

Userʼs Guide

Quicksilver Beta

December 31st 2007

by

Joseph C. Giarratano, Ph.D.

 — i —

CLIPS Userʼs Guide
Table of Contents

Chapter 1 Just the Facts...1

Introduction..1
The Beginning and the End...2
Making a List ...3
And Checking It Twice...3
Clearing Up the Facts..5
Sensitive Fields and Slurping ..6
A Matter of Style..14
Getting Spaced Out...15
Retract that Fact..16
Watch that Fact ...18
With a Little Help ...20

Chapter 2 Following the Rules ..21

Making Good Rules...21
Let's Get Quacking..24
Kick your Duck ..26
Show Me the Rules ...27
Write to Me..28
Other Features ..29

Chapter 3 Adding Details...31

Stop And Go..31
Take a Walk ..32
A Question of Strategy ..32
Gimme Deffacts...33
Selective Elimination ...35
Watch It! ..35
A Good Match ...36
Other Features ..37

Chapter 4 Variable Interests ..39

Let's Get Variable..39
Be Assertive ..40
What the Duck Said...41
The Happy Bachelor..42
It's Not Important ...43
Going Wild...45
The Ideal Bachelor ..47
The Lucky Duck...49

 — ii —

Chapter 5 Doing It Up In Style ..53

Mr. Wonderful..53
Bye-Bye...55
Ain't No Strings on Me...58
What's in a Name ..59

Chapter 6 Being Functional ...63

Not My Constraint..63
Be Cautious...64
And Away We Go..65
It's Elementary...66
Extensive Arguments ..67
Mixed Results..68
Bound Bachelors ...69
Doing Your Own Thing ..71
Other Features ..72

Chapter 7 How to Be in Control...75

Let's Start Reading..75
Being Efficient ...77
Other Features ..78

Chapter 8 Matters of Inheritance...83

How to be Objective ..83
The Class Stuff..84
How the UPPIES Get Theirs ...86
The Illegitimate YUKKIE..91
Show Me ...94
Other Features ..99

Chapter 9 Meaningful Messages...101

The Birds and the Bees...101
Dorky Duck..103
Much Ado About Instances..106
The Disappearing Duck...107
What Did You Have For Breakfast ..108
Class Etiquette ..111
Other Features ..112

Chapter 10 Fascinating Facets..113

A Slot Named Default ..113
Cardinal Properties..116
Other Features ..117

 — iii —

Chapter 11 Handling Handlers ..121

Your Primitive Self...121
Make 'Em Pay Through the Nose..125
Getting Around ..126
Primary Considerations ...127
The Power of Belief ...129
The Truthful Daemon...131
Get the Point ...134
Treasure Maps ..140
Other Features ..145

Chapter 12 Questions and Answers ...147

Object Lessons..147
Objects in the Database ..148
I'll Take Any...150
Design Decisions...151
Other Features ..154

Support Information ...155

Index..157

 — iv —

 — v —

Readme
The first step on the road to wisdom is the admission of ignorance. The
second step is realizing that you don't have to blab it to the world.

This section was formerly called the Preface, but since nobody read it, I renamed it to a
more conventional title that computers users are conditioned to obey. Another
suggestion was to call this the Don't Readme section, but since people today believe
everything they read, I was afraid they really wouldn't read it.

The purpose of a Preface, oops, excuse me, a Readme, is to provide
metaknowledge about the knowledge contained in a book. The term metaknowledge
means knowledge about the knowledge. So this description of the Readme is actually
metametaknowledge. If you're either confused or intrigued at this point, go ahead and
read this book anyway because I need all the readers I can get.

What Is CLIPS?

CLIPS is an expert system tool originally developed by the Software Technology Branch
(STB), NASA/Lyndon B. Johnson Space Center. Since its first release in 1986, CLIPS
has undergone continual refinement and improvement. It is now used by thousands of
people around the world.

CLIPS is designed to facilitate the development of software to model human
knowledge or expertise.

There are three ways to represent knowledge in CLIPS:
• Rules, which are primarily intended for heuristic knowledge based on

experience.
• Deffunctions and generic functions, which are primarily intended for procedural

knowledge.

 — vi —

• Object-oriented programming, also primarily intended for procedural

knowledge. The five generally accepted features of object-oriented
programming are supported: classes, message-handlers, abstraction,
encapsulation, inheritance, polymorphism. Rules may pattern match on objects
and facts.

You can develop software using only rules, only objects, or a mixture of objects and
rules.

CLIPS has also been designed for integration with other languages such as C and
Java. In fact, CLIPS is an acronym for C Language Integrated Production System. Rules
and objects form an integrated system too since rules can pattern-match on facts and
objects. In addition to being used as a stand-alone tool, CLIPS can be called from a
procedural language, perform its function, and then return control back to the calling
program. Likewise, procedural code can be defined as external functions and called
from CLIPS. When the external code completes execution, control returns to CLIPS.

