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1. Gaussian, Gradient and Laplacian Pyramids   
1.1. Scale Space 
 
 Let P(x, y) be a 2-D image where (x, y) are real values, 
 Let  G(x, y, σs) by a Normalized Gaussian function of scale σs 

 

! 

G(x, y," s ) =
1

2#" s
2 e

$
(x2+y2 )
2" s

2

  

 
Scale Space is a continuous 3D space P(x, y, s) 

 P(x, y, s)  =  p* G(x, y, σs)          
 
The scale axis (s) in scale space is logarithmic  
At s=0, the scale is defined by a Gaussian with parameter 

! 

" 0  
(typically 

! 

" 0=1, but other values are possible. ) 
 
The scale axis is exponential with  

! 

" s =" 0
s     

 
 

! 

Log(" s ) = s # Log(" 0 )  
 

or  

! 

s =
Log(" s )
Log(" 0 )

 

 
An exponential axis is necessary for scale “covariance”.  
 
With “covariance”, structures in scale space maintain a local distance metric through 
changes in scale.  
 
The appearance of any pattern in the image results in a unique structure in P(x, y, s).  
If the pattern is made larger is made larger or smaller by a factor of D  = 2d    
 
 P(x,y) → P(x2d, y2d) 
 
Then the projection of appearance is translated by d in the scale axis 
 
 P(x, y, s) → P(x,y,s+d)   
 
 
It is common to use  base 2 logarithms and 

! 

" 0 =1   
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In this case   

! 

" s = 2s  and 

! 

s = Log2 (" s )  and the scale axis ranges from 0 to Smax.  
The value of Smax is deteremined by the number of pixels in the image.  
 
Scale space is covariant (equivariant) in position, scale and rotation 
 
Translate a pattern by ∆x, ∆y and the structure translates by x+∆x, y+∆y in  P(x, y, s).  
Rotate by θ in x, y and the structure rotates by θ in P(x, y, s).  
Scale by a factor of 2d, and the structure translates to s+d in P(x, y, s). 
Scale space is an ideal mathematical construct. In a computer we must sample scale 
space in x, y and s.  
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1.2. Discrete Scale Space 
 
Let P(x, y) be an image array of size RxC pixels, where (x, y) are integers 
 
A discrete scales space is:  
 
  P(x, y, k) = P* G(x, y, σk) 
 
For example, we can use a step size of ∆σ = 2 so that  
 
 σk=2k   For k=0, to K.   
 
At k=0 :  σ0=20=1. where σ0=1 is the smallest scale that we can represent.  
 
let M = min(R, C) and  K=Log2(M)  at k=K,  σK=2K=2log(M)=M=min(R,C) 
 
so for k > K the scale parameter σ is larger than the image and the scale space images 
rapidly converges to a constant value with larger scale.   
 
1.3. Spatial Resampling and Image Pyramids 
 
Consider  P(x, y, k) for integer x, y, k, where σk=2k 
 
Because the Gaussian, G(x, y, σk), is a low pass filter, as σk  grows it becomes 
possible to resample the image with a larger step size without loss of information.  
 
We can replace (x, y) with (i·∆x, j·∆y).  
 
 G(x, y, σk) → G(i·∆xk, j·∆yk, σk) 
 
A resampled scale space is known as a pyramid, P(i, j, k) =P(i∆xk, j∆yk, k)  
 
Shannon’s sampling theory shows that the sample size at each ∆xk,  ∆yk can grow 
exactly as σk.   
 
In the previous lecture we saw that  σ  ≥ 1.  
This implies that for any value of k,   σk  ≥ ∆xk.  
 
For example, it is common to use   ∆xk ≤ σk =2k 

 
Resampling P(x, y, k) at ∆xk = σk = 2k  results an identical impulse response at each 
level.  This property is called “scale invariance”.    
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A scale invariant impulse is necessary for a scale covariant pyramid.  
 
Pyramid samples are at discrete positions (i∆xk, j∆yk)   
for integer values of i, j:  
 
 P(i, j, k) =P(i∆xk, j∆yk, k)  
 
The position in the original image of a sample from level k is  x = i∆xk and y = j∆yk  
 
If we sampling at a scale step of σk = 2k  this gives a full "octave" pyramid.   
 

  
 
It is also possible to build a scale invariant pyramid with a step size of  ∆σ = 2k/2  
using σk = 2k/2   This is known as a “half-octave” pyramid. .  
 

  
 
The Half-octave pyramid requires a complicated resampling algorithm that is beyond 
the scope of this class. For today we will use a full octave pyramid to simplify the 
explanation.  
 
