
Sequence Modeling: Recurrent Neural Networks

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier)

Intelligent Systems: Reasoning and Recognition

20 March 2018

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 1 / 39



Reference Book

Deep Learning
Ian Goodfellow and Yoshua Bengio and Aaron Courville

MIT Press
2016

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 2 / 39



Table of Contents

1 Examples of Sequences

2 Recurrent Neural Networks

3 Bidirectional Recurrent Neural Networks

4 Encoder-Decoder Sequence-to-Sequence Architectures

5 Deep Recurrent Networks

6 Long-Term Dependencies

7 Long Short-Term Memory and Other Gated RNNs

8 Optimization for Long-Term Dependencies

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 3 / 39



Examples of Sequences

Examples of Sequence Tasks

Speech Recognition
Speech ! text

Music generation
; ! notes

Sentiment Analysis
”It’s a good purchase, I would recommend to a friend.” ! ⇤ ⇤ ⇤ ⇤ ⇤

Machine translation
”the cat is on the rug” ! ”le chat est sur le tapis”

Named entity recognition
”Hawking was born in Oxford” ! ”Hawking was born in Oxford”

Time series forecasting

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 4 / 39



Recurrent Neural Networks

Recurrent Neural Networks (RNNs)

Specialized for processing a sequence x(1), . . . , x(⌧)

RNNs can scale to longer sequence than networks without sequence-based
specialization

Parameter sharing across di↵erent parts of a model enables to extend to
di↵erent forms and generalize

For RNNs sharing parameters across time and generalize to di↵erent length
of sequences

Example:
”I went to Nepal in 2009”
”In 2009, I went to Nepal”

A feedforward network for a fixed sized sentence can learn rules separately at
each position

A RNN share same weights across several time steps

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 5 / 39



Recurrent Neural Networks

Recurrent Neural Networks (RNNs)

Parameter sharing with the convolution across 1-D temporal sequence

Basis for time-delay networks
Parameter sharing across time but shallow
Output is a function of neighbouring members
Using same convolution kernel at each time step

For RNNs output is a function of previous members of output

Output members are produced using the same update rule

Recurrent parameter sharing leads to a deep computational graph

A sequence x(t)

Time index t 2 [1, . . . , ⌧ ]
In practice, minibatches of sequences with di↵erent length ⌧
Time might refer to a position in the sequence

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 6 / 39



Recurrent Neural Networks

Unfolding Computational Graphs

A computational graph formalizes the structure of a set of computations including
mapping inputs and parameters to outputs and loss
unfolding a recurrent/recursive computation to computational graph with a
repetitive structure
Classical form of dynamical system:

s(t) = f (s(t�1); ✓)

where s(t) is the state of the system

(Goodfellow 2016)

Classical Dynamical Systems

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

10.1 Unfolding Computational Graphs

A computational graph is a way to formalize the structure of a set of computations,
such as those involved in mapping inputs and parameters to outputs and loss.
Please refer to section 6.5.1 for a general introduction. In this section we explain
the idea of unfolding a recursive or recurrent computation into a computational
graph that has a repetitive structure, typically corresponding to a chain of events.
Unfolding this graph results in the sharing of parameters across a deep network
structure.

For example, consider the classical form of a dynamical system:

s(t) = f(s(t�1); �), (10.1)

where s(t) is called the state of the system.
Equation 10.1 is recurrent because the definition of s at time t refers back to

the same definition at time t � 1.
For a finite number of time steps ⌧ , the graph can be unfolded by applying

the definition ⌧ � 1 times. For example, if we unfold equation 10.1 for ⌧ = 3 time
steps, we obtain

s(3) =f(s(2); �) (10.2)

=f(f(s(1); �); �) (10.3)

Unfolding the equation by repeatedly applying the definition in this way has
yielded an expression that does not involve recurrence. Such an expression can
now be represented by a traditional directed acyclic computational graph. The
unfolded computational graph of equation 10.1 and equation 10.3 is illustrated in
figure 10.1.

s(t�1)s(t�1) s(t)s(t) s(t+1)s(t+1)

ff
s(... )s(... ) s(... )s(... )

ff ff ff

Figure 10.1: The classical dynamical system described by equation 10.1, illustrated as an
unfolded computational graph. Each node represents the state at some time t and the
function f maps the state at t to the state at t + 1. The same parameters (the same value
of � used to parametrize f) are used for all time steps.

As another example, let us consider a dynamical system driven by an external
signal x(t),

s(t) = f(s(t�1), x(t); �), (10.4)
375

Figure 10.1
Figure 1: Unfolded computational graph of classical dynamical system1.

1I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 7 / 39

http://www.deeplearningbook.org


Recurrent Neural Networks

Unfolding Computational Graphs

Classical form of dynamical system:

s(t) = f (s(t�1); ✓)

(Goodfellow 2016)

Classical Dynamical Systems

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

10.1 Unfolding Computational Graphs

A computational graph is a way to formalize the structure of a set of computations,
such as those involved in mapping inputs and parameters to outputs and loss.
Please refer to section 6.5.1 for a general introduction. In this section we explain
the idea of unfolding a recursive or recurrent computation into a computational
graph that has a repetitive structure, typically corresponding to a chain of events.
Unfolding this graph results in the sharing of parameters across a deep network
structure.

