

Pattern Recognition and Machine Learning

James L. Crowley

ENSIMAG 3 - MMIS Fall Semester 2016
Lessons 7 14 Dec 2016

Artificial Neural networks
Outline

Notation...2

1. Introduction ..3
Artificial Neural Networks ... 3
The Artificial Neuron ... 4
The Neural Network model .. 6
Network Structures for Simple Feed-Forward Networks 8

Regression Analysis ..9
Linear Models .. 10
Estimation of a hyperplane with supervised learning................ 11
Gradient Descent .. 13
Practical Considerations for Gradient Descent.......................... 14

Regression for a Sigmoid Activation Function..........16
Gradient Descent .. 17
Regularisation .. 17

Using notation and figures from the Stanford Deep learning tutorial at:
http://ufldl.stanford.edu/tutorial/

Artificial Neural Networks

7-2

Notation

xd A feature. An observed or measured value.

!

!
X A vector of D features.
D The number of dimensions for the vector

!

!
X

!

{
!
X m}

!

{ym} Training samples for learning.
M The number of training samples.

!

ai
(l) the activation output of the ith neuron of the lth layer.

!

wij
(l) the weight for the unit j of layer l and the unit i of layer l+1.

!

bi
l the bias term for ith using of the the l+1th layer

Artificial Neural Networks

7-3

Introduction

Artificial Neural Networks

Artificial Neural Networks, also referred to as “Multi-layer Perceptrons”, are
computational structures composed a weighted sums of “neural” units. Each neural
unit is composed of a weighted sum of input units, followed by a non-linear decision
function.

Note that the term “neural” is misleading. The computational mechanism of a neural
network is only loosely inspired from neural biology. Neural networks do NOT
implement the same learning and recognition algorithms as biological systems.

The approach was first proposed by Warren McCullough and Walter Pitts in 1943 as
a possible universal computational model. During the 1950’s, Frank Rosenblatt
developed the idea to provide a trainable machine for pattern recognition, called a
Perceptron. The perceptron is an incremental learning algorithm for linear classifiers
invented by Frank Rosenblatt in 1956. The first Perceptron was a room-sized analog
computer that implemented Rosenblatz learning recognition functions. Both the
learning algorithm and the resulting recognition algorithm are easily implemented as
computer programs.

In 1969, Marvin Minsky and Seymour Papert of MIT published a book entitled
“Perceptrons”, that claimed to document the fundamental limitations of the
perceptron approach. Notably, they claimed that a perceptron could not be
constructed to perform an “exclusive OR”.

In the 1970s, frustrations with the limits of Artificial Intelligence research based on
Symbolic Logic led a small community of researchers to explore the perceptron
based approach. In 1973, Steven Grossberg, showed that a two layered perceptron
could overcome the problems raised by Minsky and Papert, and solve many problems
that plagued symbolic AI. In 1975, Paul Werbos developed an algorithm referred to
as “Back-Propagation” that uses gradient descent to learn the parameters for
perceptrons from classification errors with training data.

During the 1980’s, Neural Networks went through a period of popularity with
researchers showing that Networks could be trained to provide simple solutions to
problems such as recognizing handwritten characters, recognizing spoken words, and
steering a car on a highway. However, results were overtaken by more

Artificial Neural Networks

7-4

mathematically sound approaches for statistical pattern recognition such as support
vector machines and boosted learning.

In 1998, Yves LeCun showed that convolutional networks composed from many
layers could outperform other approaches recognition problems. Unfortunately such
networks required extremely large amounts of data and computation. Around 2010,
with the emergence of cloud computing combined with planetary-scale data
convolutional networks became practical. Since 2012, Deep Networks have
outperformed other approaches for recognition tasks common to computer Vision,
Speech and robotics. A rapidly growing research community currently seeks to
extend the application beyond recognition to generation of speech and robot actions.

The Artificial Neuron

The simplest possible neural network is composed of a single neuron.

A “neuron” is a computational unit that integrates information from a vector of D
features,

!

!
X , to the likelihood of a hypothesis, hw,b()

!

a = h ! w ,b (
"
X)

The neuron is composed of a weighted sum of input values

!

z = w1x1 +w2x2 + ...+wDxD +b

 followed by a non-linear “activation” function,

!

f (z) (sometimes written

!

