin file and then select the Start Without Debugging menu
item from the Debug menu. If you're using Borland Turbo C++, open the
ExplicitDLLExample.bdsgroup file and then select the Run Without Debugging menu item from
the Run menu.

CLIPS Advanced Programming Guide 201

CLIPS Reference Manual

11.3.2 Running the ImplicitDLLExample Project

From the root CLIPS directory (typically C:\Program Files\CLIPS) navigate to the
Projects\Integration Examples\ImplicitDLLExample directory. If you’re using Microsoft Visual
C++, open the ImplicitDLLExample.sin file and then select the Start Without Debugging menu
item from the Debug menu. If you're using Borland Turbo C++, open the
ImplicitDLLExample.bdsgroup file and then select the Run Without Debugging menu item from
the Run menu.

11.3.3 Running the SimpleLibExample Project

From the root CLIPS directory (typically C:\Program Files\CLIPS) navigate to the
Projects\Integration Examples\SimpleLibExample directory. If you’re using Microsoft Visual
C++, open the SimpleLibExample.sin file and then select the Start Without Debugging menu
item from the Debug menu. If you're using Borland Turbo C++, open the
SimpleLibExample.bdsgroup file and then select the Run Without Debugging menu item from
the Run menu.

11.3.4 Running the WrappedDLLExample Project

From the root CLIPS directory (typically C:\Program Files\CLIPS) navigate to the
Projects\Integration Examples\WrappedDLLExample directory. If you’re using Microsoft Visual
C++, open the WrappedDLLExample.sln file and then select the Start Without Debugging menu
item from the Debug menu. If you're using Borland Turbo C++, open the
WrappedDLLExample.bdsgroup file and then select the Run Without Debugging menu item
from the Run menu.

202 Section 9 - Environments

CLIPS Reference Manual

Appendix A - Language Integration Listings

This appendix includes listings for various language interface packages described in section 6.
The portability of these routines varies.

This section is intentionally blank.

CLIPS Advanced Programming Guide 203

CLIPS Reference Manual

Appendix B - I/O Router Examples

The following examples demonstrate the use of the I/O router system. These examples show the
necessary C code for implementing the basic capabilities described.

B.1 DRIBBLE SYSTEM

Write the necessary functions that will divert all tracing information to the trace file named
"trace.txt".

/*
First of all, we need a file pointer to the dribble file which will contain the

tracing information.
*/

#include <stdio.h>
#include "clips.h"

static FILE *TraceFP = NULL;

/*
We want to recognize any output that is sent to the logical name "wtrace" because all
tracing information is sent to this logical name. The recognizer function for our

router is defined below.
*/

int FindTrace(
char *logicalName)

if (strcmp(logicalName, "wtrace") == @) return(TRUE);

return(FALSE);
3

/*
We now need to define a function which will print the tracing information to our

trace file. The print function for our router is defined below.
*/

int PrintTrace(
char *logicalName,
char *str)
{
fprintf(TraceFP,"%s",str);
3

CLIPS Advanced Programming Guide 205

CLIPS Reference Manual

/*
When we exit CLIPS the trace file needs to be closed. The exit function for our

router is defined below.
*/

int ExitTrace(
int exitCode) /* unused */

fclose(TraceFP);
3

/*
There is no need to define a get character or ungetc character function since this
router does not handle input.

A function to turn the trace mode on needs to be defined. This function will check
if the trace file has already been opened. If the file is already open, then nothing
will happen. Otherwise, the trace file will be opened and the trace router will be
created. This new router will intercept tracing information intended for the user
interface and send it to the trace file. The trace on function is defined below.

*/

int TraceOn()

{
if (TraceFP == NULL)
{
TraceFP = fopen("trace.txt","w");
if (TraceFP == NULL) return(FALSE);
ks
else
{ return(FALSE); }
AddRouter("trace", /* Router name */
20, /* Priority */
FindTrace, /* Query function */
PrintTrace, /* Print function */
NULL, /* Getc function */
NULL, /* Ungetc function */
ExitTrace); /* Exit function */
return(TRUE);
3
/*

A function to turn the trace mode off needs to be defined. This function will check
if the trace file is already closed. If the file is already closed, then nothing
will happen. Otherwise, the trace router will be deleted and the trace file will be
closed. The trace off function is defined below.

*/

int TraceOff(Q)
{
if (TraceFP !'= NULL)
{

DeleteRouter("trace");

if (fclose(TraceFP) == 0)

206 Appendix B — I/O Router Examples

CLIPS Reference Manual

{
TraceFP = NULL;
return(TRUE);
ks
ks
TraceFP = NULL;
return(FALSE);
ks
/*

Now add the definitions for these functions to the UserFunctions function in file
"userfunctions.c".
*/

extern int TraceOn(), TraceOff();

DefineFunction("tron",'b',TraceOn, "TraceOn");
DefineFunction("troff",'b',TraceOff, "TraceOff");

/*
Compile and link the appropriate files. The trace functions should now be accessible
within CLIPS as external functions. For Example

CLIPS> (tron)

CLIPS> (watch facts)

CLIPS> (assert (example))
[]

[]
[]
CLIPS> (troff)
*/

B.2 BETTER DRIBBLE SYSTEM

Modify example 1 so the tracing information is sent to the terminal as well as to the trace dribble
file.

/*

This example requires a modification of the PrintTrace function. After the trace
string is printed to the file, the trace router must be deactivated. The trace
string can then be sent through the PrintRouter function so that the next router in
line can handle the output. After this is done, then the trace router can be
reactivated.

*/

int PrintTrace(
char *logicalName,
char *str)

fprintf(TraceFP,"%s",str);
DeactivateRouter("trace™);
PrintRouter(logicalName,str);
ActivateRouter("trace");

}

CLIPS Advanced Programming Guide 207

CLIPS Reference Manual

/*
The TraceOn function must also be modified. The priority of the router should be 40

instead of 20 since the router passes the output along to other routers.
*/

int TraceOn()

{
if (TraceFP == NULL)
{
TraceFP = fopen("trace.txt","w");
if (TraceFP == NULL) return(FALSE);
ks
else
{ return(FALSE); }
AddRouter("trace", /* Router name */
40, /* Priority */
FindTrace, /* Query function */
PrintTrace, /* Print function */
NULL, /* Getc function */
NULL, /* Ungetc function */
ExitTrace); /* Exit function */
return(TRUE);
ks
B.3 BATCH SYSTEM

Write the necessary functions that will allow batch input from the file "batch.txt" to the CLIPS
top-level interface.

/*
First of all, we need a file pointer to the batch file which will contain the batch

command information.
*/

#include <stdio.h>
#include "clips.h"

static FILE *BatchFP = NULL;

/*

We want to recognize any input requested from the logical name "stdin" because all
user input is received from this logical name. The recognizer function for our
router is defined below.

*/

int FindMybatch(
char *logicalName)

{
if (strcmp(logicalName,"stdin") == @) return(TRUE);

return(FALSE);
3

208 Appendix B — I/O Router Examples

CLIPS Reference Manual

/*
We now need to define a function which will get and unget characters from our batch

file. The get and ungetc character functions for our router are defined below.
*/

static char BatchBuffer[80];
static int BatchlLocation = 0;

int GetcMybatch(
char *logicalName)

{
int rv;

rv = getc(BatchFP);

if (rv == EOF)

{
DeleteRouter("mybatch");
fclose(BatchFP);
return(GetcRouter(logicalName));
}
BatchBuffer[BatchLocation] = (char) rv;
BatchLocation++;
BatchBuffer[BatchLocation] = EOS;

if ((rv == '\n") |l (rv = "\r'"))
{
PrintRouter("wprompt",BatchBuffer);
BatchLocation = 0;

}

return(rv);

}

int UngetcMybatch(

int ch,

char *logicalName) /* unused */
{

if (BatchLocation > @) BatchLocation--;
BatchBuffer[BatchLocation] = EOS;

returnCungetc(ch,BatchFP));

}

/*

When we exit CLIPS the batch file needs to be closed. The exit function for our
router is defined below.

*/

int ExitMybatch(
int exitCode) /* unused */
{
fclose(BatchFP);
}

/*

CLIPS Advanced Programming Guide 209

CLIPS Reference Manual

There is no need to define a print function since this router does not handle output
except for echoing the command line.
Now we define a function that turns the batch mode on.
*/
int MybatchOn()
{
BatchFP = fopen("batch.txt","r");

if (BatchFP == NULL) return(FALSE);

AddRouter("mybatch", /* Router name */
20, /* Priority */
FindMybatch, /* Query function */
NULL, /* Print function */
GetcMybatch, /* Getc function */
UngetcMybatch, /* Ungetc function */
ExitMybatch); /* Exit function */

return(TRUE);

3

/*

Now add the definition for this function to the UserFunctions function in file
"userfunctions.c".