For example, consider the classical form of a dynamical system:

s(t) = f(s(t�1); �), (10.1)

where s(t) is called the state of the system.
Equation 10.1 is recurrent because the definition of s at time t refers back to

the same definition at time t � 1.
For a finite number of time steps ⌧ , the graph can be unfolded by applying

the definition ⌧ � 1 times. For example, if we unfold equation 10.1 for ⌧ = 3 time
steps, we obtain

s(3) =f(s(2); �) (10.2)

=f(f(s(1); �); �) (10.3)

Unfolding the equation by repeatedly applying the definition in this way has
yielded an expression that does not involve recurrence. Such an expression can
now be represented by a traditional directed acyclic computational graph. The
unfolded computational graph of equation 10.1 and equation 10.3 is illustrated in
figure 10.1.

s(t�1)s(t�1) s(t)s(t) s(t+1)s(t+1)

ff
s(... )s(... ) s(... )s(... )

ff ff ff

Figure 10.1: The classical dynamical system described by equation 10.1, illustrated as an
unfolded computational graph. Each node represents the state at some time t and the
function f maps the state at t to the state at t + 1. The same parameters (the same value
of � used to parametrize f) are used for all time steps.

As another example, let us consider a dynamical system driven by an external
signal x(t),

s(t) = f(s(t�1), x(t); �), (10.4)
375

Figure 10.1
Figure 2: Unfolded computational graph of classical dynamical system2.

For finite ⌧ time steps, we can unfold by the same definition ⌧ � 1 times
For ⌧ = 3 time steps:

s(3) = f (s(2); ✓)

= f (f (s(1); ✓); ✓)

2I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 8 / 39

http://www.deeplearningbook.org


Recurrent Neural Networks

Unfolding Computational Graphs

Another dynamical system driven by an external signal x(t)

s(t) = f (s(t�1), xt ; ✓)

Any function with recurrence can be considered a recurrent network
Rewriting above equation using variable h, hidden units

h(t) = f (h(t�1), x(t); ✓)

(Goodfellow 2016)

Unfolding Computation 
Graphs

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.
Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially
any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state:

h(t) = f(h(t�1), x(t); �), (10.5)
illustrated in figure 10.2, typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h(t) as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x(t), x(t�1), x(t�2), . . . , x(2), x(1)) to a fixed length vector h(t). Depending on the
training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is used
in statistical language modeling, typically to predict the next word given previous
words, it may not be necessary to store all of the information in the input sequence
up to time t, but rather only enough information to predict the rest of the sentence.
The most demanding situation is when we ask h(t) to be rich enough to allow
one to approximately recover the input sequence, as in autoencoder frameworks
(chapter 14).

ff

hh

xx

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

h(... )h(... ) h(... )h(... )

ff

Unfold
ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left)Circuit diagram. The black square indicates a delay of a single time
step. (Right)The same network seen as an unfolded computational graph, where each
node is now associated with one particular time instance.

Equation 10.5 can be drawn in two different ways. One way to draw the RNN
is with a diagram containing one node for every component that might exist in a

376

Figure 10.2
Figure 3: An RNN with no output3.

where has information about the whole sequence
3I Goodfellow, Y Bengio, and A Courville. Deep Learning.

http://www.deeplearningbook.org. MIT Press, 2016.
Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 9 / 39

http://www.deeplearningbook.org


Recurrent Neural Networks

Unfolding Computational Graphs

(Goodfellow 2016)

Unfolding Computation 
Graphs

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.
Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially
any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state:

h(t) = f(h(t�1), x(t); �), (10.5)
illustrated in figure 10.2, typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h(t) as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x(t), x(t�1), x(t�2), . . . , x(2), x(1)) to a fixed length vector h(t). Depending on the
training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is used
in statistical language modeling, typically to predict the next word given previous
words, it may not be necessary to store all of the information in the input sequence
up to time t, but rather only enough information to predict the rest of the sentence.
The most demanding situation is when we ask h(t) to be rich enough to allow
one to approximately recover the input sequence, as in autoencoder frameworks
(chapter 14).

ff

hh

xx

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

h(... )h(... ) h(... )h(... )

ff

Unfold
ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left)Circuit diagram. The black square indicates a delay of a single time
step. (Right)The same network seen as an unfolded computational graph, where each
node is now associated with one particular time instance.

Equation 10.5 can be drawn in two different ways. One way to draw the RNN
is with a diagram containing one node for every component that might exist in a

376

Figure 10.2where

has information about the whole sequence

Circuit diagram (left)

e.g. biological neural network

Black square indicates a delay of a single time step, from state t to t + 1

Unfolded graph (right) maps a circuit to a computational graph with
repeated parts

Unfolded graph size depends on the sequence length

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 10 / 39



Recurrent Neural Networks

Unfolding Computational Graphs

h(t) = f (h(t�1), x(t); ✓)

For a task requiring predicting the future from the past,

h(t) becomes a kind of lossy summary
h(t) is a fixed-length vector mapping from arbitrary length sequence
(x(t), x(t�1), . . . , x(1))
Depending on the training criterion, selectively keep some aspects
Ex: statistical language modeling predict next word given previous words
Most challenging recovering input sequence from h(t), e.g. autoencoders

(Goodfellow 2016)

Unfolding Computation 
Graphs

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.
Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially
any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state:

h(t) = f(h(t�1), x(t); �), (10.5)
illustrated in figure 10.2, typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h(t) as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x(t), x(t�1), x(t�2), . . . , x(2), x(1)) to a fixed length vector h(t). Depending on the
training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is used
in statistical language modeling, typically to predict the next word given previous
words, it may not be necessary to store all of the information in the input sequence
up to time t, but rather only enough information to predict the rest of the sentence.
The most demanding situation is when we ask h(t) to be rich enough to allow
one to approximately recover the input sequence, as in autoencoder frameworks
(chapter 14).

ff

hh

xx

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

h(... )h(... ) h(... )h(... )

ff

Unfold
ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left)Circuit diagram. The black square indicates a delay of a single time
step. (Right)The same network seen as an unfolded computational graph, where each
node is now associated with one particular time instance.