Let N be the number of pixels in the image.  
Normally computing scale space costs O(N Log N) operations.  
However a  very fast, O(N),  recursive algorithm exists 
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1.4. Using a Gaussian Pyramid to compute image derivatives at scale 
 
It is possible to use the Gaussian Pyramid to compute image derivatives at scale using 
sums and differences.  
 
Let P(x, y) be an image array of size RxC pixels, where (x, y) are integers, 
A full octave Gaussian pyramid of the image is a resampled set of images resulting  
from the  convolution of  image  with Gaussians at an exponential set of scales. 
 
 P(x, y, k)  =  P * G(x, y, σk)  
 
 P(i, j, k) =P(i∆xk, j∆yk, k) 
 
 where ∆xk = ∆yk = σk =2k  and  x = i∆xk   and y=j∆yk 
 
For any sample p(i, j, k) the position in the original image is  x = i∆xk and y = j∆yk  
 
A pyramid of image derivatives can be defined as the convolution of image with 
derivatives of Gaussians 
 
 

! 

Px (x, y,k) = P *Gx (x, y," k ) 
 
These are sometimes referred to as "Receptive Fields" because they are similar to the 
receptive fields observed in the visual cortex of mammals.  
 
With the Gaussian Pyramid, we can obtain a fast approximation to Gaussian 
derivatives directly by sum and difference of the samples of the Gaussian pyramid.  
 
Then can approximate the Gaussian Derivatives as:  
 
 

! 

Px (i, j,k) " P(i+1, j,k)#P(i #1, j,k) = P(i, j,k)$ –1 0 1[ ]  

 

! 

Py(i, j,k) " P(i, j +1,k)#P(i, j #1,k) = P(i, j,k)$
#1
0
1

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 
 

 

! 

Pxx (i, j,k) " P(i+1, j,k)# 2P(i, j,k)+P(i #1, j,k) = P(i, j,k)$ 1 #2 1[ ] 

 

! 

Pyy(i, j,k) " P(i, j +1,k)# 2P(i, j,k)+P(i, j #1,k) = P(i, j,k)$
1
#2
1

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 
 

! 

Pxy(i, j,k) " P(i+1, j +1,k)#P(i #1, j +1,k)#P(i+1, j #1,k)+P(i #1, j #1,k) = P(i, j,k)$
#1 0 1
0 0 0
1 0 #1

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 
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The following are some numerically evaluated examples published in the Scale Space 
Conference of 2003.  [Crowley-Riff 2003]  
 

     
Gx(i,j,k) Gy(i,j,k) Gxx(i,j,k) Gyy(i,j,k) Gxy(i,j,k) 

 
 

 
Impulse Response for Gx(i,j,k) 

 
Impulse Response for Gxx(i,j,k) 

Impulse response for Gaussian derivatives for pyramid levels k=0,1,2,3,4,5.  
  

1.5. Color Opponent Scale Space 
 
A color opponent space is useful for illumination invariance 
 

 (R, G, B) ⇒ (L, C1, C2)  

! 

L
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2C

" 

# 

$ 
$ $ 

% 

& 

' 
' ' 

=
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This representation separates luminance and chrominance.  
 
 

 

  

 

 

 

 

 
RGB  B-W R-G R+G-B 

 
Color opponent space can be used to build color opponent receptive fields.  
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We then compute 3 pyramids:  L(i, j, k), C1(i, j, k), and C2(i, j, k), 
 

 
Examples of color opponent receptive fields.  
 
 Color opponent receptive fields can be steered in color to provide color invariance.  
 
This gives us a feature vector for local appearance:  
 

 

  

! 

! 
A (x, y,k) =

Gx
L" k

GC1" k

GC2" k

Gx
C1" k

Gx
C2" k

Gxx
L" k

Gxy
L" k

Gyy
L" k

# 

$ 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 
( 
( 
( 
( 

 

 
This can be generalized to include multiple scales and higher order derivatives.  
 
1.6. Scale Invariant Interest Points and the Laplacian profile 
 
Differential Geometry can provide invariant features for matching and tracking.  
These can be with local maxima or zero crossings.   
 
Such local maxima are called "interest points". Interest points are typically chosen to 
be invariant to changes in position, size, orientation, illumination and other 
phenomena.  
 
Invariant interest points can be computed using  
1)  The Gradient Magnitude or  
2)  The Laplacian (second derivatives).  
 
In an image scale space, these points provide landmarks for scale invariant image 
description.  
 