"(z))

!

a = h ! w ,b (
"
X) = f (! w T

"
X + b)

Many different activation functions are used.
A popular choice for hidden layers is the sigmoid (logistic) function:

!

f (z) =
1

1" e"z

Artificial Neural Networks

7-5

This function is useful because the derivative is:

!

df (z)
dz

= f (z)(1" f (z))

This gives a decision function: if

!

h ! w ,b (
"
X) > 0.5 POSITIVE else NEGATIVE

Other popular decision functions include the hyperbolic tangent and the softmax.

 The hyperbolic Tangent:

!

f (z) = tanh(z) =
ez " e"z

ez + e"z

The hyperbolic tangent is a rescaled form of sigmoid ranging over [-1,1]

The rectified linear function is also popular

 Relu:

!

f (z) =max(0, z)

While Relu is discontinuous at z=0, for z > 0 :

!

df (z)
dz

=1

The following plot (from A. Ng) shows the sigmoid, tanh and Relu functions

Note that the choice of decision function will determine the target variable “y” for
supervised learning.

Artificial Neural Networks

7-6

The Neural Network model

A neural network is a multi-layer assembly of neurons of the form.
For example, this is a 2-layer network:

The circles labeled +1 are the bias terms.
The circles on the left are the input terms, also called L1. This is called the input
layer. Note that many authors do not consider this to count as a “layer”
The rightmost circle is the output layer (in this case, only one node), also called L3

The circles in the middle are referred to as a “hidden layer”, L2.

Here we follow the notation used by Andrew Ng.

The parameters carry a superscript, referring to their layer.

For example:

!

a1
(2) is the activation output of the first neuron of the second layer.

!

W13
(2) is the weight for input 1 of activation neuron 3 in the second level.

The above network would be described by:

!

a1
(2) = f (w11

(1)X1 +w12
(1)X2 +w13

(1)X3 +b1
(1))

!

a2
(2) = f (w21

(1)X1 +w22
(1)X2 +w23

(1)X3 +b2
(1))

!

a3
(2) = f (w31

(1)X1 +w32
(1)X2 +w33

(1)X3 +b3
(1))

!

h ! w ,b (
!
X) = a1

(3) = f (w11
(2)a1

(2) + w12
(2)a2

(2) + w13
(2)a3

(2) + b1
(2))

This can be generalized to multiple layers. For example:

Artificial Neural Networks

7-7

(taken from the Stanford ufldl tutorial, Ng et al)

Note that we can recognize multiple classes by learning multiple hw,b(x) functions.

In general (following the notation of Ng), this can be described by:

 L1 is the input layer.
 Ll is the lth

 layer
 LN is the output layer

!

wij
(l) denotes the parameter (weight) for the unit j of layer l and the unit i of layer l+1.

!

bi
l is the bias term for ith using of the the l+1th layer

!

ai
(l) is the activation i in layer l

Note that many authors prefer to define the input layer as l=0. This way the l is the
number of hidden layers.

In deriving the regression algorithms for learning, we will use

!

zi
(l+1) = wij

(l)ai
(l)

j=1

Nl

" +b(l)

It will be more convenient to represent this using vectors:

!

! z (l) =

z1
(l)

z2
(l)

"
zN l

(l)

"

$
$
$
$

%

&

'
'
'
'

As defined, the neural network computes a “forward propagation” of the form

!

! z l+1 =
! w (l) ! a (l) + b(l)

!

! a (l"1) = f (! z (l+1))

Artificial Neural Networks

7-8

This is called the “Feed Forward Network”.
Note that feed forward networks do not contain loops.

The weights for a Neural Network are commonly trained using a technique called
back-propagation, or “back propagation of errors”.

Back propagation is a form of regression analysis. The most common approach is to
employ a form of Gradient Descent.

Gradient descent calculates a loss function for the weights of the network and then
iteratively seeks to minimize this loss function. This is commonly performed as a
form of supervised learning using labeled training data.

Note that Gradient descent requires that the activation function be differentiable.

Network Structures for Simple Feed-Forward Networks

The architecture of a neural network refers to the number of layers, the number of
neurons of each layer and the kind of neurons, and the kinds of neural computation
performed.