Equation 10.5 can be drawn in two different ways. One way to draw the RNN
is with a diagram containing one node for every component that might exist in a

376

Figure 10.2
Figure 4: An RNN with no output4.

4I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 11 / 39

http://www.deeplearningbook.org


Recurrent Neural Networks

Unfolding Computational Graphs

(Goodfellow 2016)

Unfolding Computation 
Graphs

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.
Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially
any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state:

h(t) = f(h(t�1), x(t); �), (10.5)
illustrated in figure 10.2, typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h(t) as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x(t), x(t�1), x(t�2), . . . , x(2), x(1)) to a fixed length vector h(t). Depending on the
training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is used
in statistical language modeling, typically to predict the next word given previous
words, it may not be necessary to store all of the information in the input sequence
up to time t, but rather only enough information to predict the rest of the sentence.
The most demanding situation is when we ask h(t) to be rich enough to allow
one to approximately recover the input sequence, as in autoencoder frameworks
(chapter 14).

ff

hh

xx

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

h(... )h(... ) h(... )h(... )

ff

Unfold
ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left)Circuit diagram. The black square indicates a delay of a single time
step. (Right)The same network seen as an unfolded computational graph, where each
node is now associated with one particular time instance.

Equation 10.5 can be drawn in two different ways. One way to draw the RNN
is with a diagram containing one node for every component that might exist in a

376

Figure 10.2Unfolded recurrence after t steps with a function g

(t)

h(t) = g

(t)(x(t), x(t�1), . . . , x(2), x(1))

= f (h(t�1), x(t); ✓)

g

(t) takes whole past sequence (x(t), x(t�1), . . . , x(2), x(1)) and produce
current state

Unfolded recurrent structure factorize g

(t) into repeated f

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 12 / 39



Recurrent Neural Networks

Unfolding Computational Graphs

(Goodfellow 2016)

Unfolding Computation 
Graphs

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.
Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially
any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state:

h(t) = f(h(t�1), x(t); �), (10.5)
illustrated in figure 10.2, typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

When the recurrent network is trained to perform a task that requires predicting
the future from the past, the network typically learns to use h(t) as a kind of lossy
summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence
(x(t), x(t�1), x(t�2), . . . , x(2), x(1)) to a fixed length vector h(t). Depending on the
training criterion, this summary might selectively keep some aspects of the past
sequence with more precision than other aspects. For example, if the RNN is used
in statistical language modeling, typically to predict the next word given previous
words, it may not be necessary to store all of the information in the input sequence
up to time t, but rather only enough information to predict the rest of the sentence.
The most demanding situation is when we ask h(t) to be rich enough to allow
one to approximately recover the input sequence, as in autoencoder frameworks
(chapter 14).

ff

hh

xx

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

h(... )h(... ) h(... )h(... )

ff

Unfold
ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left)Circuit diagram. The black square indicates a delay of a single time
step. (Right)The same network seen as an unfolded computational graph, where each
node is now associated with one particular time instance.

Equation 10.5 can be drawn in two different ways. One way to draw the RNN
is with a diagram containing one node for every component that might exist in a

376

Figure 10.2Unfolding process:
+ Regardless of sequence length model has fixed input size (since specified in
terms of state transitions)
+ Use of same transition function f with the same parameters at every time
step

These two factors enables to learn a single shared model

Generalization to sequence lengths not observed in training
Able to train with fewer examples required without than parameter sharing

Recurrent graph is succinct

Unfolded graph is explicit and illustrates information flow in forward and
backward in time

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 13 / 39



Recurrent Neural Networks

Recurrent Neural Networks

Important design patterns:
1 An output at each time step and recurrent connections between hidden units
2 An output at each time step and recurrent connections only from the output

at one time step to hidden units at the next time step
3 Recurrent connections between hidden units and a single output after reading

the entire sequence

(Goodfellow 2016)

Recurrent Hidden Units

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of section 10.1, we
can design a wide variety of recurrent neural networks.

UU

VV

WW

o(t�1)o(t�1)

hh

oo

yy

LL

xx

o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

WWWW WW WW

h(... )h(... ) h(... )h(... )

VV VV VV

UU UU UU

Unfold

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y. When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Equation 10.8 defines forward propagation in this model. (Left)The
RNN and its loss drawn with recurrent connections. (Right)The same seen as an time-
unfolded computational graph, where each node is now associated with one particular
time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

378

Figure 10.3
Figure 5: Recurrent hidden units5.

