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Notation

RAOD s 2K

Wi

A variable

A random variable (unpredictable value). an observation.
The number of possible values for X

A vector of D variables.

A vector of D random variables.

The number of dimensions for the vector ¥ or X
The class k
Class index

Total number of classes
The statement (assertion) that X & Ck

P(wi) =P(X € Ck) Probability that the observation X is a member of the class k.

My
M

{X,}
Wt
p(X)

p(X)
r(Xlw,)

Number of examples for the class k.
Total number of examples.

K
M=YM,
k=1
A set of training samples

A set of indicator vectors for the training samples in {X,,}
Probability density function for a continuous value X

Probability density function for continuous X

Probability density for X give the classk.w =X €EC,.

Number of cells in A(x). Q =ND
A sum of V adjacent histogram cells: § = Eh(f()

Xev

The "Volume" of the region of the histogram
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Non-Parametric Models for Bayesian Recognition Lesson 4
Bayesian Classification

Our problem is to build a box that maps a set of features X from an observation, X to
a class C, from a set of K possible classes.

=S

X— Classify |- ¢.€{c}

Let w_be the proposition that the event belongs to class k: = X € Ck

In order to minimize the number of mistakes, we will maximize the probability that

w,=XEC,

o, = arg— max{P(a)k | )?)}

Our primary tool for this is Bayes Rule : P(w, | X)= PXlo)Pw) __PX1o,) P(w,)

PX) Y P(X1w,)

To apply Bayes rule, we require a representation for the probabilities P(Xlw,), P(X),
and p(w,). Today we will look at some simple, non-parametric models for
probability.
Today will look at three non-parametric representations for P(X lw,) and P(X):

1) Histograms

2) Kernel Density Estimators

3) K-Nearest Neighbors

IF there is time, we will then discuss Probability density functions (PDF)

4-3



Non-Parametric Models for Bayesian Recognition Lesson 4
Classification with a Ratio of Histograms

Consider an example of K classes of objects where objects are described by a feature,

X, with N possible values from [1, N]. Assume that we have a "training set" of M
samples {X,} along with indicator variables {y,} where the indicator variable is the

class, k, for each training sample.

For each class k, we allocate a histogram, 4,(), with N cells and count the values in

the training set.
VY (X)) <= h(X,)+1
ify =k THEN h (X, )< h (X,)+;, M, < M +1

Then
P(X=x)= %h(x)

1
PX=xlXe(C)=PXlw,)= th(x)
k
and P(w,) can be estimated from the relative size of the training set.

M
P(XEC,)=P(w,)=—*

M
1 M
P(X|w,)P(w,) ﬁh"(x)ﬁk h, (X)
giving: P(w, 1X)= Pk £ = "1 =k
(X) hx) h(X)
M
K
This can also be written as:  P(w, | X) = th& because h(X)= Ehk(X )
N h(X) =

k=1

The ratio of histograms can be represented by a lookup table. P(w, | X)=T(X)

To illustrate, consider an example with 2 classes (K=2) and where X can take on 8
values (N=8, D=1).

7
6
5
4 OClass 2
3 OClass 1
2
1
0
O 1 2 3 4 5 6 7

Recall that the number of cells in the histogram is Q=NP.
Having M >> Q is NECESSARY but NOT Sufficient.
Having M < Q is a guarantee of INSUFFICIENT TRAINING DATA.
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Number of samples required

Problem: Given a feature x, with N possible values, how many observations, M, do
we need for a histogram, /(x), to provide a reliable estimate of probability?

The worst case Root Mean Square error is proportional to 0(%).

This can be estimated by comparing the observed histograms to an ideal parametric
model of the probability density or by comparing histograms of subsets samples to
histograms from a very large sample. Let p(x) be a probability density function. The
RMS (root-mean-square) sampling error between a histogram and the density
function is

Q
Epus = \/ E{(h(X) - p(X))z} ~ O(H)
The worst case occurs for a uniform probability density function.

For most applications, M = 8 Q (8 samples per "cell") is reasonable
(less than 12% RMS error).

So what can you do if M is not >> Q ?
Adapt the size of the cell to the data!

4-5



Non-Parametric Models for Bayesian Recognition Lesson 4
Variable Sized Histogram Cells

Suppose that we have a D-dimensional feature vector X with each feature quantized
to N possible values, and suppose that we represent p(X) as a D-dimensional
histogram h(X). Let us fill the histogram with M training samples {X,}.

Let us define the volume of each cell as 1.
The volume for any block of V cells is V.
Then the volume of the entire space is Q=NP.