Recall that the Laplacian of the image is  
 
 

! 

"2P(x, y, s) = P *"2G(x, y,# s ) = Pxx (x, y, s)+Pyy(x, y, s) 
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A Laplacian profile for an image point is the Laplacian of the image computed over a 
continuous (exponential) range of scales.  
 
The  Laplacian profile is invariant to rotation and translation and equivariant to 
changes in scale. Since scale is proportional to distance, the profile is equivariant to 
viewing distance. 
 

 
 
A change in viewing distance at x, y shifts the function ∇2P(x,y,s) in s.  
The function remains the same. Thus the maximum is a local invariant.  
 
A Laplacian interest point is  

! 

(xi , yi , si ) = local "max
x,y,s

{#2P(x, y, s)} 

 
Local-Max{} returns any point (x, y, s) for which the value of the function is larger 
than all neighbors within a distance ε.  (note that we need a distance metric in scale) 
 
Such interest points can be computed directly from a difference of levels in the 
Gaussian pyramid. For a Gaussian Scale Space, we can show that:  
 
 

! 

"2Gx (x, y,# ) =Gxx (x, y,# )+Gyy(x, y,# ) =
$G(x, y,# )

$#
 

 
As a consequence:     ∇2G(x, y, σ)  ≈  G(x, y, σ1) – G(x, y, σ22

)   
 
This is called a "Difference of Gaussians" (DoG) and requires    σ1 ≥ 2  σ2 
Thus the Laplacian of the image can be approximated as the difference at adjacent 
pyramid levels from a Gaussian Pyramid.  
 
 ∇2P(x, y, k) =  P(x, y, k) – P(x, y, k–1)   
 
Thus, we can detect scale invariant interest points local maxima in the Laplacian.  
 
 

! 

xi , yi , si = local "max
x,y,k

{P(x, y,k)"P(x, y,k "1)}  
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Note that the points must be at the same image position (x,y).  If the pyramid is 
resampled then we can not simply use (i,j).  We must use x = i∆xk  and   y = j∆yk to 
assure that the sample are at the same image position. 
 
A difference in scale in the pyramid levels is ∆σ=2 is not precise.  
A value of  ∆σ=√2 is more accurate. 
 
1.7. Natural Interest points from the Laplacian at half octave scales.  
 
To obtain a natural interest point with a scale precision of less than ∆σ=2 we can use 
cascade convolution within each pyramid level. 
 
Consider a pyramid image at level k:  P(i, j, k) with σk = 2k 
 
we compute:  
 P1(i, j, k) = P(i, j, k) * G(i, j, 1)  σk1 = 2k+1/2 

 P2(i, j, k) = P1(i, j, k) * G(i, j, 1)  σk2 = 2k+1 

 P3(i, j, k) = P2(i, j, k) * G(i, j, 2)  σk2 = 2k+2  
 P4(i, j, k) = P3(i, j, k) * G(i, j, 4)  σk2 = 2k+4  
 
For each pixel local, we can then calculate 4 Laplacian values. :  
 
 Lk0 = P1(i, j, k) – P(i, j, k) 
 Lk1 = P2(i, j, k) – P1(i, j, k) 
 Lk2 = P3(i, j, k) – P2(i, j, k) 
 Lk3 = P4(i, j, k) – P3(i, j, k) 
 
If Lk0 < Lk1 > Lk2 then the point P(i, j, k) is a natural interest point at with σ = 2k+1/2   
If Lk1 < Lk2 > Lk3 then the point P(i, j, k) is a natural interest point with σ = 2k+1 
 
The position of the natural interest point is  x =  i · 2k, y = j · 2k- 
 
This is the method used to find natural interest points in the SIFT detector described 
below.   
 
1.8. Interest points from Gradient Magnitude 
 
We can also compute an intrinsic scale for the Gradient magnitude.   
 

 The Gradient 
  

! 

! 
" P(x, y, s) =

Px (x, y, s)
Py(x, y, s)
# 

$ 
% 

& 

' 
( =

P *Gx (x, y, s)
P *Gy(x, y, s)
# 

$ 
% 

& 

' 
(  

 
For any image point (x,y) the intrinsic scale can be computed from  
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! 

si = local"max
s

{
! 
# P(x, y, s) }  

 
These are positions in the image that can serve as landmarks for tracking or 
recognition.  
 
In a scale-invariant pyramid, the gradient is available at any sample in the pyramid as  
 

 
  

! 

