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Notation 
x   A variable 
X   A random variable (unpredictable value). an observation.  
M   The number of possible values for X  
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector   

! 

! x 
 
 or   

! 

! 
X  

Ck   The class k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that X  ∈ Ck 
P(ωk) =P(X ∈ Ck) Probability that the observation X is a member of the class k. 
Mk   Number of examples for the class k.  
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

  

! 

{
! 
X m}    A set of training samples 

! 

{ym}    A set of indicator vectors for the training samples in   

! 

{
! 
X m}  

 p(X)   Probability density function for a continuous value X 

  

! 

p(
! 
X )   Probability density function for continuous   

! 

! 
X 

 
 

  

! 

p(
! 
X |"k )    Probability density for   

! 

! 
X 

  
give the class k. ωk = X ∈ Ck.  

Q   Number of cells in  h(x).  Q = ND 
S   A sum of V adjacent histogram cells: 

  

! 

S = h
! 
X "V
# (

! 
X ) 

V    The "Volume" of the region of the histogram 
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Bayesian Classification  
  
Our problem is to build a box that maps a set of features   

! 

! 
X  from an observation, X to 

a class Ck from a set of K possible classes.  
 

 
 
Let ωk be the proposition that the event belongs to class k: ωk =   

! 

! 
X  ∈ Ck 

 
In order to minimize the number of mistakes, we will maximize the probability that 

! 

"k # X $ Ck  
 

 
  

! 

ˆ " k = arg#max
" k

P("k |
! 
X ){ }  

Our primary tool for this is Bayes Rule :   

  

! 

P("k |
! 
X ) =

P(
! 
X |"k )P("k )

P(
! 
X )

=
P(
! 
X |"k )

P(
! 
X |"k )

k=1

K

#
P("k ) 

 
To apply Bayes rule, we require a representation for the probabilities   

! 

P(
! 
X |"k ),   

! 

P(
! 
X ), 

and 

! 

p("k ).  Today we will look at some simple, non-parametric models for 
probability.   
 
Today will look at three non-parametric representations for   

! 

P(
! 
X |"k ) and   

! 

P(
! 
X ):  

 1) Histograms 
 2) Kernel Density Estimators  
 3) K-Nearest Neighbors 
 
IF there is time, we will then discuss Probability density functions (PDF) 
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Classification with a Ratio of Histograms   
 
Consider an example of K classes of objects where objects are described by a feature, 
X, with  N  possible values from [1, N].  Assume that we have a "training set" of M 
samples 

! 

Xm{ } along with indicator variables 

! 

ym{ } where the indicator variable is the 
class, k, for each training sample.  
 
For each class k, we allocate a histogram, hk(), with N cells and count the values in 
the training set.  

 

! 

"m=1
M :  h(X)# h(Xm )+1

           if ym = k  THEN  hk (Xm )# hk (Xm )+1;  Mk #Mk +1 

Then  

 

! 

P(X = x) =
1
M
h(x)  

 

! 

P(X = x | X " Ck ) = P(X |#k ) =
1
Mk

hk (x) 

and 

! 

P("k )  can be estimated from the relative size of the training set.  
 
 

! 

P(X " Ck ) = P(#k ) =
Mk

M
 

giving:  

! 

P("k | X) =
P(X |"k )P("k )

P(X)
=

1
Mk

hk (X)
Mk

M
1
M
h(X)

=
hk (X)
h(X)

 

This can also be written as:  

! 

P("k | X) =
hk (X)

hk (X)
k=1

K

#
  because  

! 

h(X) = hk (X)
k=1

K

"  

The ratio of histograms can be represented by a lookup table. 

! 

P("k | X) =T (X) 
 
To illustrate, consider an example with 2 classes (K=2)  and where X can take on 8 
values (N=8, D=1).  