For a simple feed forward network:

The number of input neurons is determined by the number of input values for each
observation (size of the feature vector, D)

The number of output neurons is the number of classes to be recognized.

The number of hidden layers is determined by the complexity of the recognition and
the amount of training data available.

If your training data is linearly separable (if there exists a hyper-plane between the
two classes) then you do not even need a hidden layer. Use a simple linear classifiers
for example defined by a Support Vector machine or Linear Discriminant Analysis.

A single hidden layer is often sufficient for many problems (although more reliable
solutions can be found using Support vector machines or other techniques).

Artificial Neural Networks

7-9

The number of neurons in a hidden layer depends on the complexity of the problem,
and the amount of training data available.

In theory, any problem can be solved with a single hidden layer, given enough
training data. In practice the quantity of training data is not practical.

Experience shows that some very difficult problems can be solved using less training
data by adding additional layers.

However, the spectacular progress of the last few years has been obtained by the
introduction of new computational models such as “Convolutional Neural Networks”,
“Pooling”, Auto-encoders and Long Term-Short Term Memory. Many of these are
actually known pattern recognition techniques recycled into a Neural Network
framework.

But before we get to more advanced techniques, we need to look at the basics.

Regression Analysis

The parameters for a feed forward network are commonly learned using regression
analysis of labeled training data.

Regression is the estimation of the parameters for a function that maps a set of
independent variables into a dependent variable.

!

ˆ y = f (
!
X , " w)

Where

!

!
X is a vector of D independent (unknown) variables.

!

ˆ y is an estimate for a variable

!

y that depends on

!

!
X .

 and

!

f () is a function that maps

!

!
X onto

!

ˆ y

!

! w is a vector of parameters for the model.

Note:
 For

!

ˆ y , the “hat” indicates an estimated value for the target value

!

y

!

!
X is upper case because it is a random (unknown) vector.

Artificial Neural Networks

7-10

Regression analysis refers to a family of techniques for modeling and analyzing the
mapping one or more independent variables from a dependent variable.

For example, consider the following table of age, height and weight for 10 females:

M AGE H (M) W (kg)
1 17 163 52
2 32 169 68
3 25 158 49
4 55 158 73
5 12 161 71
6 41 172 99
7 32 156 50
8 56 161 82
9 22 154 56

10 16 145 46

We can use any two variables to estimate the third.
We can use regression to estimate the parameters for a function to predict any feature

!

ˆ y from the two other features

!

!
X .

For example we can predict weight from height and age as a function.

!

ˆ y = f (
!
X , " w) where

!

ˆ y = Weight ,

!

!
X =

Age
Height
"

$

%

&
' and

!

! w are the model parameters

Linear Models

A linear model has the form

!

ˆ y = f (
!
X , " w) = " w T

!
X + b = w1x1 + w2x2 + ...+ wDxD + b

The vector

!

! w =

w1

w2

"
wD

"

$
$
$
$

%

&

'
'
'
'

 are the “parameters” of the model that relates

!

!
X to

!

ˆ y .

The equation

!

! w T
"
X + b = 0 is a hyper-plane in a D-dimensional space,

!

! w =

w1

w2

"
wD

"

$
$
$
$

%

&

'
'
'
'

 is the normal to the hyperplane and b is a constant term.

Artificial Neural Networks

7-11

It is generally convenient to include the constant as part of the parameter vector and
to add an extra constant term to the observed feature vector.
This gives a linear model with D+1 parameters where the vectors are:

!

!
X =

1
x1
"

xD

"

$
$
$
$

%

&

'
'
'
'

 and

!

! w =

w0

w1

"
wD

"

$
$
$
$

%

&

'
'
'
'

 where

!

w0 represents b.

This gives the "homogeneous equation" for the model:

!

ˆ y = f (
!
X , " w) =

" w T
"
X

Homogeneous coordinates provide a unified notation for geometric operations.

With this notation, we can predict weight from height and age using a function
learned from regression analysis.

!

ˆ y = f (
!
X , " w) where

!

ˆ y = Weight ,

!

!
X =

1
Age

Height

"

$
$
$

%

&

'
'
'
 and

!

