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 Knowledge Representation in Rule-Based Systems  
 
Most models of human cognition posit some form of "spreading activation" 
(Anderson 83) in which activation energy associates cognitive "units" in short term 
memory with concepts, episodes and procedures in long term memory.   
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Rule-based production systems provide a programmable implementation for this 
model.  
 
Three techniques are commonly used to represent knowledge in a rule-based 
production system  
 
 An interpreted language - for procedural knowledge 
 Schema -  to represent concepts and frames 
 Rules (productions) - for activation of LTM from STM 
 
An interpreted language is a programming language in which instructions are 
interpreted and executed directly at run time, without previous compiling. Interpreted 
programs permit programs to be treated as data and to be modified dynamically.  
The classic interpreted language is LISP. Popular modern languages include Python 
and Java.  
 
Schema are patterns (or templates) for representing concepts or data.  The simplest 
form of schema is a list of data.  A more common form is a named collection of 
attribute-value pairs in which the attributes (or slot) names act as a key for indexing.  
 
Rules associate concepts in short term and long term memory. Rules take their 
inspiration from the observation of conditioned reflexes in animals and humans.   
Rules are also known as productions.  
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Production System Architecture  
 
In a production system, data and concepts in working memory are associated with 
data and procedures in long-term memory.  
 
Rules are encoded as condition-action pairs:  Condition* ⇒ Action* 
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The system implements an "inference engine" that operates as a 3-phase cycle:  
 
The cycle is called the "recognize act" cycle.  
The phases are:   

Match:  match facts in working memory to conditions of rules to produce  
  "activations" (associations of WM and rules). 

Select:  Select an activation for execution.  
Execute:  Execute the actions specified in the activation.  

  
The speed of the inference engine is measured in cycles/second.  



Declarative Knowledge Representation with the CLIPS  

17-4 

The CLIPS Program Interpreter 
The CLIPS interpreter interprets instruction in a Lisp-like pre-fix notation:  
 

(operator data*) 
 

Programs are composed of "expressions" enclosed in parentheses. The first symbol 
after an open parenthesis is an operator. Any remaining symbols are data.  
 
Expressions are data. They can be created dynamically be programs.   
 
Expressions may be composed recursively:  (operator (operator (operator data*))) 
 
CLIPS includes a large number of pre-defined operators. These are described in the 
CLIPS Basic Programming guide.   
 
Any of the predefined operators can be included in the action part of a rule, may be 
used in a user-defined function, or can be entered directly into the interpreter by the 
user.  
 

Deffunctions 
The user may define his own functions with defunction.  
A user defined function returns a value. This may be a string, symbol, number or any 
primitive.   
Syntax: 
(deffunction <name> [<comment>] 
 (<regular-parameter>* [<wildcard-parameter>]) 
 <action>*) 
 
<regular-parameter> ::= <single-field-variable> 
<wildcard-parameter> ::= <multifield-variable> 

 
examples :  
(deffunction my-function (?x) 
 (printout t "The argument is " ?x crlf) 
) 
 
(my-function foobar) 
(deffunction test (?a ?b)  
  (+ ?a ?b) (* ?a ?b)) 
 
(test 3 2) 
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(deffunction distance (?x1 ?y1 ?x2 ?y2) 
 (bind  ?dx (- ?x1 ?x2)) 
 (bind  ?dy (- ?y1 ?y2)) 
 (sqrt (+ (* ?dx ?dx) (* ?dy ?dy))) 
) 
 
In the action part (or RHS) the rule contains a sequence of actions.  
Any command recognized by the interpreter can be placed in the action part of a rule. 
 
(defrule calculate-distance 
 (point ?x1 ?y1) 
 (point ?x2 ?y2) 
=> 
(assert  
 (distance (distance ?x1 ?y1 ?x2 ?y2))) 
) 

Bind, Read and Read-Line 
New variables can be defined and assigned with bind:  (bind ?x 0).  
If the variable has not previously been defined, it is automatically created.  
The scope (domain of definition) of the variable is the current rule or objects.  
 