*/

extern int MybatchOn(Q);
DefineFunction("mybatch",'b' ,MybatchOn, "MybatchOn");

/*
Compile and link the appropriate files. The batch function should now be accessible
within CLIPS as external function. For Example
CLIPS> (mybatch)
*/

B.4 SIMPLE WINDOW SYSTEM

Write the necessary functions using CURSES (a screen management function available in
UNIX) that will allow a top/bottom split screen interface. Output sent to the logical name top
will be printed in the upper window. All other screen I/O should go to the lower window.
(NOTE: Use of CURSES may require linking with special libraries.)

/*
First of all, we need some pointers to the windows and a flag to indicate that the

windows have been initialized.
*/

#include <stdio.h>

#include <curses>

#include "clips.h"

WINDOW *LowerWindow, *UpperWindow;

210 Appendix B — I/O Router Examples

CLIPS Reference Manual

int WindowInitialized = FALSE;

/*
We want to intercept any I/0 requests that the standard interface would handle. In
addition, we also need to handle requests for the logical name top. The recognizer

function for our router is defined below.
*/

int FindScreen(

char *logicalName)

{

if ((strcmp(logicalName,"stdout") == @) ||
(strcmp(logicalName, "stdin") == @) ||
(strcmp(logicalName, "wprompt") == @) ||
(strcmp(logicalName, "wdisplay") == @) ||
(strcmp(logicalName, "wdialog") == @) |1
(strcmp(logicalName, "werror") == @) ||
(strcmp(logicalName, "wwarning") == @) ||
(strcmp(logicalName, "wtrace") == @) ||
(strcmp(logicalName, "top") == @))

{ return(TRUE); }

return(FALSE);
3

/*
We now need to define a function which will print strings to the two windows. The

print function for our router is defined below.
*/

int PrintScreen(

char *logicalName,

char *str)

{

if (strcmp(logicalName, "top") == 0)
{
wprintw(UpperWindow, "%s" ,str);
wrefresh(UpperWindow);

else
{
wprintw(LowerWindow, "%s" ,str);
wrefresh(LowerWindow);
}

}

/*

We now need to define a function which will get and unget characters from the lower
window. CURSES uses unbuffered input so we will simulate buffered input for CLIPS.
The get and ungetc character functions for our router are defined below.

*/

static int UseSave = FALSE;
static int SaveChar;
static int SendReturn = TRUE;

static char StrBuff[80] = {'\0'};

CLIPS Advanced Programming Guide 211

CLIPS Reference Manual

static int CharlLocation = 0;

int GetcScreen(
char *logicalName)

{

int rv;

if (UseSave == TRUE)

{
UseSave = FALSE;
return(SaveChar);
}
if (StrBuff[CharLocation] == "\0')
{
if (SendReturn == FALSE)

{
SendReturn = TRUE;

return('\n");

}

wgetstr(LowerWindow, StrBuff[80]);
CharLocation = 0;

}

rv = StrBuff[CharLocation];
if (rv == "\@') return('\n');
CharLocation++;

SendReturn = FALSE;
return(rv);

}

int UngetcScreen(
char ch,
char *logicalName)
{
UseSave = TRUE;
SaveChar = ch;
return(ch);

}

/*

When we exit CLIPS CURSES needs to be deactivated.

is defined below.
*/

int ExitScreen(
int num)

{

endwin();

}

212

The exit function for our router

/* unused */

Appendix B — I/O Router Examples

/*
Now define a function that turns the screen mode on.
*/

int ScreenOn()
{
int halflines, 1i;

/* Has initialization already occurred? */

if (WindowInitialized == TRUE) return(FALSE);
else WindowInitialized = TRUE;

/* Reroute I/0 and initialize CURSES. */

initscr();

echo();

AddRouter("screen", /* Router name
10, /* Priority
FindScreen, /* Query function
PrintScreen, /* Print function
GetcScreen, /* Getc function
UngetcScreen, /* Ungetc function
ExitScreen); /* Exit function

/* Create the two windows. */

halfLines = LINES / 2;

UpperWindow = newwinChalfLines,COLS,0,0);

LowerWindow = newwinChalflLines - 1,COLS,halflLines + 1,0);
/* Both windows should be scrollable. */

scrollok(UpperWindow, TRUE);
scrollok(LowerWindow, TRUE);

/* Separate the two windows with a line. */
for (i1 =0 ; i < COLS ; i++)
{ mvaddch(halfLines,i,'-"); }
refresh(Q);
wclear(UpperWindow);
wclear(LowerWindow);

wmove(LowerWindow, 0,0);

return(TRUE);

CLIPS Advanced Programming Guide

*/
*/
*/
*/
*/
*/
*/

CLIPS Reference Manual

213

CLIPS Reference Manual

/*
Now define a function that turns the screen mode off.
*/

int ScreenOff()

{
/* Is CURSES already deactivated? */

if (WindowInitialized == FALSE) return(FALSE);
WindowInitialized = FALSE;
/* Remove I/0 rerouting and deactivate CURSES. */

DeleteRouter("screen");
endwin();

return(TRUE);

/*

Now add the definitions for these functions to the UserFunctions function in file
"userfunctions.c".

*/

extern int ScreenOn(), ScreenOff();

DefineFunction("screen-on",'b',ScreenOn, "ScreenOn");
DefineFunction("screen-off",'b',Screen0ff, "ScreenOff");

/*
Compile and link the appropriate files. The screen functions should now be
accessible within CLIPS as external functions. For Example

CLIPS> (screen-on)
[]

[]
[]
CLIPS> (screen-off)
*/

214 Appendix B — I/O Router Examples

CLIPS Reference Manual

Appendix C - Update Release Notes

The following sections denote the changes and bug fixes for CLIPS versions 6.05,6.1,6.2,6.21,
6.22,6.23,6.24, and 6.30.

C.1 VERSION 6.30

* External Function 64-bit Interface - Several new functions have been modified to support
“long long” integers:

AddLong (see section ?77?)

Facts (see section ?77?)

FactIndex (see section ??7?)

DefineFunction ‘g’ argument (see section 4.3.2)
Run (see section 4.3.2)

e Compiler Directives — The ENVIRONMENT_API_ONLY flag has been removed. The
EX_MATH flag has been renamed to the EXTENDED_MATH_FUNCTIONS flag. The
BASIC_IO and EXT_IO flags have been combined into the IO_FUNCTIONS flag. The
preprocessor definition flags in setup.h are now conditionally defined only if they are
undefined (which allows you to define the flags from a makefile or project without editing
setup.h).

e Command and Function Enhancements - The following commands and functions have
been enhanced:

* constructs-to-c (see section 5.1). A target directory path can be specified for the files
generated by this command.

C.2 VERSION 6.24

e External Function Interface - Several new functions have been added including:

DeftemplateSlotAllowed Values (see section 4.3.2)
DeftemplateSlotCardinality (see section 4.3.3)
DeftemplateSlotDefaultP (see section 4.3.4)
DeftemplateSlotDefaultValue (see section 4.3.5)
DeftemplateSlotExistP (see section 4.3.6)
DeftemplateSlotMultiP (see section 4.3.7)
DeftemplateSlotNames (see section 4.3.8)
DeftemplateSlotRange (see section 4.3.9)
DeftemplateSlotSingleP (see section 4.3.10)

CLIPS Advanced Programming Guide 215

CLIPS Reference Manual

DeftemplateSlotTypes (see section 4.3.11)
PPFact (see section 4.4.21)
SlotAllowedClasses (see section 4.12.22)
SlotDefaultValue (see section 4.12.25)

C++ Compilation Errors — Corrected a few compiler errors that occurred when compiling
the CLIPS source files as C++ files.

Macro Redefinition — Changed the internal macro definition of BOOLEAN to intBool to
avoid conflict with the Cocoa/Obective C definitions.

Compiler Directives — The following flags have been removed:

AUXILARY_MESSAGE_HANDLERS
CONFLICT_RESOLUTION_STRATEGIES
DYNAMIC_SALIENCE
IMPERATIVE_MESSAGE_HANDLERS
IMPERATIVE_METHODS
INCREMENTAL_RESET
INSTANCE_PATTERN_MATCHING
LOGICAL_DEPENDENCIES
SHORT_LINK_NAMES

New Source Files — New source files have been added (see section 2.1 for a complete list of
source files):

userfunctions.c

Deleted Source Files — The following source files have been removed (see section 2.1 for a
complete list of source files):

shrtinkn.h

C.3 VERSION 6.23

216

FalseSymbol and TrueSymbol Changes — The FalseSymbol and TrueSymbol constants
were not defined as specified in the Advanced Programming Guide. These constants have
have now been defined as macros so that their corresponding environment companion
functions (EnvFalseSymbol and EnvTrueSymbol) could be defined. See sections 3.3.2 and
9.2 for more details.