5I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 14 / 39

http://www.deeplearningbook.org


Recurrent Neural Networks

Recurrent Neural Networks

(Goodfellow 2016)

Sequence Input, Single Output

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

because it lacks hidden-to-hidden recurrent connections. For example, it cannot
simulate a universal Turing machine. Because this network lacks hidden-to-hidden
recurrence, it requires that the output units capture all of the information about
the past that the network will use to predict the future. Because the output units
are explicitly trained to match the training set targets, they are unlikely to capture
the necessary information about the past history of the input, unless the user
knows how to describe the full state of the system and provides it as part of the
training set targets. The advantage of eliminating hidden-to-hidden recurrence
is that, for any loss function based on comparing the prediction at time t to the
training target at time t, all the time steps are decoupled. Training can thus be
parallelized, with the gradient for each step t computed in isolation. There is no
need to compute the output for the previous time step first, because the training
set provides the ideal value of that output.

h(t�1)h(t�1)

W h(t)h(t) . . .. . .

x(t�1)x(t�1) x(t)x(t) x(...)x(...)

W W

U U U

h(⌧)h(⌧)

x(⌧)x(⌧)

W

U

o(⌧)o(⌧)y(⌧)y(⌧)

L(⌧)L(⌧)

V

. . .. . .

Figure 10.5: Time-unfolded recurrent neural network with a single output at the end
of the sequence. Such a network can be used to summarize a sequence and produce a
fixed-size representation used as input for further processing. There might be a target
right at the end (as depicted here) or the gradient on the output o(t) can be obtained by
back-propagating from further downstream modules.

Models that have recurrent connections from their outputs leading back into
the model may be trained with teacher forcing. Teacher forcing is a procedure
that emerges from the maximum likelihood criterion, in which during training the
model receives the ground truth output y(t) as input at time t + 1. We can see
this by examining a sequence with two time steps. The conditional maximum

382

Figure 10.5
Figure 6: Time-unfolded RNN with a single output at the end6.

6I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 15 / 39

http://www.deeplearningbook.org


Recurrent Neural Networks

Recurrent Neural Networks

An RNN outputs at each time step with recurrent connections between hidden
units

(Goodfellow 2016)

Recurrent Hidden Units

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of section 10.1, we
can design a wide variety of recurrent neural networks.

UU

VV

WW

o(t�1)o(t�1)

hh

oo

yy

LL

xx

o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

WWWW WW WW

h(... )h(... ) h(... )h(... )

VV VV VV

UU UU UU

Unfold

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y. When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Equation 10.8 defines forward propagation in this model. (Left)The
RNN and its loss drawn with recurrent connections. (Right)The same seen as an time-
unfolded computational graph, where each node is now associated with one particular
time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

378

Figure 10.3
Figure 7: Recurrent hidden units7.

7I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 16 / 39

http://www.deeplearningbook.org


Recurrent Neural Networks

Recurrent Neural Networks

An RNN outputs at each time step with recurrent connections between hidden
units

a(t) = b+Wh(t�1) +Ux(t)

h(t) = tanh(a(t))

o(t) = c+ Vh(t)

ŷ(t) = softmax(o(t))

b, c are biases, weight matrices U (input-to-hidden), W (hidden-to-hidden), V
(hidden-to-output)
Total loss between sequence of x and corresponding sequence of y:

L

✓
{x(1), . . . , x(⌧)}, {y(1), . . . , y(⌧)}

◆

=
X

t

L

(t)

= �
X

t

log pmodel

✓
y

(t)|{x(1), . . . , x(t)}
◆

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 17 / 39



Recurrent Neural Networks

Recurrent Neural Networks

An RNN outputs at each time step with recurrent connections between hidden
units

L

✓
{x(1), . . . , x(⌧)}, {y(1), . . . , y(⌧)}

◆
=
X

t

L

(t)

= �
X

t

log pmodel

✓
y

(t)|{x(1), . . . , x(t)}
◆

L

(t) negative log-likelihood of y (t) given x(1), . . . , x(t)

Computing gradient of this loss function expensive

Forward propagation pass, backward propagation pass

Runtime O(⌧) and cannot be reduced with parallelization

Memory O(⌧)

Back-propagation applied to unrolled graph with O(⌧)
back-propagation through time (BPTT)

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 18 / 39



Recurrent Neural Networks

Recurrent Neural Networks

An RNN outputs at each time step with recurrent connections from output to
next step hidden units

- strictly less powerful without hidden-to-hidden recurrence
- output has to capture all past history
+ training can be parallelized with gradient computed in isolation

For training teacher forcing can be used

(Goodfellow 2016)

Recurrence through only the Output

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

U

V
W

o(t�1)o(t�1)

hh

oo

yy

LL

xx

o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

WW W W
o(... )o(... )

h(... )h(... )

V V V

U U U

Unfold

Figure 10.4: An RNN whose only recurrence is the feedback connection from the output
to the hidden layer. At each time step t, the input is xt, the hidden layer activations are
h(t), the outputs are o(t), the targets are y(t) and the loss is L(t). (Left)Circuit diagram.
(Right)Unfolded computational graph. Such an RNN is less powerful (can express a
smaller set of functions) than those in the family represented by figure 10.3. The RNN
in figure 10.3 can choose to put any information it wants about the past into its hidden
representation h and transmit h to the future. The RNN in this figure is trained to
put a specific output value into o, and o is the only information it is allowed to send
to the future. There are no direct connections from h going forward. The previous h
is connected to the present only indirectly, via the predictions it was used to produce.
Unless o is very high-dimensional and rich, it will usually lack important information
from the past. This makes the RNN in this figure less powerful, but it may be easier to
train because each time step can be trained in isolation from the others, allowing greater
parallelization during training, as described in section 10.2.1.