   
Recall that the number of cells in the histogram is Q=ND.  
Having  M >> Q is NECESSARY but NOT Sufficient.  
Having  M < Q is a guarantee of INSUFFICIENT TRAINING DATA.  
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Number of samples required 
 
Problem:  Given a feature x, with N possible values, how many observations, M, do 
we need for a histogram, h(x), to provide a reliable estimate of probability? 
 
The worst case Root Mean Square error is proportional to  

! 

O( Q
M
) .  

 
This can be estimated by comparing the observed histograms to an ideal parametric 
model of the probability density or by comparing histograms of subsets samples to 
histograms from a very large sample. Let p(x) be a probability density function.  The 
RMS (root-mean-square) sampling error between a histogram and the density 
function is    
 
 

! 

ERMS = E h(x)" p(x)( )2{ } #O( QM ) 

 
The worst case occurs for a uniform probability density function.  
 
For most applications,   M ≥  8 Q  (8 samples per "cell") is reasonable  
(less than 12% RMS error).   
 
So what can you do if M is not >> Q ? 
Adapt the size of the cell to the data! 
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Variable Sized Histogram Cells   
 
Suppose that we have a D-dimensional feature vector   

! 

! 
X  with each feature quantized 

to N possible values, and suppose that we represent   

! 

p(
! 
X ) as a D-dimensional 

histogram   

! 

h(
! 
X ). Let us fill the histogram with M training samples   

! 

{
! 
X m} .  

 
Let us define the volume of each cell as 1.  
The volume for any block of V cells is V.  
Then the volume of the entire space is   Q=ND.   
 
If the quantity of training data is too small, ie if M < 8Q, then we can combine 
adjacent cells so as to amass enough data for a reasonable estimate.  
 
Suppose we merge V adjacent cells such that we obtain a combined sum of S.  
 
 

  

! 

S = h(
! 
X )

! 
X "V
#  

 
The volume of the combined cells would be V.  
To compute the probability we replace   

! 

h(
! 
X ) with 

! 

S
V

.  

The probability   

! 

p(
! 
X ) for   

! 

! 
X "V  is:  

 
 

  

! 

p(
! 
X "V ) =

1
M
#

S
V

 

 

This is typically written as:   
  

! 

p(
! 
X ) =

S
MV  

 
We can use this equation to develop two alternative non-parametric methods.  
 
Fix V and determine S =>  Kernel density estimator.  
Fix S and determine V => K nearest neighbors.  
 
(note that the symbol “K” is often used for the sum the cells.   
This conflicts with the use of K for the number of classes.  
Thus we will use the symbol S for the sum of adjacent cells).  



Non-Parametric Models  for Bayesian  Recognition  Lesson 4 

 4-7 

Kernel Density Estimators 
 
For a Kernel density estimator, we represent each training sample with a kernel 
function   

! 

k(
! 
X ). 

 
Popular Kernel functions include  
 a hypercube centered of side w  
 a triangular function with base of w 
 a sphere of radius w 
 a Gaussian of standard deviation σ.  
 
We can define the function for the hypercube as  
 

 
  

! 

k(! u ) =
1 if  ud "1 2  for all d =1,...,D
0 otherwise

# 
$ 
% 

 

 
This is called a Parzen window.   
Subtracting a point,   

! 

! z , centers the Parzen window at that point.  
Dividing by w scales the Parzen window to a hyper-cube of side w. 
 

  
  

! 

k
! 
X " ! z 

w
# 

$ 
% 

& 

' 
(   is a cube of size wD centered at   

! 

! z .  

 
The M training samples define M overlapping Parzen windows.   
For an feature value,   

! 

! 
X , the probability   

! 

p(
! 
X ) is the sum of Parzen windows at   

! 

! 
X   

 

 
  

! 

S = k
! 
X "
! 
X m

w
# 

$ 
% 

& 

' 
( 

m=1

M

)  

 
The volume of the Parzen window is 

! 

V = wD .  
 