Appendix C — Update Release Notes

CLIPS Reference Manual

* Run-time Program Bug Fix — Files created by the constructs-to-c function for use in a run-
time program generate compilation errors.

¢ External Function Interface - A new function has been added:
GetNextFactInTemplate (see section 4.4.17)

e Compiler Directives — The FACT_SET_QUERIES flag has been added. See section 2.2 for
more details.

* New Source Files — New source files have been added (see section 2.1 for a complete list of
source files):

factqpsr.c
factqpsr.h
factqury.c
factqury.h

C.4 VERSION 6.22

* Function and Macro Corrections — The following functions and macros were corrected to
accept the correct number of arguments as specified in the Advanced Programming Guide:

Agenda

BatchStar

EnvGetActivationSalience
EnvBatchStar

EnvFactDeftemplate

EnvFactExistp

EnvFactList

EnvFactSlotNames
EnvGetNextInstanceInClassAndSubclasses
EnvLoadInstancesFromString
EnvRestorelnstancesFromString
EnvSetOutOfMemoryFunction
FactDeftemplate

FactExistp

FactList

FactSlotNames
GetNextInstanceInClassAndSubclasses
LoadInstancesFromString
RestorelnstancesFromString

CLIPS Advanced Programming Guide 217

CLIPS Reference Manual

SetOutOfMemoryFunction

C.5 VERSION 6.21

Introduction — Added information on thread\concurrency and garbage collection issues (see
sections 1.3 and 1.4).

External Function Interface - Several new functions have been added including:

DeallocateEnvironmentData (see section 9.3 .4)
DecrementGCLocks (see section 1.4)
FactDeftemplate (see section 4.4.6)
GetEnvironmentByIndex (see section 9.3.7)
IncrementGCLocks (see section 1.4)

C.6 VERSION 6.2

218

Environments — It is now possible in an embedded application to create multiple
environments into which programs can be loaded (see section 9).

External Function Interface - Several new functions have been added including:

GetClassDefaultsMode (see section 4.12.10)
SetClassDefaultsMode (see section 4.12.19)

Run-time Programs — Support for environments requires some changes in code for loading
run-time programs (see section 5).

Compiler Directives — Two new flags have been added: ENVIRONMENT_API_ONLY
and ALLOW_ENVIRONMENT_GLOBALS.

New Source Files — New source files have been added (see section 2.1 for a complete list of
source files):

envrnmnt.c
envrnmnt.h

Deleted Source Files — The following source files have been removed (see section 2.1 for a
complete list of source files):

extobj.h

Appendix C — Update Release Notes

CLIPS Reference Manual

C.7 VERSION 6.1

* C++ Compatible — The CLIPS source code can now be compiled using either an ANSI C
or C++ compiler. Minimally, non-ANSI C compilers must support full ANSI style function
prototypes and the void data type in order to compile CLIPS.

* Obsolete External Function Interface Changes - The following functions should be
replaced with the specified functions. If clips.h is included in your C files, macros will
automatically map these functions to their new names.

CLIPSFunctionCall (use FunctionCall instead)
ExitCLIPS (use ExitRouter instead)

GetcCLIPS (use GetcRouter instead)

Initialize CLIPS (use InitializeEnvironment instead)
PrintCLIPS (use PrintRouter instead)
UngetcCLIPS (use UngetcRouter instead)

* Obsolete Constants and Variables Changes - The following constants and variables
should be replaced with the specified replacements. If clips.h is included in your C files,
macros will automatically map the old names to their new names.

CLIPS_FALSE (use FALSE instead)
CLIPS_TRUE (use TRUE instead)
CLIPSFalseSymbol (use FalseSymbol instead)
CLIPSTrueSymbol (use TrueSymbol instead)
WCLIPS (use WPROMPT instead)

* Source File Name Changes - The names of the following source files have been changed:

clipsmem.h (use memalloc.h instead)
memory.c (use memalloc.c instead)

* Compiler Directives — Some of the compiler directive flags in the file setup.h have been
changed. The CLP_TEXTPRO and CLP_HELP flags have been renamed to

TEXTPRO_FUNCTIONS and HELP_FUNCTIONS. The ANSI_COMPILER flag has been
removed.

* External Function Interface - Several new functions have been added including:
GetNextInstanceInClassAndSubclasses (see section 4.13.15)

e New Source Files — Several new source files have been added (see section 2.1 for a
complete list of source files):

CLIPS Advanced Programming Guide 219

CLIPS Reference Manual

parsefun.c
parsefun.h
proflfun.c
proflfun.h
sortfun.c
sortfun.h

C.8 VERSION 6.05

* Compiler Directives - The CLP_EDIT flag in the file setup.h has been renamed to
EMACS_EDITOR.

* External Function Interface - Several new functions have been added including:

BatchStar (see section 4.1.4)

Build (see section 4.1.7)

Eval (see section 4.1.9)

FactExistp (see section 4.4.7)

FactSlotNames (see section 4.4.10)

GetFactList (see section 4.4.12)
LoadFactsFromString (see section 4.4.20)
LoadInstancesFromString (see section 4.13.19)
RestorelnstancesFromString (see section 4.13.22)

220 Appendix C — Update Release Notes

CLIPS Reference Manual

Index

AcCtiVAtEROULET ...vvvveeeieeiiieviieee e, 165 BLOAD_ONLY ...oovviieeiieiiiieeiiinnn, 14,15
AdA e v bload-InStances.......coceeeveveeeneveeneennnn.. 14, 125
AddClearFunction............cccceeeeeee.... 43, 177 BLOCK_MEMORYccoovvvvvnnnnn. 14,170
AddDoubleccooeeeeiiiiiiie 35 {076 70) (=3 o KRR 32
AddEnvironmentCleanupFunction . 179, 185 FALSE ..o, 32
AddLONG.......ovviiiiieiiiiieeeeeeee 35,215 TRUE ..., 32
AddPeriodicFunctionccc.u........ 44,177 BrowseClasSesoevuueeeeeeeieeeieeeeeeeeennn. 112
AddResetFunctioncccoeveevnennnn.. 44,177 Drowse-ClasSES ..uvevrneeeeneeeieeeieeeeeeeeeennn. 112
AddROULET ..eeveeeeeeeeeeeeeeeeee, 166, 177 DSAVE .ot 14, 46
AddRunFunction............cccccvueeeeennn. 86,177 BSAVE_INSTANCES........ccccoieeeeen. 15
AddSymbol........cceeeviiiiiiiiiiiiieeeee, 31,35 DSAVE-INSLANCES ..vvveneeeeneeeeneeeeieenennn. 15, 125
Advanced Programming Guide v, v build....ooveeieieeeeeeeeeee, 18, 46, 155, 220
Agendaccevviiiiiieie e 217 C o iii, 157
AgeNda ...oooiiiiiieee e 15,87 ClassADSIractPcoooeeveeeveieiiieeiieeeeenn. 113
AllocateEnvironmentData....... 175,179, 184 class-abstractp......ccccvvvveeeeeeeeeeiciiiieeeennn. 113
ALLOW_ENVIRONMENT_GLOBALS 14, ClassReactiveP........ccoooeevviiiiiiiiiiieennnnnn, 113
175,181, 187,218 Class-TeACtIVEPcevveririiieeeeeeeeiiireeeeeenn 113
ANSI_COMPILER.........cccoooveeeviiiinnnnnn, 219 ClasSSIOtS...uuniieiiiieiiiiieeeeeeeeeeee e 113
ANY-TACtP e 16 Class-SlOtScceeerierriiiiiiieee e, 113
ANY-INSEANCEP vvvvvveeeeeeeeeiiiiireeeeeeeeeennennees 17 ClassSubclasses.........uvvveeeeeeeeencnveveeeennnn. 114
ArgCountCheckcooevviviiiiiieiiiiie, 23 class-subclasses.......cocvveeeeeieeiicniiiieennnnn. 114
ArgRangeCheck.........ccccuviviiieieeiinninnnee, 23 ClassSuperclasses.......cccvveeeeeercvveveeeennnn. 114
ArgTypeChecK.......cooovvviiiiiiiieeinenns 26, 28 class-superclasses.......ccccveeeeeeecnrvveeennnnn. 114
ART oo 11l Clearouvveeeeiieiiiieieeeeeeeeeeeenn, 5,43,46
Artificial Intelligence Section.................... iii ClearFocusStackcccccceeeeveeneniiiiieennnn. 88
ASSEI v 5,63,65,75 clear-focus-stackcovvveeeeviieieiieeiien, 88
ASSETtSIING ..vvvveeeeeeeeiiiiieeeee e, 5,63,75 CLIPS ..o 1il
ASSETE-SIIING . uvvvreeeeeeeeeeriiiiireeeeeeeeeeaaeenees 63 CLIPS_FALSE ..., 219
AssignFactSlotDefaults...................... 64, 65 CLIPS_TRUE ... 219
AUXILARY_MESSAGE_HANDLERS 216 CLIPSFalseSymbolcccccoeevuvvivenennnn. 219
Basic Programming Guide w,v, 1,21 CLIPSFunctionCallcoovuevieinnnnn... 219
BASIC_IO ..., 215 clipsmem.h........cooociiiiieieiiiiiieee, 219
batCh™ ...oooiiiiiieee e, 45 CLIPSTrueSymbol.........ccccceevennviviennnnnn. 219
BatchStarovveeeeeeeeeeeeeeeeeeeeeeen 217 ClOSE et 17,160
BatchStar.........oovveeeeiiiiiiiiieeee, 45,220 CLP_EDIT ..o, 220
BinaryLoadlInstances...........c.....ccceeuuneeee. 125 CLP_HELP ..., 219
BinarySavelnstancesccccccceeeeunnnene. 125 CLP_TEXTPROcccovviiiiiiiiiieeenn, 219
BLOAD ..o, 14, 45,153 CommandLoopcccccevveeeeeeeeiiiiiiieeenn. 154
BLOAD_AND_BSAVEccccccevivinen 14 Common Lisp Object System.................... v
BLOAD _INSTANCES. ..., 14 compiler direCtives........ccccveeeeercnrrrreennnn. 13