Values may be read from a file or from ttyin by read and readline.   
Read will read a single symbol.   
Read-line reads all characters to the next carriage return and returns a string.  
 
example :  
(defrule ask-user 
 (person) 
=>  
 (printout t "first name? ") 
 (bind ?surname (read)) 
 (printout t "Family name? ") 
 (assert (person ?surname (read))) 
 (printout t "Why are you creating this person? ") 
 (bind ?string (readline)) 
) 
Both Read and Readline are operators.  
They must be preceded and terminated by “(“ and “)”.  
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The RETE Matching Algorithm 
 
In a production system, in principle, each condition element of each rule requires a 
complete scan of the working memory during each cycle of execution. This can be 
very costly.  The RETE algorithm avoids this by providing incremental matching 
between facts and conditions of rule.  
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RETE is an incremental matching algorithm. The word RETE is Latin for "network".  
RETE operates by compiling the rules into a decision network.  
The inputs to the algorithm are changes to working memory.  
The outputs are changes to the agenda.  
 
The working memory can only be changed by the commands assert, retract, modify 
or reset.  Modify can be implemented as retract then assert. Reset clears all facts.  
 
Changes in working memory filter through this decision network generate changes to 
the agenda.    
 
The condition (LHS) part of a rule is composed of a list of Condition Elements (CEs) 
Each CE can be considered as a form of filter for a certain type of facts.  
The type is the type defined by the template, or the first symbol of the fact.   
Groups of CEs for the same type are grouped into a sub-network.  
 
For example, consider :  
 (deftemplate person 
  (slot family-name) 
  (slot first-name) 
 ) 
(defrule Same-name 
 ?P1 <- (person (family-name ?f)(first-name ?n1)) 
 ?P2 <- (person (family-name ?f)(first-name ?n2&~?n1)) 
  
=> 
 (printout t  ?n1 " " ?f" and  " ?n2 " " ?f " have the 
same family name" crlf) 



Declarative Knowledge Representation with the CLIPS  

17-7 

 
 
 

∆facts 

?f1 <- FamilyName ?n1=Firstname 

?n2=Firstname ?f1<-FamilyName 
Same-Name 

Facts 

Facts 

Junction Node 

?n2≠?n1 

 
The network dispatches each change in working memory (facts) to the filter group for 
the "type" of the fact.  
 
Algorithmic Complexity of RETE:  
 
Given:  P: Number of rules 
  C: Average number of CEs in a rule 
  W: Number of facts 
 
 The algorithmic complexity of the recognize act cycle is:  
 Best case:  O(Log(P)) 
 Average Case O(PW) 
 Worst Case:  O(PWc) 
 
The worst case happens when there are many variables to match.  
For simple rule bases with few variable matches, computation and memory grow 
slightly faster than linear.   
 
Programs with thousands of rules and tens of thousands of facts are practical, using 
even simple embedded computing hardware.  
 
 



Declarative Knowledge Representation with the CLIPS  

17-8 

Salience  
 
The salience property for a rule determines its priority.  
Salient rules are given higher priority in the agenda.  
 
Salience is "declared" in the [<declaration>] part of the LHS, before the CE's 
 
(defrule <rule-name> [<comment>] 
 [<declaration>]   ; Rule Properties 
 <conditional-element>*  ; Left-Hand Side (LHS) 
=>  
 <action>*)    ; Right-Hand Side (RHS) 
 
(declare (salience S))  where   -10 000 < S < 10 000 
by default S is 0.  
 
(defrule example 
  (declare (salience 999)) 
  (initial-fact) 
 => 
  (printout "I am an important rule! Salience= 999" crlf) 
) 
 
There is a tendency for beginners to abuse salience in order to force the order of rule 
execution.  Don't! Rules should be structured with contexts.  
If the system is well constructed, rule execution order is not important and  only a 
few saliencies are needed.  A well-constructed program should need only 3 or 4 
salience. At most 7 may be needed.  
 
Salience Hierarchy:  
Different styles of programs can require different hierarchies of salience.  
A good practice is to declare the hierarchy in advance, using multiples of 100.  
An example is the following:  
 Level  Salience 
 Constraints 300 ;; Rules that eliminate hypotheses  
 Expertise  200 ;;  Domain knowledge 
 Query  100  ;;  Rules that interrogate the user 
 Control     0   ;;  Context transitions 
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Contexts and Control Elements  
 
A popular programming technique is to organise sets of rules into "contexts".  
Contexts are indicated by the existence of a token: an element in the facts list that 
indicates the current context.   
 