380

Figure 10.4
Figure 8: An RNN with recurrence connection from output to hidden8.

8I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 19 / 39

http://www.deeplearningbook.org


Recurrent Neural Networks

Teacher Forcing

(Goodfellow 2016)

Teacher Forcing

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

o(t�1)o(t�1) o(t)o(t)

h(t�1)h(t�1) h(t)h(t)

x(t�1)x(t�1) x(t)x(t)

W
V V

U U

o(t�1)o(t�1) o(t)o(t)

L(t�1)L(t�1) L(t)L(t)

y(t�1)y(t�1) y(t)y(t)

h(t�1)h(t�1) h(t)h(t)

x(t�1)x(t�1) x(t)x(t)

W

V V

U U

Train time Test time

Figure 10.6: Illustration of teacher forcing. Teacher forcing is a training technique that is
applicable to RNNs that have connections from their output to their hidden states at the
next time step. (Left)At train time, we feed the correct output y(t) drawn from the train
set as input to h(t+1). (Right)When the model is deployed, the true output is generally
not known. In this case, we approximate the correct output y(t) with the model’s output
o(t), and feed the output back into the model.

383

Figure 10.6Figure 9: Illustration of teacher forcing9.

9I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 20 / 39

http://www.deeplearningbook.org


Bidirectional Recurrent Neural Networks

Bidirectional RNNs

(Goodfellow 2016)

Bidirectional RNN
CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

sequence still has one restriction, which is that the length of both sequences must
be the same. We describe how to remove this restriction in section 10.4.

o(t�1)o(t�1) o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

g(t�1)g(t�1) g(t)g(t) g(t+1)g(t+1)

Figure 10.11: Computation of a typical bidirectional recurrent neural network, meant
to learn to map input sequences x to target sequences y, with loss L(t) at each step t.
The h recurrence propagates information forward in time (towards the right) while the
g recurrence propagates information backward in time (towards the left). Thus at each
point t, the output units o(t) can benefit from a relevant summary of the past in its h(t)

input and from a relevant summary of the future in its g(t) input.

10.3 Bidirectional RNNs

All of the recurrent networks we have considered up to now have a “causal” struc-
ture, meaning that the state at time t only captures information from the past,
x(1), . . . , x(t�1), and the present input x(t). Some of the models we have discussed
also allow information from past y values to affect the current state when the y
values are available.

However, in many applications we want to output a prediction of y(t) which may
394

Figure 10.11
Figure 10: Bidirectional RNN10.

10I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 21 / 39

http://www.deeplearningbook.org


Bidirectional Recurrent Neural Networks

Bidirectional RNNs

A causal structure, state at time t

captures only past

Many applications output y(t)

after processing the whole input
sequence
e.g. in speech recognition,
handwriting recognition

Bidirectional RNN combines RNN
moves forward through time h and
backward through time g

(Goodfellow 2016)

Bidirectional RNN
CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

sequence still has one restriction, which is that the length of both sequences must
be the same. We describe how to remove this restriction in section 10.4.

o(t�1)o(t�1) o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

g(t�1)g(t�1) g(t)g(t) g(t+1)g(t+1)

Figure 10.11: Computation of a typical bidirectional recurrent neural network, meant
to learn to map input sequences x to target sequences y, with loss L(t) at each step t.
The h recurrence propagates information forward in time (towards the right) while the
g recurrence propagates information backward in time (towards the left). Thus at each
point t, the output units o(t) can benefit from a relevant summary of the past in its h(t)

input and from a relevant summary of the future in its g(t) input.

10.3 Bidirectional RNNs

All of the recurrent networks we have considered up to now have a “causal” struc-
ture, meaning that the state at time t only captures information from the past,
x(1), . . . , x(t�1), and the present input x(t). Some of the models we have discussed
also allow information from past y values to affect the current state when the y
values are available.

However, in many applications we want to output a prediction of y(t) which may
394

Figure 10.11
Figure 11: Bidirectional RNNa.

aI Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 22 / 39

http://www.deeplearningbook.org


Bidirectional Recurrent Neural Networks

Drawing samples from an RNN model

Sampling from conditional distribution at each time step
How to determine the length of the sequence:

If output is a symbol from a vocabulary, having a special symbol indicate the
end of a sequence

An extra Bernoulli output to decide to continue or halt
E.g. RNN produces a sequence of real numbers, new output unit usually
sigmoid with cross entropy loss.
Sigmoid maximize log-probability of the sequence ends or not

An extra output to determine the sequence length ⌧
An extra output predicts the integer ⌧
E.g. sample an integer ⌧ and then sample ⌧ steps of data
Here, RNN needs an extra input consist of value of ⌧ or number of remaining
steps ⌧ � t
Extra input to avoid abrupt ending sequence

P(x(1), . . . , x(⌧)) = P(⌧)P(x(1), . . . , x(⌧) | ⌧)

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 23 / 39



Bidirectional Recurrent Neural Networks

Modeling Sequences Conditioned on Context with RNNs

RNNs with a single vector of x as input instead of sequence of vectors x(t)

Providing an extra input to an RNN:

as an extra input at each time step

as the initial state h(0)

both

(Goodfellow 2016)

Vector to Sequence

o(t�1)o(t�1) o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)
WW W W

h(... )h(... )
h(... )h(... )

V V V

U U U

xx

y(...)y(...)

R R R R R

Figure 10.9Figure 12: Vector to sequence11.