Thus the probability 
  

! 

p(
! 
X ) =

S
MV

=
1

MwD k
! 
X "
! 
X m

w
# 

$ 
% 

& 

' 
( 

m=1

M

)     

 
A Parzen window is discontinuous at the boundaries, creating boundary effects. 
We can soften this using a triangular function evaluated within the window.  
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! 

k(! u ) =
1" 2 ! u if  ! u #1 2  

0 otherwise

$ 
% 
& 

 

 
Even better is to use a Gaussian kernel with standard deviation σ .  
 

   

! 

k(! u ) =
1

(2")D /2#
e
$
1
2

! u 2

# 2

 

 

We can note that the volume (or integral) of   

! 

e
"
1
2

! u 2

# 2
   is  

! 

V = (2")D /2#  
 

In this case 
  

! 

p(
! 
X ) =

S
MV

=
1
M

k
! 
X "
! 
X m( )

m=1

M

#  

 
This corresponds to placing a Gaussian at each training sample and summing the 
Tails at   

! 

! 
X .  

The probability for a value   

! 

! 
X  is the sum of the Gaussians.  

 
In fact, we can choose any function   

! 

k(! u )  as kernel, provided that   
 
   

! 

k(! u ) " 0   and    

! 

k(! u )d! u " =1 
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K Nearest Neighbors 
 
For K nearest neighbors, we hold S constant and vary V.  (We have used the symbol 
S for the number of neighbors, rather than K to avoid confusion with the number of 
classes).  
 
For each training sample,   

! 

! 
X m , we construct a tree structure (such as a KD Tree) that 

allows us to easily find the S nearest neighbors for any point.  
 
To compute   

! 

p(
! 
X ) we need the volume of a sphere in D dimensions that encloses the 

nearest S neighbors.  Suppose the set of S nearest neighbors is the set {Xs}.   
 
This is D dimensional sphere of  radius  

  

! 

R = arg"max
Xs{ }

! 
X "
! 
X s{ } 

 

 

! 

V =
"
D
2

#
D
2

+1
$ 

% 
& 

' 

( 
) 
RD

   

 
Where  Γ(D) = (D-1)! 
 
For even D this is easy to evaluate 
 
For odd D, use a table to determine 

! 

"
D
2

+1
# 

$ 
% 

& 

' 
(  

 

Then as before:  
  

! 

p(
! 
X ) =

S
MV  
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Probability Density Functions 
 
A probability density function p(X), is a function of a continuous variable X such that 
 
1)  X is a continuous real valued random variable with values between  [–∞, ∞] 
2)  

! 

p(X)
"#

#

$ =1 

 
Note that p(X) is NOT a number but a continuous function.  
 
A probability density function defines the relatively likelihood for a specific value of 
X. Because X is continuous, the value of p(X) for a specific X is infinitely small.  To 
obtain a probability we must integrate over some range of X.  
To obtain a probability we must integrate over some range V of X.  
In the case of D=1, the probability that X is within the interval [A, B] is 
 
 

! 

P(X " A,B[ ]) = p(x)dx
A

B

#  

This integral gives a number that can be used as a probability.  
 
Note that we use upper case 

! 

P(X " A,B[ ]) to represent a probability value,  
and lower case p(X) to represent a probability density function.  
 
Classification using Bayes Rule can use probability density functions 
 
 

! 

P("k | X) =
p(X |"k )
p(X)

P("k ) =
p(X |"k )

p(X |"k )
k=1

K

#
P("k )  

 

Note that the ratio 

! 

p(X |"k )
p(X)

 IS a number, provided that 

! 

p(X) = p(X |"k )
k=1

K

#  

 
Probability density functions are easily generalized to vectors of random variables.  
Let   

! 

! 
X " RD, be a vector random variables.   

A probability density function,   

! 

p(
! 
X ), is a function of a vector of continuous variables 

1)    

! 

! 
X  is a vector of D real valued random variables with values between  [–∞, ∞] 

2)  
  

! 

p(! x )d! x 
"#

#

$ =1 

 