 (context  <Name of the context>) 
 
A classic example is a self-monitoring and self-repair system used for satellites and 
space applications.  Such systems typically operate in cycle with 3 contexts:  
 
Fault-Detection:  A set of rules that test the integrity of subsystems 
Fault-Diagnosis:  A set of rules that determine the origin of an error.  
Fault-Repair: A set of rules that reconfigure the system to repair a fault.  
 

 

Fault Detection Fault Diagnosis Fault Repair 
 

A “context” element activates the rules of each context, and de-activates all others.  
Control rules manage the transitions between contexts.  These can be implicit or 
declarative. For example:  
 
(defrule detection-to-diagnosis 
 (declare (salience -10)) 
 ?context <- (context detection)  
 (fault ?f detected)   
=> 
 (retract ?context) 
 (assert (context diagnosis)) 
 (printout t "Fault " ?f " detected!" crlf) 
) 
 
Each context contains a collection of rules for domain knowledge that diagnosis and 
suggest a repair for the fault.  A salience hierarchy assures transition to the next 
context after execution of all of the domain knowledge rules.  
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Declarative Control Structures 
 
An alternative to coding the context transitions in explicit rules, is to encode the 
context transitions in a declarative data structure and use a single generic transition 
rule.   
 
(deffacts control-list 
 (context detection) 
 (next-context detection diagnosis) 
 (next-context diagnosis repair) 
 (next-context repair detection) 
) 
 
(defrule context transition rule.  
 (declare (salience -10)) 
 ?P <- (context ?context) 
 (next-context ?context ?next) 
=> 
 (retract ?P) 
 (assert (context ?next)) 
) 
 
This is an example of a DECLARATIVE representation of control knowledge.  
Declarative structures make it possible to treat knowledge representations as data for 
calculation.  A declarative representation can be used as data to reason about 
knowledge. 
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 Representing Frames with Objects  
 
Frames are schema with procedures that perform actions to complete slots.   
CLIPS provides an object oriented programming system for declaring frames.  
 
CLIPS object classes are declared with a Defclass statement: 
 
BNF:  

(defclass <name> [<comment>] 
  (is-a <superclass-name>+) 
  [<role>] 
  [<pattern-match-role>] 
  <slot>* 
  <handler-documentation>*) 

 
example:  
 
(defclass PERSON (is-a USER) (role concrete) 
 (slot FAMILY (create-accessor read-write))  
 (slot FIRST-NAME (create-accessor read-write)) 
) 
 
(1) A (defclass) must have a class name, <class>. 
(2) There must be at least one superclass name, <superclass>, that follows the is-a. 
(3) A (defclass) has zero or more slots. 
(4) Each slot has zero or more facets; <facet>, that describe the characteristics of the 
slot. 
 
An object is an instance of a class, created with “make-instance”. 
 
CLIPS> (make-instance of PERSON) 
[gen1] 
 
In this case the function make-instance generates a new name for the PERSON 
 
CLIPS> (make-instance John of PERSON) 
[John] 
  
In this case, make-instance assigns the name John to the PERSON.  
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In clips, we can see all the details describing a class with describe-class:  
 
(describe-class PERSON) 
 
********************************************************* 
Concrete: direct instances of this class can be created. 
Reactive: direct instances of this class can match 
defrule patterns. 
 
Direct Superclasses: USER 
Inheritance Precedence: PERSON USER OBJECT 
Direct Subclasses: 
--------------------------------------------------------- 
SLOTS      : FLD DEF PRP ACC STO MCH SRC VIS CRT OVRD-MSG     
SOURCE(S) 
FAMILY     : SGL STC INH RW  LCL RCT EXC PRV RW  put-
FAMILY   PERSON 
FIRST-NAME : SGL STC INH RW  LCL RCT EXC PRV RW  put-
FIRST-NA PERSON 
 
Constraint information for slots: 
 