! 
" P(i, j,k) =

Px (i, j,k)
Py(i, j,k)
# 

$ 
% 

& 

' 
( =

P(i+1, j,k))P(i )1, j,k)
P(i, j +1,k))P(i, j )1,k)
# 

$ 
% 

& 

' 
(  

 
For the image gradient, a scale invariant interest point is  
 
 

  

! 

ii , ji ,ki = Local"max
i, j,k

{
! 
# P(i, j,k) }  
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2.  HOG: Histogram of Oriented Gradients 
 
A local histogram of gradient orientation provides a vector of features image 
appearance that is relatively robust to changes in orientation and illumination.   
 
HOG gained popularity because of its use in the SIFT feature point detector 
(described next). It was subsequently explored and made popular by Navneet Dalal 
(M2R GVR 2003) and Bill Triggs (CNRS Labo LJK).  
 
Recall:  The orientation of a gradient at pyramid sample (i,j,k) is:  
 

 

! 

"(i, j,k) =Tan#1
py(i, j,k)
px (i, j,k)

$ 
% 
& 

' 
( 
) 

 

 
This is a number between 0 and π. We can quantize it to a value between 1 and N 
value by  
 

! 

a(i, j,k) =Trunc N " #(i, j,k)
$

% 
& 
' 

( 
) 
* 
 

 
We can then build a local histogram for a window of size WxH, with upper left 
corner at io, jo, k.  We allocate a table of N cells: h(a). Then for each pixel i,j in our 
window:  
 
  

! 

"
i=1

W
"
j=1

H
h(a(i+ io, j + jo ,k)) = h(a(i+ io, j + jo ,k))+1 

 
The result is a local feature composed of N values.  
Recall that with histograms, we need around 8 samples per bin to have a low RMS 
error. Thus a good practice is to have  N=W=H.  For example N=4, W=4 and H=4. 
Many authors ignore this and use values such as N=8, W=4, H=4, resulting in a 
sparse histogram.  
 
Remark:  A fast version when N=4 replaces the inverse tangent by computing the 
diagonal derivatives with differences:  
 
 

! 

P"
4

(i, j,k) = P(i+1, j +1,k)#P(i #1, j #1,k)  

 

! 

P"
2

(i, j,k) = P(i, j +1,k)#P(i, j #1,k) 

 

! 

P3"
4

(i, j,k) = P(i+1, j #1,k)#P(i #1, j +1,k) 

 

! 

P" (i, j,k) = P(i+1, j,k)#P(i #1, j,k)  
 
To determine a(i,j,k) simply choose the maximum.  
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3. Scale Invariant Feature Transform (SIFT) 
 
SIFT uses a scale invariant pyramid to compute scale invariant interest points  as 
shown above.  
 
 Lk0 = p1(i, j, k) – p(i, j, k) 
 Lk1 = p2(i, j, k) – p1(i, j, k) 
 Lk2 = p3(i, j, k) – p2(i, j, k) 
 Lk3 = p4(i, j, k) – p3(i, j, k) 
 
If Lk0 < Lk1 > Lk2 then the point p(i, j, k) is a natural interest point at with σ = 2k+1/2   
If Lk1 < Lk2 > Lk3 then the point p(i, j, k) is a natural interest point with σ = 2k+1 
 
For each interest point, it then computes a  U x V grid of HOG detectors with N=8, 
W=4, H=4 at the level k 
Typically U=V=4.  
 
 At level k,  ∆i=∆j=2 k/2 

 
This gives 16 x 8 = 128 features at each interest point.  
This feature vector is invariant to changes in position and scale and very robust with 
changes in image plane rotation and illumination intensity.  
 

 

    

 

    

 

    

 

    

 
Various authors experiment with other grid sizes.  
For example, let the grid size be G.  
 
 G=4,  W=4, H=4, N=4 
 
Gives 64 features.  
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4. Harris Corner Detector 
 
Harris, Chris, and Mike Stephens. "A combined corner and edge detector." Alvey 
vision conference. Vol. 15. 1988. 
 
The Harris-Stevens Corner detector is inspired from the Moravec Interest Point 
detector proposed in 1973 by Hans Moravec for stereo matching.  Moravec used the 
Sum of Squared Difference (SSD) between adjacent small patches to detect interest 
points.  In 1988, Harris and Stevens observed that this is equivalent to an auto-
correlation of the image.   
 
 

! 

S(x, y) = w(u,v) I(u + x,v+ y)" I(u,v)( )2
u,v
#  

 
where   

! 

I(x, y)  is the image,  
   w(x,y) is some window function, typically Gaussian.  
 