If the quantity of training data is too small, ie if M < 8Q, then we can combine
adjacent cells so as to amass enough data for a reasonable estimate.

Suppose we merge V adjacent cells such that we obtain a combined sum of S.

S= Y h(X)

Xev

The volume of the combined cells would be V.

To compute the probability we replace h(X) with é
The probability p(X) for X €V is:

PXEV)=

<|t

1.
M
This is typically wri (%)==

18 18 typically written as: P MV

We can use this equation to develop two alternative non-parametric methods.

Fix V and determine S => Kernel density estimator.
Fix S and determine V => K nearest neighbors.

(note that the symbol “K” is often used for the sum the cells.

This conflicts with the use of K for the number of classes.
Thus we will use the symbol S for the sum of adjacent cells).
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Kernel Density Estimators

For a Kernel density estimator, we represent each training sample with a kernel
function k(X).

Popular Kernel functions include
a hypercube centered of side w
a triangular function with base of w
a sphere of radius w
a Gaussian of standard deviation o.

We can define the function for the hypercube as

_ |1 i |uy|<1/2 foralld=1,...,D
k(i) = ,
otherwise

This is called a Parzen window.
Subtracting a point, Z , centers the Parzen window at that point.
Dividing by w scales the Parzen window to a hyper-cube of side w.

X-7)\ . ) -
k(—z) is a cube of size w® centered at 7 .
w

The M training samples define M overlapping Parzen windows.
For an feature value, X, the probability p(X) is the sum of Parzen windows at X

SE(X X)

The volume of the Parzen window is V =w”.

MV Mw”

-

A Parzen window is discontinuous at the boundaries, creating boundary effects.

1 M
Thus the probability P(X X)=——= E k(

m=1

We can soften this using a triangular function evaluated within the window.
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k(g)={1‘2||u|| if i) <1/2

0 otherwise
Even better is to use a Gaussian kernel with standard deviation o .
2
1 14

_ 2 o2
- D2 ¢ °
2m)"“o

k(u)

R

2
We can note that the volume (or integral) of € 2o is V=2n)""*o

- LI J¥6 3
In this case P( )_MV_Mm=1 A

This corresponds to placing a Gaussian at each training sample and summing the
Tails at X .

The probability for a value X is the sum of the Gaussians.

In fact, we can choose any function k(1) as kernel, provided that

k(ii)=0 and [ k(i)dii =1
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K Nearest Neighbors

For K nearest neighbors, we hold S constant and vary V. (We have used the symbol
S for the number of neighbors, rather than K to avoid confusion with the number of
classes).

For each training sample, )?m, we construct a tree structure (such as a KD Tree) that
allows us to easily find the S nearest neighbors for any point.

To compute p()? ) we need the volume of a sphere in D dimensions that encloses the
nearest S neighbors. Suppose the set of S nearest neighbors is the set { X }.

}

This is D dimensional sphere of radius R=arg- rnax{”f( - X,
{x.}

b
2
Vet R

i

Where I'(D)=(D-1)!
For even D this is easy to evaluate

For odd D, use a table to determine I‘(12)+ 1)

= S
) X)= ——
Then as before: p(X) MV
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Probability Density Functions

A probability density function p(X), is a function of a continuous variable X such that

1) Xis a continuous real valued random variable with values between [—o0, ]

2 [p0-1

Note that p(X) is NOT a number but a continuous function.

A probability density function defines the relatively likelihood for a specific value of
X. Because X is continuous, the value of p(X) for a specific X is infinitely small. To
obtain a probability we must integrate over some range of X.

To obtain a probability we must integrate over some range V of X.

In the case of D=1, the probability that X is within the interval [A, B] is

B
P(X €[A,B]) = [ p(x)dx
A
This integral gives a number that can be used as a probability.

Note that we use upper case P(X €[A,B]) to represent a probability value,
and lower case p(X) to represent a probability density function.

Classification using Bayes Rule can use probability density functions

pXlw,)
p(X)

P(w,) = Kp(XIa)k)

Ep(XM)k)

k=1

P(w, 1 X) = P(w,)

K
rXlo) IS a number, provided that p(X)= E rXlw,)

p(X) k=1

Note that the ratio

Probability density functions are easily generalized to vectors of random variables.
Let X € R”, be a vector random variables.
A probability density function, p(X), is a function of a vector of continuous variables

1) X is a vector of D real valued random variables with values between [—, ]

2) jp()?)d)? -1
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