SLOTS      : SYM STR INN INA EXA FTA INT FLT 
FAMILY     :  +   +   +   +   +   +   +   +  RNG:[-
oo..+oo]  
FIRST-NAME :  +   +   +   +   +   +   +   +  RNG:[-
oo..+oo]  
--------------------------------------------------------- 
Recognized message-handlers: 
init primary in class USER 
delete primary in class USER 
create primary in class USER 
print primary in class USER 
direct-modify primary in class USER 
message-modify primary in class USER 
direct-duplicate primary in class USER 
message-duplicate primary in class USER 
get-FAMILY primary in class PERSON 
put-FAMILY primary in class PERSON 
get-FIRST-NAME primary in class PERSON 
put-FIRST-NAME primary in class PERSON 
********************************************************* 
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Class hierarchy 
 
Classes are defined hierarchically using inheritance. Inheritance provides a child 
class with slots and methods from parent classes. 
All user-defined classes are derived to class USER.  
Inheritance is described by a   "class precedence list"  
 
Example:  
(defclass PERSON (is-a  USER) (slot NAME) (slot FAMILY)) 
(defclass STUDENT (is-a PERSON) (slot SCHOOL)) 
(defclass EMPLOYEE (is-a PERSON) (slot EMPLOYER)) 
(defclass THESARD (is-a STUDENT  EMPLOYEE) (slot THESIS-SUBJECT)) 
 
Subclasses inherit the slots and methods of parent classes.  
 
CLIPS supports multiple inheritance: classes inherit from multiple super-classes  
 
Abstract and Concrete Classes:  
 
CLIPS classes can be abstract or concrete.  Instances may be created only for 
concrete classes. Abstract classes are only used to define other classes.  
By default, classes are "abstract".  
 
To use a class to make an object it must be declared as concrete with a statement.  
(role concrete) 
 
(defclass ENSI (is-a STUDENT) (role concrete)  

(slot NATIONALITY (default FRENCH)) 
(slot SCHOOL (default ENSIMAG)) 

) 
(make-instance Jean of ENSI (NAME "Jean")) 
 

Message Handlers 
Slots are accessed (read, write and init) with handlers.  
 
 put-<slot> set the value of a slot 
 get-<slot> read the value of a slot 
 init-<slot>  Initialise the value for a slot   
 
Handlers must be explicitly created using “create-accessor” 
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(defclass PERSON (is-a  USER)  

(slot NAME (create-accessor read-write))  
(slot FAMILY (create-accessor read-write)) 

) 
(defclass STUDENT (is-a PERSON)  

(slot SCHOOL (create-accessor read-write))) 
(defclass ENSI (is-a STUDENT) (role concrete)  

(slot NATIONALITY (default FRENCH) (create-accessor read-write)) 
(slot SCHOOL (default ENSIMAG) (create-accessor read)) 

) 
 
(make-instance Jean of ENSI (NAME "Jean") (NATIONALITY French)) 
 
Objects can be accessed with send 
 
(send [Jean] put-FAMILY "Dupont") 
(send [Jean] get-NATIONALITY) 
(send [Jean] get-SCHOOL) 
 
when (create-accessor read) is declared for a slot, a "get" handler is created.   
 
(defmessage-handler <class> get-<slot-name> primary () 
 ?self:<slot-name>) 
 
when (create-accessor write) is declared in for a slot, a "put" handler is created.   
 
(defmessage-handler <class> put-<slot-name> primary (?value) 
 (bind ?self:<slot-name> ?value) 
 
or, if this is a multi-slot.  
 
(defmessage-handler <class> put-<slot-name> primary ($?value) 
 (bind ?self:<slot-name> $?value) 
 
Message handlers are used to construct procedures that can complete the slots of a 
frame.  
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?Self 
 
consider :  (send [OBJ] function) the object [OBJ] is said to be the "active" object. 
 
Within a message handler, the variable ?self provides the address of the active object.  
This permits directs access to slots and enables calculation.  
 
For example:  
 
(defclass THING  (is-a USER) (role concrete) 
   (slot NAME (create-accessor read-write) (default A)) 
) 
 
(defmessage-handler THING ask-name () 
   (?self:NAME) 
) 
 
?self  provides direct access to slots with the notation :  ?self:<slot-name>. 
This allows access without using the message passing mechanism.   
 