!
W =

w0

w1

w2

"

$
$
$

%

&

'
'
'
 are the model

parameters, and the surface is a plane in the space (weight, age, height).
In a D dimensional space, linear homogeneous equation is a hyper-plane.
The perpendicular distance of an arbitrary point from the plane is computed as

 d = w0+w1x1+w2x2

This can be used as an error.

Estimation of a hyperplane with supervised learning

In supervised learning, we learn the parameters of a model from a labeled set of
training data. The training data is composed of M sets of independent variables,

!

{
!
X m}

for which we know the value of the dependent variable

!

{ym}.
The training data is the set

!

{
!
X m} ,

!

{ym}

For a linear model, learning the parameters of the model from a training set is
equivalent to estimating the parameters of a hyperplane using least squares.

In the case of a linear model, there are many ways to estimate the parameters:

Artificial Neural Networks

7-12

For example, matrix algebra provides a direct, closed form solution.

Assume a training set of M observations

!

{
!
X m}

!

{ym} where the constant d is included as
a "0th" term in

!

!
X and

!

! w .

!

!
X =

1
x1
"

xD

"

$
$
$
$

%

&

'
'
'
'

 and

!

! w =

w0

w1

"
wD

"

$
$
$
$

%

&

'
'
'
'

We seek the parameters for a linear model:

!

ˆ y = f (
!
X , " w) =

" w T
"
X

This can be determined by minimizing a "Loss" function that can be defined as the
Square of the error.

!

L(! w) = (! w T
!
X m "

m=1

M

ym)
2

To build or function, we will use the M training samples to compose a matrix X and a
vector Y.

!

X =

1 1 ! 1
x11 x12 ! x1M
x21 x22 ! x2M
! ! " #
xD1 xD2 ! xDM

"

$
$
$
$
$ $

%

&

'
'
'
'
' '

 (D+1 rows by M columns)

!

Y =

y1
y2
!
yM

"

$
$
$
$

%

&

'
'
'
'

 (M rows).

We can factor the loss function to obtain:

!

L(! w) = (! w T X "Y)T (! w T X "Y)

To minimize the loss function, we calculate the derivative and solve for

!

! w when the
derivative is 0.

!

"L(! w)
"
! w

= 2XTY # 2XT X ! w = 0

which gives

!

XTY = 2XT X ! w and thus

!

! w = (XT X)"1XTY

While this is an elegant solution for linear regression, it does not generalize to other
models. A more general approach is to use Gradient Descent.

Artificial Neural Networks

7-13

Gradient Descent

Gradient descent is a popular algorithm for estimating parameters for a large variety
of models. Here we will illustrate the approach with estimation of parameters for a
linear model.

As before we seek to estimate that parameters

!

! w for a model

!

ˆ y = f (
!
X , " w) =

" w T
"
X

from a training set of M samples

!

{
!
X m}

!

{ym}

We will define our loss function as

!

1
2

 average error

!

L(! w) =
1
2M

(f (
"
X m ,
! w)

m=1

M

" # ym)
2

where we have included the term

!

1
2

 to simplify the algebra later.

The gradient is the derivative of the loss function with respect to each term

!

wd of

!

! w is

!

!
" f (
"
X , ! w) =

#f (
"
X , ! w)
#
! w

=

#f (
"
X ,w0)
#w0

#f (
"
X ,w1)
#w1
#

#f (
"
X ,wD)
#wD

$

%

&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)

where:

!

"f (
!
X ,wd)
"wd

=
1
M

(f (
!
X m ,
" w)# ym)xdm

m=1

M

$

!

xdm is the dth coefficient of the mth training vector. Of course

!

x0m =1 is the constant
term.

We use the gradient to “correct” an estimate of the parameter vector for each training
sample. The correction is weighted by a learning rate “α”

We can see

!

1
M

(f (
!
X m ,
" w (i"1))" ym)xdm

m=1

M

as the “average error” for parameter

!

wd
(i"1)

Gradient descent corrects by subtracting the average error weighted by the learning
rate.

Artificial Neural Networks

7-14

Gradient Descent Algorithm

Initialization: (i=0) Let

!

wd
(o) = 0 for all D coefficients of

!

! w

Repeat until

!

L(! w (i))" L(! w (i"1)) < # :

!

! w (i) =
! w (i"1) "#

!
$ f (
"
X , ! w (i"1))

where

!