If you are already familiar with object-oriented programming in other languages such
as C++, Smalltalk, Objective C, or Java, you know the advantages of objects in
developing software. If you are not familiar with object-oriented programming, you will
find that CLIPS is an excellent tool for learning this new concept in software
development.

What This Book is About

The CLIPS User's Guide is an introductory tutorial on the basic features of CLIPS. It is
not intended to be a comprehensive discussion of the entire tool. The companion
volume to this book is theCLIPS Reference Manual., which does provide a complete,
comprehensive discussion of all the topics in this book and much more.

Who Should Read This Book

The purpose of the CLIPS User's Guide is to provide an easy to read, elementary
introduction to expert systems for people with little or no experience with expert
systems.

The CLIPS User's Guide can be used in the classroom or for self-teaching. The only
prerequisite is that you have a basic knowledge of programming in a high-level

 — vii —

language such as Java, Ada, FORTRAN, C (OK, BASIC if nothing else, but we won't
admit it in public and will disavow this statement if asked.)

How To Use This Book

The CLIPS User's Guide is designed for people who want a quick introduction to expert
system programming in a hands-on manner. The examples are of a very general nature.
Also, since learning a new language can be a frustrating experience, the writing is in a
light, humorous style (I hope) compared to serious-minded, massive, and intimidating
college textbooks. Hopefully, the humor will not offend anyone with a sense of humor.

For maximum benefit, you should type in the example programs in the text as you
read through the book. By typing in the examples, you will see how the programs should
work and what error messages occur if you make a mistake. The output for the
examples is shown or described after each example. Finally, you should read the
corresponding material in the CLIPS Reference Manual as you cover each chapter in
the CLIPS User's Guide..

Like any other programming language, you will only learn programming in CLIPS by
writing programs in it. To really learn expert system programming, you should pick a
problem of interest and write it in CLIPS.

Acknowledgments

I greatly appreciate the advice and reviews of this book by many people. Thanks to
Gary Riley, Chris Culbert, Brian Dantes, Bryan Dulock, Steven Lewis, Ann Baker, Steve
Mueller, Stephen Baudendistel, Yen Huynh, Ted Leibfried, Robert Allen, Jim Wescott,
Marsha Renals, Pratibha Boloor, Terry Feagin, and Jack Aldridge. Special thanks to
Bob Savely for supporting the development of CLIPS.

 — 1 —

Chapter 1 Just the Facts
If you ignore the facts, you'll never worry about being wrong

This chapter introduces the basic concepts of an expert system. You'll see how to insert
and remove facts in CLIPS. If you are using a Macintosh or the Windows version of
CLIPS for the IBM PC (or compatible), you can select some commands by using the
mouse instead of typing them in. The arrow keys on the keyboard will also move the
cursor and allow selection of menu items.

Introduction

CLIPS is a type of computer language designed for writing applications called expert
systems. An expert system is a program which is specifically intended to model human
expertise or knowledge. In contrast, common programs such as payroll programs, word
processors, spreadsheets, computer games, and so forth, are not intended to embody
human expertise or knowledge. (One definition of an expert is someone more than 50
miles from home and carrying a briefcase.)

CLIPS is called an expert system tool because it is a complete environment for
developing expert systems which includes features such as an integrated editor and a
debugging tool. The word shell is reserved for that portion of CLIPS which performs
inferences or reasoning. The CLIPS shell provides the basic elements of an expert
system:

1. fact-list, and instance-list: Global memory for data
2. knowledge-base: Contains all the rules, the rule-base
3. inference engine: Controls overall execution of rules
A program written in CLIPS may consist of rules, facts, and objects. The inference

engine decides which rules should be executed and when. A rule-based expert system
written in CLIPS is a data-driven program where the facts, and objects if desired, are the

 — 2 —

data that stimulate execution via the inference engine.
This is one example of how CLIPS differs from procedural languages such as Java,

Ada, BASIC, FORTRAN, and C. In procedural languages, execution can proceed
without data. That is, the statements are sufficient in those languages to cause
execution. For example, a statement such as PRINT 2 + 2 could be immediately
executed in BASIC. This is a complete statement that does not require any additional
data to cause its execution. However, in CLIPS, data are required to cause the
execution of rules.

Originally, CLIPS had capabilities to represent only rules and facts. However, the
enhancements of Version 6.0 allow rules to match objects as well as facts. Also, objects
may be used without rules by sending messages and so the inference engine is no
longer necessary if you use only objects. In chapters 1 through 7, we'll discuss the facts
and rules of CLIPS. The object features of CLIPS are covered in chapters 8 through 12.