11I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 24 / 39

http://www.deeplearningbook.org


Bidirectional Recurrent Neural Networks

Modeling Sequences Conditioned on Context with RNNs

An input sequence of x(t) instead of a single input
Conditional distribution of P(y(1), . . . , y(⌧) | x(1), . . . , x(⌧)) makes a conditional
independence assumption

Y

t

P(yt |x(1), . . . , x(t))

By adding connections from output at time t to hidden unit at time t + 1:
Hence, the output values are not forced to be conditionally independent for this
model:

(Goodfellow 2016)

Hidden and Output Recurrence

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

o(t�1)o(t�1) o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

WW W W
h(... )h(... ) h(... )h(... )

V V V

U U U

x(t�1)x(t�1)

R

x(t)x(t) x(t+1)x(t+1)

R R

Figure 10.10: A conditional recurrent neural network mapping a variable-length sequence
of x values into a distribution over sequences of y values of the same length. Compared to
figure 10.3, this RNN contains connections from the previous output to the current state.
These connections allow this RNN to model an arbitrary distribution over sequences of y
given sequences of x of the same length. The RNN of figure 10.3 is only able to represent
distributions in which the y values are conditionally independent from each other given
the x values.

393

Figure 10.10
The output values are not forced to be 

conditionally independent in this model.
Figure 13: Hidden and output recurrence12.

12I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 25 / 39

http://www.deeplearningbook.org


Encoder-Decoder Sequence-to-Sequence Architectures

Encoder-Decoder Sequence-to-Sequence Architectures

An RNN map an input sequence to an output sequence which is not necessarily
the same length

e.g. speech recognition, machine translation, question answering

The input to RNN is called the context C , summarize the input sequence
X = (x(1), . . . , x (nx ))

(Goodfellow 2016)

Sequence to Sequence 
Architecture

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

10.4 Encoder-Decoder Sequence-to-Sequence Architec-
tures

We have seen in figure 10.5 how an RNN can map an input sequence to a fixed-size
vector. We have seen in figure 10.9 how an RNN can map a fixed-size vector to a
sequence. We have seen in figures 10.3, 10.4, 10.10 and 10.11 how an RNN can
map an input sequence to an output sequence of the same length.

Encoder

…

x(1)x(1) x(2)x(2) x(...)x(...) x(nx)x(nx)

Decoder

…

y(1)y(1) y(2)y(2) y(...)y(...) y(ny)y(ny)

CC

Figure 10.12: Example of an encoder-decoder or sequence-to-sequence RNN architecture,
for learning to generate an output sequence (y(1), . . . ,y(ny)) given an input sequence
(x(1),x(2), . . . ,x(nx)). It is composed of an encoder RNN that reads the input sequence
and a decoder RNN that generates the output sequence (or computes the probability of a
given output sequence). The final hidden state of the encoder RNN is used to compute a
generally fixed-size context variable C which represents a semantic summary of the input
sequence and is given as input to the decoder RNN.

Here we discuss how an RNN can be trained to map an input sequence to an
output sequence which is not necessarily of the same length. This comes up in
many applications, such as speech recognition, machine translation or question

396

Figure 10.12
Figure 14: Sequence-to-sequence Architecture13.

13I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 26 / 39

http://www.deeplearningbook.org


Encoder-Decoder Sequence-to-Sequence Architectures

Encoder-Decoder Sequence-to-Sequence Architectures

An encoder or reader or input process input to the sequence
A decoder or writer or output conditioned on a fixed length vector to generate
Y = (y(1), . . . , y (n

y

)) Two RNNs trained to jointly maximize average of
logP(y(1), . . . , y (n

y

)|x(1), . . . , x (nx ))
The last state of encoder h

n

x

typically used as C

(Goodfellow 2016)

Sequence to Sequence 
Architecture

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

10.4 Encoder-Decoder Sequence-to-Sequence Architec-
tures

We have seen in figure 10.5 how an RNN can map an input sequence to a fixed-size
vector. We have seen in figure 10.9 how an RNN can map a fixed-size vector to a
sequence. We have seen in figures 10.3, 10.4, 10.10 and 10.11 how an RNN can
map an input sequence to an output sequence of the same length.

Encoder

…

x(1)x(1) x(2)x(2) x(...)x(...) x(nx)x(nx)

Decoder

…

y(1)y(1) y(2)y(2) y(...)y(...) y(ny)y(ny)

CC

Figure 10.12: Example of an encoder-decoder or sequence-to-sequence RNN architecture,
for learning to generate an output sequence (y(1), . . . ,y(ny)) given an input sequence
(x(1),x(2), . . . ,x(nx)). It is composed of an encoder RNN that reads the input sequence
and a decoder RNN that generates the output sequence (or computes the probability of a
given output sequence). The final hidden state of the encoder RNN is used to compute a
generally fixed-size context variable C which represents a semantic summary of the input
sequence and is given as input to the decoder RNN.

Here we discuss how an RNN can be trained to map an input sequence to an
output sequence which is not necessarily of the same length. This comes up in
many applications, such as speech recognition, machine translation or question

396

Figure 10.12
Figure 15: Sequence-to-sequence Architecture14.