CLIPS Advanced Programming Guide 221

CLIPS Reference Manual

CONFLICT_RESOLUTION_STRATEGIE

S e ———— 216
CONSEIVE-TNEM . ceuevnreenrennrennrennrennnes 170, 172
CONSTRUCT_COMPILER..................... 15
CONSIrUCtS-tO-C vuvvevvnneennnnnn. 17,153, 215,217
COOL oo v
CrEALES ..o 17
CreateEnvironment.......... 175,177, 180, 185
CreateFact......coveveeeeeiiiieeeeen, 63, 65,72
CreateMultifield.............cccovvvvvveeeeeiennninnnn, 37
CreateRawlInstanceccccoeeeeeeeeninnnn. 126
DeactivateRoutercccccoeeeeveeeennnnnn. 167
DeallocateEnvironmentData....175, 180, 218
DEBUGGING_FUNCTIONS................... 15
DecrementFactCountccouveeen.... 67,75
DecrementGCLOCKSvvvveveeneeeannnne. 6,218
DecrementInstanceCount 126
DefclassModuleoovvvveeeiiienninnnnn, 115
defclass-moduleoovvvvveeeiiienniinnn. 115
DEFFACTS_CONSTRUCT 15
DeffactsModuleccoovvvvvveeeeeieninnnnnn. 77
deffacts-modulecooovvrvvvreeeeeiinninnnnn. 77
DEFFUNCTION_CONSTRUCT............. 15
DeffunctionModule...........cccooeeeveiennnnnnn. 101
deffunction-module...........cccooeeeveierninnnnns 101
deffunctions

calling from C........cccovvvveeeeieenne, 47
DEFGENERIC_CONSTRUCT................ 15
DefgenericModuleccccceeeeeennnnnene. 105
defgeneric-modulecccceveeeiennnnnnne. 105
DEFGLOBAL_CONSTRUCT................. 15
DefglobalModule............cccvvveeeeeeieiinnnne. 95
defglobal-module............cccoviiiiiiniiiinnn. 95
DefineFunction 19, 31, 32, 34, 37, 215
DefineFunction2cooovvvvvveeeeeeennnnnnnn. 21
DEFINSTANCES_CONSTRUCT 15
DefinstancesModulecccceeveeeennnnnn. 142
definstances-modulecccceeeeieiinnnnn. 142
DEFMODULE_CONSTRUCT................ 16
DEFRULE_CONSTRUCTcccccceeevennnnn 16
DefruleHasBreakpointcccceeunneeee. 80
DefruleModule.......cccccooovviimiiiieeniiiinnninnn, 80
defrule-module.......cccoeeeviiiimiiiiiieieieiniinnn, 80

222

DEFTEMPLATE_CONSTRUCT 16
DeftemplateModule.............cccoeeurrrrneenn... 55
deftemplate-module..............coeveurrrreeennnn.. 55
DeftemplateSlotAllowedValues 55,215
deftemplate-slot-allowed-values............... 55
DeftemplateSlotCardinality 56, 215
deftemplate-slot-cardinality 56
DeftemplateSlotDefaultP.................. 56,215
deftemplate-slot-defaultp.............c.ooeeee.... 56
DeftemplateSlotDefaultValue........... 57,215
deftemplate-slot-default-value................... 57
DeftemplateSIotExistP 57,215
deftemplate-slot-eXiStpcceeevrevvvvreeennnn. 57
DeftemplateSlotMultiP..................... 57,215
deftemplate-slot-multipccccuvvvveenenn. 57
DeftemplateSlotNames..................... 58,215
deftemplate-slot-namesccceeeeene.. 58
DeftemplateSlotRange...................... 58,215
deftemplate-slot-range............ccccvvvvveenn.. 58
DeftemplateSlotSingleP 58,215
deftemplate-slot-singlepcccocveeeennne. 59
DeftemplateSIotTypes..........cccuueeeee. 59,216
deftemplate-slot-typescccceevuveeeennnne. 59
delayed-do-for-all-facts...........ccccvvveeennn. 16
delayed-do-for-all-instances 17
delete$...oovvreiiiei e 17
Delete ACtivationcceeeeeeerecnennveeenennn. 88
Deletelnstance.......ccoeeeeeeeeeeeeeenenannnn.. 5,126
DeleteRouterccccvvvvveeeeeeeiciiiiieeenn. 167
DescribeClass.......ccccvvvvveeeeeeeeiciiiiieeeennn. 115
describe-classcccouvvveieieeiiiiiiiiieeeenn. 115
DestroyEnvironment 175,181, 185
DirectGetSIotcccvvvviieeeeeeeeiiiiieeene. 127
DirectPutSIot....cc.uveeeeeeeeeeieeeeeeeeenn. 5,127
do-for-all-factsccccvvveeeeeeieniiiiieenen, 16
do-for-all-instancescccccceeevevvvvveeennnn. 17
do-for-fact........cceeeveiviiiieieieieeiieeeee, 16
do-for-instancecccceveeeeeeeeenccenineeenennn. 17
DOPToDoublecccvveeeeeieeeiiiieeeenn. 26
DOPTOFloat........ccoccuvviiiiieeeeeeeeiiiieeeeenn 26
DOPToInteger........ccccvvvveeeeeeeeeiiiiieeeenn. 26
DOPTOLONG ...cooveiiiiiieeeeeeeeeieeeeen 26
DOPToPoINtercccvvveeeeeeeeeiiiiiieeennn. 26
Index