 I(u+x,v+y) can be approximated as a local Taylor Series:  
 
 

! 

I(u + x,v+ y) " I(u,v)+ I x (u,v)x+ I y(u,v)y  
 
where  

! 

I x (x, y) and 

! 

I y(x, y) are the local x and y derivatives 
 
Giving  

! 

S(x, y) = w(u,v) I x (u,v)x+ I y(u,v)y( )2
u,v
"  

Which can be written in Matrix form as:  

! 

S(x, y) " x y( )A
x
y
# 

$ 
% 
& 

' 
(   where A is the 

“Structure Tensor” 
 

 

! 

A = w(x, y)
I x I x I x I y
I x I y I yI y

" 

# 
$ 

% 

& 
' 

x,y
(    

With our Gaussian pyramid this is simply:  

! 

A =
Px
2 PxPy

PxPy Py
2

" 

# 
$ 

% 

& 
'  

 

Compute the Eigenvectors of A:  

! 

"1 0
0 "2

# 

$ 
% 

& 

' 
( = R A RT  

 
where 

! 

"1 is the maximum  gradient, 

! 

"2  is the minimum gradient.  
 
if 

! 

"1 # 0  and 

! 

"2 # 0 then the point is of no interest 
if 

! 

"1 # 0  and 

! 

"2 >> 0 then the point is a horizontal edge 
if 

! 

"1 >> 0  and 

! 

"2 # 0 then the point is a vertical edge 
if 

! 

"1 # "2 >> 0    then the point is corner 
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To avoid computing the eigenvalues (requires a square root), we can define a 
measure for “corner-ness”:  
 

 

! 

Mc = det(A)"# $Trace2 (A) = %1%2 "# %1 +%2( )2  
 
where κ is a tunable sensitivity parameter.  
 
Examples of Harris-Stevens Corners:  
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5. Ridge Detection.  
 
The Eigenvalues of the Hessian provide a popular ridge detector.  
 

The Hessian at scale s is 

! 

H (x, y, s) =
Pxx (x, y, s) Pxy(x, y, s)
Pxy(x, y, s) Pyy(x, y, s)
" 

# 
$ 

% 

& 
'  

 
The Eigenvalues are found by diagonalizing the Hessian.  
For any point in scale space (x, y, s)   
 

 

! 

Prr 0
0 Pss

" 

# 
$ 

% 

& 
' = R H RT   where  

! 

R =
cos(" ) #sin(" )
sin(" ) cos(" )
$ 

% 
& 

' 

( 
)  

 

! 

Pss  is the largest value in second derivative, while 

! 

Prr is the smallest.   
On a ridge point, 

! 

Prr  will be the second derivative along the ridge (close to zero) 
while 

! 

Pss  will be the 2nd derivative perpendicular to the ridge.  
 
For any 2D Matrix, the principal directions can be computed directly as  
 

 

! 

cos(") =
1
2
1+

Pxx #Pyy

Pxx #Pyy( )2 + 4Pxy
2

$ 

% 

& 
& & 

' 

( 

) 
) ) 
 ,    

! 

sin(") = sgn(Pxy )
1
2
1#

Pxx #Pyy

Pxx #Pyy( )2 + 4Pxy
2

$ 

% 

& 
& & 

' 

( 

) 
) ) 
 

 

Recall that the gradient is 
  

! 

! 
" P(x, y, s) =

Px (x, y, s)
Py(x, y, s)
# 

$ 
% 

& 

' 
( =

P *Gx (x, y, s)
P *Gy(x, y, s)
# 

$ 
% 

& 

' 
(  

 
for any point (x, y, s), the Gradient can be aligned with the ridge using  
 
 

! 

Pr = cos(")Px # sin(" )Py  
 

! 

Ps = sin(")Px + cos(" )Py  
 
A positive ridge point is any point, R(x,y,s) that satisfies:  
 
 Pr = 0 and Prr ≤ 0 and | Prr| ≥ |Pss| 
 
A negative ridge is any point for which   
 
 Pr=0 and Prr ≥ 0 and | Prr|≤ |Pss| 
 
of course, Pr  will rarely be exactly zero, so we use form of approximation Pr ≈ 0 
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The ridge direction at (x, y, s) is:  

! 

cos(") =
Px

Px
2 +Py

2
 

! 

sin(") =
Py

Px
2 +Py

2
 

 
A Maximal ridge is a ridge point 

! 

R(x, y, s) for which  

! 

local"max
s

{#2P(x, y, s)}  
 
Examples of Maximal Ridge points:  
 

 
 

 
 