14I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 27 / 39

http://www.deeplearningbook.org


Deep Recurrent Networks

Deep Recurrent Networks

RNNs decomposed into three main blocks of parameters and associated
transformations:

from input to hidden state

from previous hidden state to next hidden state

from hidden state to output

Increasing the depth of the RNNs improves

(a) hierarchical hidden recurrent states

(b) deeper computation introduced to input-to-hidden, hidden-to-hidden, and
hidden-to-output.

(c) Skip connections can handle path-lengthening e↵ect

Deep Recurrent network larger capacity of representation but might increase the
di�culty of optimization

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 28 / 39



Deep Recurrent Networks

Deep Recurrent Networks

(Goodfellow 2016)

Deep RNNs

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

h

y

x

z

(a) (b) (c)

x

h

y

x

h

y

Figure 10.13: A recurrent neural network can be made deep in many ways (Pascanu
et al., 2014a). (a)The hidden recurrent state can be broken down into groups organized
hierarchically. (b)Deeper computation (e.g., an MLP) can be introduced in the input-to-
hidden, hidden-to-hidden and hidden-to-output parts. This may lengthen the shortest
path linking different time steps. (c)The path-lengthening effect can be mitigated by
introducing skip connections.

399

Figure 10.13
Figure 16: An RNN can be deep many ways. (a) The recurrent state organized into
groups hierarchically. (b) Introduced in input-to-hidden, hidden-to-hidden, and
hidden-to-output. (c) Skip connections can handle path-lengthening e↵ect16.

15I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

16I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 29 / 39

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Long-Term Dependencies

The Challenge of Long-Term Dependencies

RNNS might construct a very deep computational graphs by repeatedly applying
the same operation at each time step of a long sequence
Gradients propagated many stages tends to vanish or explode
Even if the network is stable (can store memories and gradients not exploding),
exponentially smaller weights are given to long-term interactions than short ones
Recurrence relation (for a simple network without nonlinear activation and input x)

h(t) = Wh(t�1)

After t time steps (repeatedly multiplying with W)

h(t) = (Wt)Th(0)

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 30 / 39



Long Short-Term Memory and Other Gated RNNs

Gated RNNs

The most e↵ective sequence models used in practical applications are gated
RNNs

Long short-term memory (LSTM)

gated recurrent unit (GRU)

Like leaky units goal is to create paths through time that have derivatives do not
vanish nor explode

Leaky units has connection weights that manually chosen or learned

Gated RNNs generalizes this to connections weights that may change at each
time step

Leaky units allows to accumulate information

But once this information is used, it might be useful to forget

A mechanism to forget the old state by setting it to 0

Gated RNNs learn to decide when to forget a state

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 31 / 39



Long Short-Term Memory and Other Gated RNNs

Long Short-Term Memory (LSTM)

Core contribution of initial LSTM model17 is self-loops to introduce paths
that gradient can flow

Gers et al. make the weight on this self-loop weight conditioned on the
context18

With gated weight of self-loop (controlled by another unit), time scale
integration dynamically controlled

The LSTM is very sucessful in many domains: handwriting detection and
generation, time series forecasting, machine translation, speech recognition..

LSTM recurrent networks have ”LSTM cells” that have internal recurrence, a
self loop, in addition to outer recurrence of RNN

17Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural

Comput. 9.8 (Nov. 1997), pp. 1735–1780.
18Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cummins. “Learning to Forget:

Continual Prediction with LSTM”. In: Neural Comput. 12.10 (Oct. 2000), pp. 2451–2471.
Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 32 / 39



Long Short-Term Memory and Other Gated RNNs

Long Short-Term Memory (LSTM)

Each LSTM cell has the same inputs and outputs with gating units
controlling information flow

State unit s(t)
i

has a linear self-loop

Self-loop weight of s(t)
i

controlled by a forget gate unit f (t)
i

for time step t

and cell i

f

(t)
i

sets weight of s(t)
i

a value of (0,1) via sigmoid unit:

f

(t)
i

= �

 
b

f

i

+
X

j

U

f

i,j x
(t)
j

+
X

j

W

f

i,j h
(t�1)
j

!

x(t) is the current input, h(t) is the current hidden layer vector

bf bias, Uf input weights and Wf recurrent weights for the forget gates

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 33 / 39



Long Short-Term Memory and Other Gated RNNs

Long Short-Term Memory (LSTM)

The LSTM cell internal state update:

s

(t)
i

= f

(t)
i

s

(t�1)
i

+ g

(t)
i

�

 
b

i

+
X

j

U

i,j x
(t)
j

+
X

j

W

i,j h
(t�1)
j

!

b bias, U input weights and W recurrent weights into the LSTM cell

The external input gate g

(t)
i

is calculated as forget gate but with own
parameters:

g

(t)
i

= �

 
b

g

i

+
X

j

U

g

i,j x
(t)
j

+
X

j

W

g

i,j h
(t�1)
j

!

The output h(t)
i

of the LSTM cell can also be shut o↵ via output gate q

(t)
i

which also uses a sigmoid unit for gating:

h

(t)
i

= tanh
⇣
s

(t)
i

⌘
q

(t)
i

q

(t)
i

= �

 
b

o

i

+
X

j

U

o

i,j x
(t)
j

+
X

j

W

o

i,j h
(t�1)
j

!

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 34 / 39



Long Short-Term Memory and Other Gated RNNs

Long Short-Term Memory (LSTM)

Variant of LSTM uses the cell state s

(t)
i

as an extra input to the three gates, this
would require three additional parameters

(Goodfellow 2016)

LSTM
CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

at each time step.