DOPTOSHING ..vvvvveeeeeeeiiiiieeeee e 26
DOTODOUDIEovveeeeeeeiiiiiiiiieeeeeeeeeeeins 26
DOTOFIOoat........couvueeeeeeieiiiiiiiieeee e, 26
DOTOINtEZETvvveeeeeeeeeiiiiieeeeee e 26
DOTOLONG ...vvvvvieeeeeeeeeiiiiieeee e 26
DOTOPOINETvvvveeeeeiiiiiiiiiiieeeeeeeeeeeeans 26
DOTOSHING ..vvvvveeeeeeeeeeiiireeee e 26
DribblEACHIVEevvveeeeeeeiiiieiiieeee e, 53
DribbleOffoovvveeeeiiiiiieee 53
dribble-off..........ovveeeiiiiiiiiie 53
DribbleOn.........cuvvveeeiiiiiiiiiiiieeeeeeeeeeiias 54
dribble-0noovvvveeeiiiiiiiiieee e 54
DYNAMIC_SALIENCEccccccceevenn. 216
dynamic-getceeevevrvuniiiiieeeeeeeeieenne 127
dynamic-put.......ccceeeeeeeniirireeeeeeeenninnnnne 127
EMACS_EDITOR............... 13,16, 187, 220
embedded applicationcccceeeeeunnnene. 43
EnvBatchStar...........ccooeeviiiiieiiiiienn, 217
EnvDefineFunction..........ccccccooovvvvvnnnnnnn. 183
EnvDefineFunction?2 183, 186
EnvFactDeftemplatecccccoeeeennnns 217
EnvFactEXiStp.....ccveeieeiiiiiiiiiiiieeeeeees 217
| 251074 20 Vo1 I3 T SR 217
EnvFactSIotNames.........cccoeeeeeeiiivevvnnnnnn. 217
EnvFalseSymbolcccccevviiiiieiiinnnnns 216
EnvGetActivationSalience 217
EnvGetNextInstanceInClassAndSubclasses
.. 217
ENVIRONMENT_API_ONLY178, 187,
215,218
environmentData...........cccceeeeeeeiiiiininnnnn. 175
EnvLoadlInstancesFromString 217
EnvRestorelnstancesFromString 217
153117 81010101 S o 218
envrnmnt.n.....oooevieiiii, 185,218
EnvSetOutOfMemoryFunction 217
EnvTrueSymbol.........ccoevveiiiiiiiiieeiinnns 216
EnvUserFunctions.................... 19,43, 154
VAl et 18,47, 155, 220
EX MATH ...oooeiiiiiieeen, 215
EXitCLIPS ...oovveeeiieiieeee e, 219
ExitRoutercoovveviiiiiiieiiiiiieeeens 163,219
exXplodedveiiiiiiiii e, 17

CLIPS Advanced Programming Guide

CLIPS Reference Manual

EXTENDED_MATH_FUNCTIONS 13, 16,
215

external addressS.....coeeeeveviiiieviriiieeneeeeniiinnns 34
exXtobj.h o 218
FACT_SET_QUERIES.................... 16,217
FactDeftemplatecccovvveeeeeeeennnnnnne. 217
FactDeftemplatecccccvvveeeeeeennnns 68,218
FactEXiStp ...vvvvieiieeeiieiiiiieeeee e 217
FactEXiStp ...uvvvieieeeeieiiiiiieeeee e 68, 220
FACt-EXISEP wuvvvveeeeeeeeeiiiiiieee e 68
FactIndex ..cooveeeeeieeeieieeeeeeeeeenn, 68,215
2161 0 16 (=) G 68
FactLiSt...coooooiiiiiiiieeeeeeeiiieeeee e, 217
FACIQPST.C evvvriiieieeeeeeeiiieeee e 217
factqpsr.h..eeeeeiieieeeeie 217
faCtQUIY.Cuuvvrriiiiiieeeeeeieeeee e 217
factqury.h.....cccccoeeeeiiiiii 217
faCtS v 15, 68, 69, 215
FactSIotName.......ccooeeeeeeiiiiiiiiiiieeeeeeeeieennns 69
FactSIOtNAmeSoeeveveiiiiiviiieeeeeeeeeeenns 217
FactSIOtNameScceeeeeeiiiiiviiieeeeeeeeeeenns 220
fact-Slot-NAMESvvueeeeeiiiiiiiiiiieee e, 69
FALSE. ..., 219
FalseSymbolccccvvvveeeennn. 32,216,219
< (0] o W 18

files

header
clips.h 19, 26,43, 163, 165, 170, 178
envrnmnt.h ... 178
memalloc.h....cooeeviiiiiiiiiiiiennnn, 170
routern....oooeeveeeiieiiieeennn. 163, 165
setup.h............... 12,13, 16, 154, 170
source

Main.C........oevvvvvnnn. 43,149, 152, 154
memalloC.C...uvveeeeviiiiiiiiiiieeeene, 169
DN (5] o U PUPRRRR 14
userfunctions.c...12, 19, 42, 149, 216
find-all-factS........cvveeeeeeeiiiiiiiiieee e, 16
find-all-INStancesocovvvvvvvvueeeeeeeniennnns 17
FindDefclasscoeeeeeeeeiiiiiviiiieiieeeeiinnnn, 115
FindDeffactscoeeeeeeiiiiiiiiiiiiieeeeeeeeeeinnns 77
FindDeffunction..............coovvvveeeeieennninnn, 101
223

CLIPS Reference Manual

FindDefgenericcccccoeveeviiiviieeeeeennnns 105
FindDefglobal...........coooeiviiiiieiiienne, 95
FindDefinstancesccccvvvvveeeeeeennnns 142
FindDefmessageHandler 137
FindDefmodule............cooeevvviiiiieeennnnnns 145
FindDefrule........cccccevviiviiiiiiiiieeeeeee 80
FindDeftemplateccccovvveeeeeeennnnnne. 59
find-factccoovvvveeeeeiiii e, 16
FindInstanceccccceeveviviiiiiiieeeeeennns 128
find-INStanceceeeeevvevvrveeeeeeeenrinenee, 17
FIEStS oo 17
Float ..vveeeeee e 24
FOCUS .ooviiiieeee e, 88
formatocoeeeiiiiiiiiiiiiee 17,160, 161
FunctionCallccoeeevviinenn. 5,47,219
functions
ArgUMENE ACCESS vvvvvvvvvvvrrvrrrvrrerraneeeennns 23
calling from C........cccovvvveeeeeeeniinn, 47
externalooeeeeneiiieeiieeee, 19, 23,25
library
1€ | U UPRPRR 163
(TSR UPUPRR 169
GOLC wevvririieeeeeeeerieee e e e e e 164
mallocccoevuieeennnn 169,171,172
Printf .o 164
SPINtE .o 64
user-definedcoeceviiieeeieeenninnnne, 19
garbage collection...........ccccceeeeeivcinniieennn. 3
€enalloCeeeiiiiiiiiiii 169
GENERIC......ccooiiiiiiiiiieieee, 14
generic functions
calling from C........cccovvvvveeeiienine, 47
ENTTEE ..cooiiiiiiiiiiiee e 169
GetActivationNameccccceeeeeeeerennnnnen. 88
GetActivationPPForm..........cccccceeeennnnnee. 89
GetActivationSalienceccccceeeeeeunnnnnee. 89
GetAgendaChangedccccceeeeveennnnnnnne. 89
GetAutoFloatDividend..............ccceeunnneee. 48
get-auto-float-dividend..............cceeeuennnnee. 48
GetcCLIPS....coooiiiieeeee, 219
GetClassDefaultsMode 116, 218
get-class-defaults-mode.............cccuueeeeee. 116
GetConserveMemoryccceeeeeeeeennenee. 170

224

GetcRouter......oovuveveeveeaeennn.. 164, 165,219
GetCurrentEnvironment 181, 187
GetCurrentModuleccoovevunvinnennnn.. 145
get-current-module...........ccceeeenniiiieennn.. 146
GetDefclassList.....ccccuvvveeeeeeeiiciiiiieeeen. 116
get-defclass-listccvvvvieeeeeeiiiiiiiieenn, 116
GetDefclassName..........cccceevevevviveeennnnn. 116
GetDefclassPPFormccooeuvvivieennnn.. 117
GetDefclassWatchlnstances 117
GetDefclassWatchSlotscccvvveeeeee.. 117
GetDeffactsList.......ccccvvveeeeeeeeiiiiiiiieennn. 77
get-deffacts-listcccvvvveeeeeiieiniiiiieenen, 77
GetDeffactsName.........ccccceeeveeeciiiiieennnnn. 78
GetDeffactsPPFormc..cccoeeevvvvineennnn. 78
GetDeffunctionListcccoeveuvrvvreennnn.. 102
get-deffunction-list.......ccccceeeevnnnineennnnn. 102
GetDeffunctionNameccccuvvveenn.. 102
GetDeffunctionPPForm.......................... 102
GetDeffunctionWatchccccvveeeeeen. 103
GetDefgenericList........cccceeevviecniiieeennn. 105
get-defgeneric-listcccceeevevvniiinennnnnn. 105
GetDefgenericName............ccccevvvveeeennn. 106
GetDefgenericPPFormcccceeeee... 106
GetDefgenericWatch...........cooeuviveenenn.. 106
GetDefglobalList.........ccccccvveeeeenciiiiiieennnnn. 95
get-defglobal-listeoeerviiiiiiiniiiciinnne. 95
GetDefglobalNamecccccceevevvviveeennnn. 96
GetDefglobalPPForm...........cccoccvvvvveeennn.. 96
GetDefglobalValuec..cccoevviniineennn.. 96
GetDefglobalValueForm 97
GetDefglobalWatch.........cccccoevviiininennn.n. 97
GetDefinstancesListcccoevevvvieeeennn. 143
get-definstances-list.........c.ccoeeeuvviveennnnn. 143
GetDefinstancesName.ccccveeeeee... 143
GetDefinstancesPPForm......................... 143
GetDefmessageHandlerList.................... 138
get-defmessage-handler-list.................... 138
GetDefmessageHandlerName................. 138
GetDefmessageHandlerPPForm 139
GetDefmessageHandlerType.................. 139
GetDefmessageHandlerWatch................ 139
GetDefmethodDescription...................... 108
GetDefmethodList..........cccoevvevniiiieennnnn. 109
Index