L(! w) =
1
2M

(f (
"
X m ,
! w)

m=1

M

" – ym)
2

That is:

!

wd
(i) = wd

(i"1) "#
1
M

(f (
!
X m ,
" w (i"1))" ym)xdm

m=1

M

$

Note that all coefficients are updated in parallel.
The algorithm halts when the change in

!

"L(! w (i)) becomes small:

!

L(! w (i))" L(! w (i"1)) < #

For some small constant

!

" .

Gradient Descent can be used to learn the parameters for a non-linear model.
For example, when D=2, a second order model would be:

!

!
X =

1
x1
x1
2

x2
x1
2

x1x2

"

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

 and

!

f (
!
X , " w) = w0 +w1x1 + w2x1

2 + w3x2 + w4x2
2 + w5x1x2

Practical Considerations for Gradient Descent

The following are some practical issues concerning gradient descent.

Feature Scaling

Make sure that features have similar scales (range of values). One way to assure this
is to normalize the training date so that each feature has a range of 1.

Simple technique: divide by the range of sample values.

Artificial Neural Networks

7-15

For a training set

!

{
!
X m} of M training samples with D values.

Range: rD = Max(xd) - Min(xd)

Then

!

"m=1
M : xdm :=

xdm
rd

Even better would be to scale with the mean and standard deviation of the each
feature in the training data

!

µd = E{xdm}

!

" 2 = E{(xdm #µd)
2}

!

"m=1
M : xdm :=

(xdm #µd)
$ d

Note that the value of the loss function should always decrease:

Verify that

!

L(! w (i))" L(! w (i"1)) < 0 .

if

!

L(! w (i))" L(! w (i"1)) > 0 then decrease the learning rate “α”

You can use this to dynamically adjust the learning rate α.
For example, one can start with a high learning rate. Any time that

!

L(! w (i))" L(! w (i"1)) > 0
1) reset a ← a/2
2) Recalculate the ith iteration.

Halt when a < threshold.

Artificial Neural Networks

7-16

Regression for a Sigmoid Activation Function

Gradient descent is easily used to estimate a sigmoid estimation function.

Recall that the sigmoid function has the form

!

h(
!
X , ! w) =

1
1+ e"g(

!
X , ! w)

This function is differentiable.

 When

!

gk (
!
X , ! w) =

! w T
!
X

!

h(
!
X , ! w) =

1
1+ e"

! w T
!
X

and the decision rule is: if

!

h(
!
X , ! w) > 0.5 then Positive else Negative

The cost function for this activation function is:

!

Cost(h(
!
X , ! w), y) =

– log(h(
!
X , ! w)) if y =1

" log(1– h(
!
X , ! w) if y = –1

$
%

Thus the loss function would be:

!

L(! w) =
1
m

Cost(h(
!
X m ,
! w), ym)

m=1

M

"

!

L(! w) =
1
m

ym log(h(
!
X m ,
! w)+ (1" ym)

m=1

M

log(1" h(
!
X m ,
! w)

!

"h(
!
X ,wd)
"wd

=
1
M

(ym # h(
!
X m ,
" w))xdm

m=1

M

$

Artificial Neural Networks

7-17

Gradient Descent

 Repeat until

!

L(! w (i))" L(! w (i"1)) < # :

!

! w (i) =
! w (i"1) "#

!
$ h(
"
X , ! w (i"1))

where

!

L(! w) =
1
m

ym log(h(
!
X m ,
! w)+ (1" ym)

m=1

M

log(1" h(
!
X m ,
! w)

!

wd
(i) = wd

(i"1) "#
1
M

(ym " h(
!
X m ,
" w (i"1)))xdm

m=1

M

$

Regularisation

Overfitting: Tuning the function to the training data.
Overfitting is a common problem with machine learning, particularly when there are
many features and not enough training data. One solution is to “regularise” the
function by adding an additional term.

replace

!

w0
(i) = w0

(i"1) "#
1
M

(ym " h(
!
X m ,
" w (i"1)))x0m

m=1

M

$

with

!

wd
(i) = wd

(i"1) "#
1
M

(ym " h(
!
X m ,
" w (i"1)))xdm

m=1

M

$ +
%
m

wd
(i"1)