×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Figure 10.16: Block diagram of the LSTM recurrent network “cell.” Cells are connected
recurrently to each other, replacing the usual hidden units of ordinary recurrent networks.
An input feature is computed with a regular artificial neuron unit. Its value can be
accumulated into the state if the sigmoidal input gate allows it. The state unit has a
linear self-loop whose weight is controlled by the forget gate. The output of the cell can
be shut off by the output gate. All the gating units have a sigmoid nonlinearity, while the
input unit can have any squashing nonlinearity. The state unit can also be used as an
extra input to the gating units. The black square indicates a delay of a single time step.

Leaky units allow the network to accumulate information (such as evidence
for a particular feature or category) over a long duration. However, once that
information has been used, it might be useful for the neural network to forget the
old state. For example, if a sequence is made of sub-sequences and we want a leaky
unit to accumulate evidence inside each sub-subsequence, we need a mechanism to
forget the old state by setting it to zero. Instead of manually deciding when to
clear the state, we want the neural network to learn to decide when to do it. This

409

Figure 10.16
Figure 17: Block diagram of the LSTM19.

19I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 35 / 39

http://www.deeplearningbook.org


Long Short-Term Memory and Other Gated RNNs

Gated Recurrent Unit (GRU)

Comparison to LSTM there is a single gating unit simultaneously controls the
forgetting factor and the decision to update the state unit

The update equations

h

(t)
i

= u

(t�1)
i

h

(t�1)
i

+(1�u

(t�1)
i

)�

 
b

i

+
X

j

U

i,j x
(t�1)
j

+
X

j

W

i,j r
(t�1)
j

h

(t�1)
j

!

u stands for update gate:

u

(t)
i

= �

 
b

u

i

+
X

j

U

u

i,j x
(t)
j

+
X

j

W

u

i,j h
(t)
j

!

r stands for reset gate:

r

(t)
i

= �

 
b

r

i

+
X

j

U

r

i,j x
(t)
j

+
X

j

W

r

i,j h
(t)
j

!

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 36 / 39



Long Short-Term Memory and Other Gated RNNs

Gated Recurrent Unit (GRU)

Reset and update gates can individually ignore parts of the state vector

Update gates act like conditional leaky integrator that

Update gates linearly integrate any dimension
choosing to copy it or completely
ignore it by replacing it with new target state value
target state is state the leaky integrator wants to converge towards

Reset gates control which parts of the state get used to compute the next
target state

Reset gates introduce an additional nonlinear e↵ect in the relationship
between past and future state

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 37 / 39



Optimization for Long-Term Dependencies

Optimization for Long-Term Dependencies

When the parameter gradient is very large, gradient descent parameter update
could throw parameters far away
A simple solution is clipping gradients

Clip gradient from a minibatch element-wise before parameter update
Clip the norm ||g|| of gradient g before parameter update

(Goodfellow 2016)

Gradient Clipping

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

decay slowly enough that consecutive steps have approximately the same learning
rate. A step size that is appropriate for a relatively linear part of the landscape is
often inappropriate and causes uphill motion if we enter a more curved part of the
landscape on the next step.

w

b

J
(w
;b
)

Without clipping

w

b

J
(w
;b
)

With clipping

Figure 10.17: Example of the effect of gradient clipping in a recurrent network with
two parameters w and b. Gradient clipping can make gradient descent perform more
reasonably in the vicinity of extremely steep cliffs. These steep cliffs commonly occur
in recurrent networks near where a recurrent network behaves approximately linearly.
The cliff is exponentially steep in the number of time steps because the weight matrix
is multiplied by itself once for each time step. (Left)Gradient descent without gradient
clipping overshoots the bottom of this small ravine, then receives a very large gradient
from the cliff face. The large gradient catastrophically propels the parameters outside the
axes of the plot. (Right)Gradient descent with gradient clipping has a more moderate
reaction to the cliff. While it does ascend the cliff face, the step size is restricted so that
it cannot be propelled away from steep region near the solution. Figure adapted with
permission from Pascanu et al. (2013).

A simple type of solution has been in use by practitioners for many years:
clipping the gradient. There are different instances of this idea (Mikolov, 2012;
Pascanu et al., 2013). One option is to clip the parameter gradient from a minibatch
element-wise (Mikolov, 2012) just before the parameter update. Another is to clip
the norm ||g|| of the gradient g (Pascanu et al., 2013) just before the parameter
update:

if ||g|| > v (10.48)

g � gv

||g|| (10.49)

414

Figure 10.17
Figure 18: Gradient Clipping20.

20I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 38 / 39

http://www.deeplearningbook.org


Optimization for Long-Term Dependencies

Recurrent Neural Networks

Questions?

References

Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cummins. “Learning to
Forget: Continual Prediction with LSTM”. In: Neural Comput. 12.10 (Oct.
2000), pp. 2451–2471.

I Goodfellow, Y Bengio, and A Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:
Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780.

Yagmur Gizem Cinar, James Crowley, (Eric Gaussier) Recurrent Neural Networks (RNNs) 20 March 2018 39 / 39

http://www.deeplearningbook.org

	Examples of Sequences
	Recurrent Neural Networks
	Bidirectional Recurrent Neural Networks
	Encoder-Decoder Sequence-to-Sequence Architectures
	Deep Recurrent Networks
	Long-Term Dependencies
	Long Short-Term Memory and Other Gated RNNs
	Optimization for Long-Term Dependencies