get-defmethod-list...........coovniieeinnnnneen. 109
GetDefmethodPPForm..............cccuueeeee. 109
GetDefmethodWatchcc.ccceennennnee. 110
GetDefmoduleListccccceeeeeeeeinnnnnne. 146
get-defmodule-list.........ccceeeeeeerirnnnnnnnne. 146
GetDefmoduleNamecccccceeeeennnnnee. 146
GetDefmodulePPForm..............cccuueee.e. 146
GetDefruleListcooeeveiiiiiieeeeeeeeiinee, 80
get-defrule-listooovviiiiiinieinine, 81
GetDefruleName...........cccccveeeeeeeeencnnnnne. 81
GetDefrulePPFormccccccceeevininnnnee. 81
GetDefruleWatchActivations 81
GetDefruleWatchFiringsccccuueeee. 82
GetDeftemplateList..........cccccceeeeeeeennnnnee. 60
get-deftemplate-1istccevveeeeeeeeeiinnnnnee. 60
GetDeftemplateName............cccccceeeennnnnnee. 60
GetDeftemplatePPFormcc........... 60
GetDeftemplateWatch...........c....cceeuennneee. 61
GetDOBeZINccvveeeeeeeiiiiieeeeeee e, 28
GetDOENAcouvveiiiieieeeeeeee e 28
GetDOLengthccoovvviiiiiiiieeeeeeeee, 28
GetDynamicConstraintChecking 48
get-dynamic-constraint-checking 48
GetEnvironmentBylIndex 181, 187,218
GetEnvironmentData 182, 185
GetEnvironmentIndex............. 175,182, 187
GetFactDuplicationccccceeeeeeeennnnneee. 69
get-fact-duplication..........ccccceeeeeeeeennnnnee. 70
GetFactLiSteveeeeeeeeeeee e, 70,220
get-Tact-1iSt......uvveeeeeeiiiieee e 70
GetFactListChangedccccceeeveeennnnnee. 70
GetFactPPForm...........cccccvvvveeiiiiiie, 71
GetFactSIot.......ovvveeiiiiiiieeeeee e, 71
GetFOCUS......uvviiiiiiieeeeeeeee e 90
Et-TOCUS ..., 90
GetFocusStackcooevvviiiviiieeeeiiiiiee, 90
get-focus-Stackcoevviieiiiniiiiiiiiieeee 90
GetGlobalsChangedccccceeeeeeeennnnnee. 97
GetIncrementalResetccceeeveeennnnnee. 82
get-incremental-reset.........occeveeeeeeeennnnnee. 82
GetlnstanceClass........cccccvvvveeeeeeeenennnnne. 128
GetlnstanceName...........ccccceeeeeeeeennnnnnne. 129
GetlnstancePPFormccccccoevnnnnninee. 129

CLIPS Advanced Programming Guide

CLIPS Reference Manual

GetlnstancesChangedccccvvveeeenn... 129
GetMethodRestrictions..............ceeeeeeee.... 110
get-method-restrictions............cccvvveeeenn... 110
GetMFType...oooeeveeiiiieeeeeeeeee 28,72
GetMFEValuecooovveeeieiiieieieeeeann 28,72
GetNeXtACHVAtIONvvveeeeeeeeiiieiiiiieeeenen, 90
GetNextDefclasscoeeeeeeeiiiiiiiiiiienneenn, 117
GetNextDeffactscceeeeeeveiiiiiiiiiiieeenennn, 78
GetNextDeffunctionccccvveeeeeenn. 103
GetNextDefgenericccccevevevviveeennn. 107
GetNextDefglobalcccceeveeiviiiiiiennnnn. 98
GetNextDefinstances............ovvvvvveeeeennnn. 144
GetNextDefmessageHandler 140
GetNextDefmethodoovvvvveeeneenn. 110
GetNextDefmoduleccoovvvvvvvneennnnn. 147
GetNextDefrule.......ccooveeeeveiiiiiiiiiiieeeeeennn. 82
GetNextDeftemplate............ccoeeevvvvveeennnn. 61
GetNeXtFaCt......oooovvviiieeeiieiieee e 71
GetNextFactInTemplate 72,217
GetNextInstance.......coeeeeeeeeiiiivvvvieeeeneennn. 130
GetNextInstanceInClassccceeeee...... 130

GetNextInstanceInClassAndSubclasses..217
GetNextInstanceInClassAndSubclasses.130,
219

GetpDOBegincccccvvvveeeeeeeeeeiiieeeeee. 28
GetpDOENdccoooiiiiiieeeeeeeeeeeeeen 28
GetpDOLength........ccccvvveeeeiiiiiiiiieeeen. 28
get-profile-percent-threshold 17
GetPTYPL wevveeeieeeeeeeeeee e 26
GetpValue.......ooovvvvvniiiiiieeeeeeee 29, 35
GetResetGlobalsccccovvieeiiniiiciinnnne. 98
get-reset-globalscoevviiiiiiiniiiiinnne. 98
GetSalienceEvaluationcccoceeeeennnee. 91
get-salience-evaluationcccccceeeennnnne. 91
GetSequenceOperatorRecognition............ 48
get-sequence-operator-recognition............ 48
GetStaticConstraintChecking 49
get-static-constraint-checking.................... 49
GetStrategy ..ooeeeeeeeeiiiiiieeeeeeeeeeiiireeeeeeen 91
GEt-SITALEZY wevvvvvvvvrvvrreiiieiiiieieeeeiiieeeeeeeeaee 91
GEtTYPE wevvvveeeeeeeeeeeiiieee e 26
GetValue.....oooovveiiiiiiiiiiiieeeee 29, 35
GetWatchltem.........occeeeiiiiiiiiiiniiicieiee 54

225

CLIPS Reference Manual

HELP_DEFAULTcccoeeviiiiiiiiiiieeeeeenn. 16
HELP_FUNCTIONSccceeeeeennn.n. 16,219
I/O 1OUter coeveeeeeeeeeeeeeeeeeeeeeee, 159, 205
PIIOTILY cooiiiiiieeee e e e eeeieeeee e e e 162
IMPERATIVE_MESSAGE_HANDLERS
.. 216
IMPERATIVE_METHODS 216
implodeS.......oooovviiiiiiiiieieeee e, 17
INCREMENTAL_RESET 216
IncrementFactCount.......... 63,64,72,73,75
IncrementGCLOCKS ...covvvvveneeeieeiannnee. 6,218
IncrementInstanceCount......................... 131
Inference Corporationcceeevvvvveenn.. iii
INitCIMAagecvvveeeeeeeeeiiiiieeee e 154
InitializeCLIPSoovviiiiiiieeeeeeee, 219
InitializeEnvironment. 43, 49, 154, 175, 177,
185,219
INSEITS .o 17
installation of CLIPS..........ccccooeeiiiiiiininnnnnn. 9
instance addressoooeeeeivivveiiiiieeeeeeeniinnnns 34
Instance manipulation from C 125
INSTANCE_PATTERN_MATCHING .216
INSTANCE_SET_QUERIES 17
INStANCESoovvvvviveeeieeeiiieeeee e, 133
1 (TS U URR 24
11 CTo4 215 () 1 DO 1
Interfaces Guide............oovvvvvveeeeieiiiiieennnnnn. \
IO_FUNCTIONS......ccoeveieeeeieeeeennn. 17,215
IsDefclassDeletable............cccoeeevevennnnnnn. 118
IsDeffactsDeletable............ccccoeeeeeeeennnnnnn. 79
IsDeffunctionDeletable 103
IsDefgenericDeletable...............cc.......... 107
IsDefglobalDeletablec..cceenennnnee. 98
IsDefinstancesDeletable.......................... 144
IsDefmessageHandlerDeletable.............. 140
IsDefmethodDeletableccceeeeeee. 111
IsDefruleDeletableccooeeeeeeeennnnnnn. 83
IsDeftemplateDeletable............................ 61
LISP oo 1ii
ListDefclassescoooevvivvvevvieeeeieiiiiiiiiiinnnn, 118
list-defclasses.....covveeveeeeiiiiviiiieieieeeeiienns 118
ListDeffactsoeeeveeiiiiiviiiieeeeieiiieeeiiinnn, 79
list-deffactsouvveeeeeiiiiiiiiiieeee e, 79