(defmessage-handler THING return-name () 
   ?self:NAME) 
 
(defclass THING  (is-a USER) (role concrete) 
   (slot NAME (create-accessor read-write) (default A)) 
 (slot PTR (create-accessor read-write)) 
) 
 
(make-instance A of THING (NAME A)) 
(make-instance B of THING (NAME B) (PTR [A])) 
 
(defmessage-handler THING return-name () 
   (send ?self:PTR get-NAME) 
) 
 
CLIPS> (send [B] return-name) 
A 
 
NOTE:  You should never need to write:  
 (bind ?NAME (send ?self get-NAME)) 

or even   (bind ?NAME ?self:NAME) 
 
Use   (?self:NAME) 
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Activating rules with objects 
 
Rules and Classes provide complementary tools for knowledge representation.  
Objects (class-instances) are not part of the Facts list. However, since version 6 of 
CLIPS it is possible to activate rules with objects, as if the objects were Facts in 
working memory.  
   
This is made possible by declaring the class to be  "(pattern-match reactive)".  
For example :  

 
(defclass A (is-a USER) 
   (role concrete) 
   (pattern-match reactive) 
   (slot foo  (create-accessor write) 
   ) 
) 
 
(make-instance a of A) 

 
Assertion or retraction of objects of this class are sent to the RETE network.  
The matching template is "object", with the template type defined by a default slot: 
"is-a".  
 

(defrule test-for-A 
   ?ins <- (object (is-a A)) 
=>  
   (printout t "Object " ?ins " is a member of class A" crlf) 
) 
 

We can even discover the class name:  
 

(defrule test-for-A 
   ?ins <- (object (is-a ?A)) 
=>  
   (printout t "Object " ?ins " is a member of class " ?A crlf) 

 ) 
 
The slots of the object are available for condition elements as with templates.  
 

(defrule print-A-foo 
   ?ins <- (object (is-a A) (foo ?f&~nil)) 
=>  
   (printout t "Object " ?ins " foo = " ?f crlf) 
) 
(run) 
(send [a] put-foo bar) 
(run) 
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Thus rules can be used to initialize an object structure.   
 

(defclass PERSON (is-a USER) (role concrete) 
 (pattern-match reactive) 
 (slot FAMILY  (create-accessor read-write)) 
 (slot NAME  (create-accessor read-write)) 
 (slot AGR (create-accessor read-write)) 
 (multislot ADDRESS (create-accessor read-write)) 
) 

 
(defrule Ask-Family-Names 
   ?ins <- (object (is-a PERSON) (FAMILY nil)) 
=>  
   (printout t "What is the family of "?ins "? ") 
   (send ?ins put-FAMILY (read)) 
) 
 
(defrule demande-fname 
   ?ins <- (object (is-a PERSON) (NAME nil)) 
=>  
   (printout t "What is the First Name of "?ins "? ") 
   (send ?ins put-NAME (read)) 
) 
 
(make-instance [Fred] of PERSON) 
(make-instance [Bob] of PERSON (NAME Bob)) 
(run) 

 
Rules can be applied to objects regardless of their class.  
A rule can determine the value of the class from the is-a slot.   
 

(defclass STUDENT (is-a USER) (role concrete) 
 (pattern-match reactive) 
 (slot family  (create-accessor read-write)) 
 (slot fname  (create-accessor read-write)) 
 (slot age (create-accessor read-write)) 
 (slot option (create-accessor read-write)) 
 (slot promo (create-accessor read-write)) 
) 
 
 
(make-instance [Bob] of PERSON (fname Bob) (family Barker) (age 
20)) 
(make-instance  [B] of STUDENT (fname Bob) (family Barker)) 
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;; 
;; Determine the class of an objet 
;; 
 
(defrule determine-class 
   ?o <- (object (is-a ?c)) 
=>  
  (printout t "The object " ?o " is of class "?c "." crlf) 
) 
;; 
;; Rules can complete values for objects.  
;; 
 
(defrule determine-age 
   ?o1 <- (object (family ?f&~nil) (fname ?p&~nil) (age 
?a&~nil)) 
   ?o2 <- (object (is-a ?c) (family ?f) (fname ?p) (age nil)) 
=>  
  (send ?o2 put-age ?a) 
  (printout t "assign age " ?a " for ") 
  (printout t  ?c" " ?p " " ?f "." crlf) 

 
 