226

ListDeffunctionscccccevvveeeeeeeeennnnns 104
list-deffunctionsccceeeeeeviiivviveneeneennn. 104
ListDefgenericscooeevvvveeeeeeeeeenennnnee. 107
list-defgenerics.......coovvvvveeeeeeeiicniiiieennnn. 107
ListDefglobals.........ccccovvvvieeeeienniiiiieennen. 99
list-defglobals..........ccceeeiiniiiiiinniiiine 99
ListDefinstances..........ccoovvvvvvveeeeeeeeninnnn, 144
list-definstances........ccoeeeeeeeiiiievvvvnieeneennn. 144
ListDefmessageHandlers........................ 140
list-defmessage-handlers 141
ListDefmethods.......cccccoovvvvviiiieeiiiinnninnn. 111
list-defmethods.........ccooeeeeeeiiiiiiiiiiieenennn, 111
ListDefmodules.........cccoovvvvviiiieeeiienininnnn. 147
list-defmodules.........cooeeeeeiiiiiiiiiiiienneenn, 147
ListDefrulescovveeeveiiiiiiiiiiiiieeeeeeeeeeennns 83
list-defrulescoovvvvmiueeeeeeeiiiieeeeee 83
ListDeftemplatescccccceeeeeeevenineeennnnn. 61
list-deftemplates.........ccccceeeeeeeervniiieeennnn. 62
ListFocusStacKcoeeeeeeviiiiiviiiieeeeeeeniiennn, 91
list-foCcuS-Stackcuvvveeeeeeiiiiiiiiiieeeeeennn, 91
load......vvveeeenennn. 14,49, 149, 151, 153, 155
LoadFactS.....cooveeeeieeiieeeeeeeeeeeeenn 73,155
load-factsoeeeeeveeneeeieeeieenn, 73,74, 155
LoadFactsFromString....................... 74,220
LoadInstancesccoeeeeveveveneeeennnnnn. 133, 155
load-instances........ccoeeeeunneennn.. 133, 134, 155
LoadInstancesFromString....................... 217
LoadlInstancesFromString............... 134, 220
logical namesccccvveeeeeeeeeiiciiiiieeenn. 159

SEAIN weveeieceeieeeee e 161

116 (0] | AU 161

ettt 161

wdialogooovvveiiiiiieeeeeee 161, 169

wdisplayccccevviiieeeiennnns 69, 141, 161

AU § (0) TR 49, 161

401 (0] 101 0] SR 161

WITACEoivvvvirieeeeeeeeeeeeeieeeeeeeeeeeeeans 161

WWAINING coeeeeeiiiiiiieieeeeeeeeeiiireeeeeenns 161
LOGICAL_DEPENDENCIES............... 216
JOWCASE evvvveeeeeeeiiieeeeeee e 18
107211 W 148,150, 154
Makelnstancecceuveeeeeeeeieeeeeennnn. 5,134
Make-INStanceceeeeeeeiivvevivvieeeeeennennnns 134

Index

MatChesccueveeeiiiiiieiiiieeeeee e, 83
MAXIMUM_ENVIRONMENT_POSITIO
NS 185
memMalloc.Coeevviiiiiiiiiiiiiiii, 219
memalloc.h ... 219
member$.........ocooiiiiiii 17
MEMOry management..........c.uveeeeeeeeeennnns 169
MEMOTY .Coeverrrereieiiieeeieieeeeeeeeeeeeeeeeeeeeennn 219
MemoryUsedcceeeeeeeeicciiiiieeeeeeeeenes 171
MemReqUESESceevreeeeeriiiiiiiieeeeeeeenes 170
MEM-TEQUESES .oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennns 170
MemUsedcccvvvveeeeeeieeiiiiiieeee e, 171
mem-uSedooevvvviviiiiiiiiiiiieeeeee, 171
Message-passing from C...........cceeennees 136
MULTIFIELD_FUNCTIONS.................. 17
NASA e iii
NEAS Lo 17
OBJECT_SYSTEMccccoiiiiiiiiiiieeen, 17
(0] 01<) 1 U USURRR 17,160
PATAMELET ..ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 25
PArsefun.Cccccvvvviieieeieeeieee e, 220
parsefun.hcccooiiiiiiiiis 220
POPFOCUSvvviiiiiiieiieeieeee e 91
POP-TOCUS .. 91
POTtability ...ccevvvviiiieeee i 1
Portability Note

formatceeeeiiiiiiiiii 3
ppdeffactsccevvveeeeeiiii e 15
ppdefrule........cccvvviieiiiii 15
PPFactoocvviiiiiiiiiice, 74,216
preprocessor definitions......................... 13
PreviewSendcccooiiiiiiniiiciiineen, 141
Preview-send.........ceeveeeeerriciiiiieeeeeeeeenens 141
PrintCLIPS ..., 219
Printoutooeeeeeiiiiieeeeeeeeeee 17,160, 161
PIINE-TEZION ..eevvviiieeeeeeeeiiieeee e e e e e 18
PrintRoutercoeeevveveeneeeennnnnn. 162,164, 219
PIofile .ooeeeeieiieeee e 17
profile-info........ccccceeeevnniiiiiiiiee e 17
Profile-reset.......ccvveeeeeerneiiiiieeeeeeeeeinenee 17
PROFILING_FUNCTIONS.........ccceeeenn. 17
proflfun.c.......cccoovvveiieiiiiis 220
proflfun.h.......cccooiiiiiiiiis 220

CLIPS Advanced Programming Guide

CLIPS Reference Manual

Progn$....cccviiiiiiiiiiee e 17
PTIEF ... 183
PTIF ... 183
PutFactSIot.....coveeieeeeeeeeeeeeeeeen 65,74
T€AA ..eveeeeeeeaans 17,160, 161
1EAdlNE wooveeeneeeeeeee e 17, 161
Reference Manualcccovevevvneeennnnnnn.. v, vil
Refresh.....cccoooiiviiiiieeeiiiiiiieeee e 84
RefreshAgenda.........ccccvvveeieieenniininennnn. 92
refresh-agenda.........ccocoeiinniinnin. 92
ReleaseMemccoeeeeeeviiiiiviiiieiieenininnnn, 171
release-mem.......ccoeeeeveeeiiiiiviiiieneeeenniennn, 171
RemoveBreak.......ccooeevviiiiiiiiiiiiieeneiiiiiiinnn, 84
remove-breakcoooeeiviieiiiiiiieiiiiiiieeee, 84
RemoveClearFunction...........ccoeeeveeeeinnnnnn. 50
RemovePeriodicFunction 50
RemoveResetFunction...........cccceeeeeeeinnnnn. 50
RemoveRunFunction...........ccccoeeeeeeininnnnns 92
ReorderAgendacccccvveveeeeeeeiiiiiieennnn. 92
replace$.......ooeevieiiiiiiicee e, 17
RerouteStdinccoeeeveeiiiiiiiiiiieiiiieeenienn, 154
RESEL v, 5,45,51, 100
TESES oo 17
RestoreInstancesccevvvveeeeeeenninnns 134
reStOre-INStANCES ..vvvuneeeeeiiveriiieeeeeeeereennns 135
RestorelnstancesFromString................... 217
RestorelnstancesFromString........... 135,220
Retractcoovvuneiiiiiieiiiiieeeceeiee e 75
RtnArgCount........ccoeeeviviveeeeeeeeiiiieeenn. 23
RtnDouble..........oovveeeiiiiiiiiiiieeeeeeeeeiia, 24
RtnLexeme.........covveeeviiiiiiiiiiiiiiieeeeeeeiienans 24
RtNLONG ...evviiiiiiieiieeeeeeeeeee, 24
RtnUnKnowneeveeveieeeiiieiiieeeii. 25,28
RUN oot 93,177,215
RUN_TIME ..., 15,17, 154
run-time module.............ovvveeeiiienininnn, 153
SAVE oo 51
SaveFactScoovvvveiiiie e 75
SAVE-TACES ..vvvveeeiiiiiiieeee e 76
SaveInstancCesS.........coovvvvvvveeeeeeeiiiieiiiinnnn. 135
SAVE-INSLANCES .uvvveeeiiveririieeeeeeeeeeerviannen. 135
Send......ooovvvviiiiiiiiiiii 5,136
SetActivationSaliencecvvveeeenenn.. 93

227

CLIPS Reference Manual

SetAgendaChanged.........ccccceeevvnnvvveeennnn. 93
SetAutoFloatDividendccoeeeeeennnn. 51
set-auto-float-dividendccoeeeennee.n. 51
SetBreakovvvveiiiiiiiiiiiieieieeiieeeeeee 84
SEt-Dreakcooevevivviieiiiiiieeiii e 84
SetClassDefaultsMode 118,218
set-class-defaults-modeccccoeeeeeee.n. 118
SetConserveMemory.......cccceeeeeevvvvveeennn. 172
SetCurrentEnvironment........... 175,182, 187

SetCurrentEnvironmentByIndex ... 175, 183,
187

SetCurrentModule..........ccoocveeeerniiienens 147
set-current-moduleoocceeeiiiiiiinen. 147
SetDefclassWatchcccoooieiiinieiens 119
SetDeffunctionWatch............ccceevuieeeennns 104
SetDefgenericWatchcoeevvvvieenenn.. 108
SetDefglobalValue...........cccccceevnnnnnnee. 5,99
SetDefglobalWatchccccovvviniiviieenn... 99
SetDefmessageHandlerWatch 141
SetDefmethodWatchccccvvvvneeeen.. 111
SetDefruleWatchActivations.................... 84
SetDefruleWatchFirings...........cccccvveeenn.. 85
SetDeftemplateWatchcccccvvveeeenn... 62
SetDOBegIiN......ccoovveiiiiiiiieeeeeeeiieeeeee, 38
SetDOENA........ceviiiieiiieeiee e, 38
SetDynamicConstraintChecking............... 52
set-dynamic-constraint-checking....... 52,154
SetFactDuplication..........cccccceeeeevvvvvveennnn. 76
set-fact-duplicationccccceeevveuvvrveeennnn. 76
SetFactListChangedcccoeeveuvvvveeennnn. 76
SetGlobalsChanged............cccoeeuvvvvveennn. 100
SetIncrementalResetccceeevviieeeennnne. 85
set-incremental-resetccueeeeeviieeeennnne. 85
SetInstancesChangedccccvvvveeenn.. 136
SEtMETYPE ..cevvieiieiiiiiieeeee e, 37
SetMFValue........ccooceviiveieeeiieiiiiieeen, 37
SetMultifieldErrorValuecooeeeeee.. 38
SetOutOfMemoryFunction..................... 218
SetOutOfMemoryFunction..................... 172
SetpDOBegin........ccccvvvvveeeeeeeeeiiieeeeee. 38
SetpDOENd.........cooevviiiiiiiieeeeeeiieeeee, 38
set-profile-percent-threshold 17
SetPTYPC..evvviiiieeeeeeeeeee e 35

228

SetpValue.......cooouviiiiiiiieiieiciiiieeeee e 35
SetResetGlobalscoovvveiiiiiiiieeinnnnns 100
set-reset-globalsccceeeeeiiiiiiiiiieeninnnns 100
SetSalienceEvaluation...........ccccccceeeeeennne. 94
set-salience-evaluationcccceeeennnnee 94
SetSequenceOperatorRecognition 52
set-sequence-operator-recognition 52
SetStaticConstraintChecking 53
set-static-constraint-checking 53
SetSrateZY ..ceeeeiiiiiiieeeeeeeeeiiieee e e e e 94
SEL-SLIAtEEY «eevvvrririiiiiiiiiiiiiiiiiiiieieeieeeeeeeeee 94
SEtTYPC .eveeeeeeeeeeiiiieeee e 35,37
SEtup flags ..ccoveeeeiiiiiieeeee e 13
SetValue coouvveeeeieeeeeeeeeeeeeeeeen 35,37
SHORT_LINK_NAMESccccceenne 216
ShowBreaksccccuvveeeeiieieiiiiiieeeee e 85
show-breakscceevvvviiiiiiiiiiiiiiiiiiiinennnn. 85
ShowDefglobals..........cccceeeiiiiriiieeiinnnns 100
show-defglobalscccccoeveiiiiiiiieennnnns 100
shrtlnkn.h ..o, 216
SlotAllowedClasses......ccccccuueeenn.... 119,216
slot-allowed-classes..........ccccuvvveeeeeeennnnns 119
SlotAllowedValuesccccovvveeeeeeennnns 120
slot-allowed-valuesccccvvveeeeeennnnnns 120
SlotCardinalityccceeeveveiiiirieeeeennnnns 120
slot-cardinalityccccceeevvecirireeeeeennnnns 120
SlotDefaultValue...........ccccevvviieeeeennnnnns 121
slot-default-valueccccevvivieeeennnnns 121
SlotDirectAccessP........ccovveeiiiiiiiieeiennnn, 121
SIOtEXIStP ..ccoooiiiiiieeeeeeeeeeeee e, 121
SIOtFaCets.....cceeeiiiiiieeeeeeeeiiieeeee e, 122
SIOt-TaCELS ..eeeeeeeiiiiieeee e, 122
SlotInitablePccccccovniiiiiiiiiiiienne 122
SIotPublicP ... 122
SIotRaNge.......cccvvviiiiiieeeeeeiiiieeee e, 123
SIOt-TANZE ..eeeeeeiiiieieee e, 123
SIOtSOUICES ...cveeviiieieeee e, 123
SIOt-SOUICES ...coeeevivveieeeeeeeeiiiireee e e e 123
SIOtTYPES ceeeeeeeeiiiiiiieeee e 123
SLOt-LYPS.ceieeeeeeiiiiiieeeeeeeeiireee e e 123
SlotWritableP.........ccccccooviiiiiiiianen 124
Smalltalk.......cooeveiiiiiiiieiiiiieee e, v
Software Technology Branch iii
Index

SOItTUN.Cuvveeeiiiiiieeee e 220
SOrtfUN.N. e 220
] o7 | SRR 18
0 R 610) 101 0121 (RPN 18
18 1116 () GO 18
STRING_FUNCTIONS.oovvvieeeeennn 18
Str-length.......cccoeeveviiiiiiiiiiee e, 18
SUBCIASSP ... 124
SUDSEQS oot 17
SUDSEEP ..ttt 17
SUD-SIIING ..vvvveeeeeeeeeeiiiieee e 18
SuperclassP........ccooceviiiiiiiiiiiiiiiiiee. 124
8012801 070) ISR 24,31
SYIM=CAL ..ttt 18
TEXTPRO_FUNCTIONS................ 18,219
EOSS trvrteeeiete e e et ee e e e e e e e e enaans 18
TRUE ..o, 219
TrueSymbolccccceveeveinnnnnee. 32,216,219
Undefclass ..eeeeveeeeeeeeeeeeeeeeeeeeeeen, 5,125
Undeffacts ...oeeeeeeeeeeeie e 5,79
Undeffunction.......oceeeeeeeeeeeeeeeeeennann. 5,104
Undefgenericcceeeeeeeeciniieeeeeeeennnns 5,108
Undefglobalccccceevvviiiiiiiineeienns 5,101

CLIPS Advanced Programming Guide

CLIPS Reference Manual

UndefinStancesc.veeeeeeeenereeeaeeeennnens 5,145
UndefmessageHandler................c........... 142
undefmessage-handler............................ 142
Undefmethodcoovvnveeeeiiiiiieeeii. 5,112
Undefrule ...ooeeeeeneeieeieeeeeeeeeeeeeeee, 5,86
Undeftemplate.........cccccvvvveeeeeeeeennnnnnne. 5,62
UngetcCLIPS ..o 219
UngetcRouterueueeeeeeeiennnnnnnnns 165,219
Unmakelnstance........couuveeeeeveeeeeeennnnn. 5,137
UnwWatCh......oooovvvviieeeeiiiiieeeee e, 54
UPCASE .evvviiiiniiiiiiiiiiiiiiiiaesaeaaaeeaeenee 18
USER_ENVIRONMENT_DATA........... 185
USer’s GUIAE ..coeueeeenneeeeeeeeeeeeeeeeeeeen, v, vil
UserFunctions 19, 25,43, 148, 149, 154
ValidInstance Address..............ouvveeeeenenn. 137
ValueToDouble............ccovvueviviinnnnnnn. 29, 35
ValueTolntegercccccvvveeeeeeeencnnnnnne. 29, 35
ValueToLong........cccovvvvveeeeeeensnnnnee, 29, 35
ValueToString........ccccvvveeeeeeeeencnnnnne, 29, 35
WatCh....oooiiiieieee e 55
WCLIPS ..., 219
WINDOW_INTERFACE...............ccco.... 18
WPROMPT ...t 219

229