The Beginning and the End

To begin CLIPS, just enter the appropriate run command for your system. You should
see the CLIPS prompt appear as follows:

CLIPS>

At this point, you can start entering commands directly into CLIPS. The mode in which
you are entering direct commands is called the top-level. If you have a Graphical User
Interface (GUI) version of CLIPS, you can also select some commands using the
mouse or arrow keys rather than typing them in. Please refer to the CLIPS Interfaces
Guide for a discussion of the commands supported by the various CLIPS GUIs. For
simplicity and uniformity in this book, we'll assume the commands are typed in.

The normal mode of leaving CLIPS is with the exit command. Just type

(exit)

in response to the CLIPS prompt and then press the carriage return key.

 — 3 —

Making a List

As with other programming languages, CLIPS recognizes certain keywords. For
example, if you want to put data in the fact-list, you can use the assert command.

As an example of assert, enter the following right after the CLIPS prompt as shown:

CLIPS> (assert (duck))

Here the assert command takes (duck) as its argument. Be sure to always press the
carriage return key to send the line to CLIPS.

You will see the response

<Fact-1>

which indicates CLIPS has stored the duck fact in the fact-list and given it the identifier
1. The angle-brackets are used as a delimiter in CLIPS to surround the name of an
item. CLIPS will automatically name facts using a sequentially increasing number and
list the highest fact-index when one or more facts is asserted.

Notice that the (assert) command and its (duck) argument are surrounded by
parentheses. Like many other expert system languages, CLIPS has a LISP-like syntax
which uses parentheses as delimiters. Although CLIPS is not written in LISP, the style
of LISP has influenced the development of CLIPS.

And Checking It Twice

Suppose you want to see what's in the fact-list. If your version of CLIPS supports a GUI,
you may just select the appropriate command from the menu. Alternatively, you can
enter commands from the keyboard. In the following, we'll describe the keyboard
commands since the window selections are self-explanatory.

The keyboard command to see facts is with the facts command. Enter (facts) in
response to the CLIPS prompt and CLIPS will respond with a list of facts in the fact-list.
Be sure to put parentheses around the command or CLIPS will not accept it. The result
of the (facts) command in this example should be

CLIPS> (facts)

 — 4 —

f-0 (initial-fact)
f-1 (duck)
For a total of 2 facts.
CLIPS>

The terms f-0 and f-1 are the fact identifier assigned to each fact by CLIPS. Every
fact inserted into the fact-list is assigned a unique fact identifier starting with the letter "f"
and followed by an integer called the fact-index. On starting up CLIPS, and after certain
commands such as clear and reset (to be discussed in more detail later), the fact-
index will be set to zero, and then incremented by one as each new fact is asserted.
The (reset) and (clear) commands will also insert a fact (initial-fact) as f-0. In prior
versions of CLIPS this fact was used implicitly by CLIPS to initially activate some types
of rules and could also be used explicitly by user programs to activate rules as well, but
is now only provided for backwards compatibility.

What happens if you try to put a second duck into the fact-list? Let's try it and see.
Assert a new (duck), then issue a (facts) command as follows

CLIPS> (assert (duck))
FALSE
CLIPS> (facts)
f-0 (initial-fact)
f-1 (duck)
For a total of 2 facts.
CLIPS>

The FALSE message is returned by CLIPS to indicate that it was not possible to

perform this command. You'll see just the original "f-1 (duck)". This shows that CLIPS
will not accept a duplicate entry of a fact. However, there is an override command,
set-fact-duplication, which will allow duplicate fact entry.

Of course you can put in other, different facts. For example, assert a (quack) fact and
then issue a (facts) command. You'll see

CLIPS> (assert (quack))
<Fact-2>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (duck)
f-2 (quack)
For a total of 3 facts.

 — 5 —

CLIPS>

Notice that the (quack) fact is now in the fact-list.

Facts may be removed or retracted. When a fact is retracted, the other facts do not
have their indices changed, and so there may be "missing" fact-indices. As an analogy,
when a football player leaves a team and is not replaced, the jersey numbers of the
other players are not all adjusted because of the missing number (unless they really
hate the guy's guts and want to forget he ever played for them.)

Clearing Up the Facts

The clear command removes all facts from memory, as shown by the following.

CLIPS> (facts)
f-0 (initial-fact)
f-1 (duck)
f-2 (quack)
For a total of 3 facts.
CLIPS> (clear)
CLIPS>

and all facts in the fact-list will be removed.

The (clear) command essentially restores CLIPS to its original startup state. It clears
the memory of CLIPS, resets the fact-identifier to zero, and asserts the (initial-fact). To
see this, assert (animal-is duck), then check the fact-list. Notice that (animal-is duck)
has a fact-identifier of f-1 because the (clear) command reset the fact identifiers. The
(clear) command actually does more than just remove facts. Besides removing all the
facts, (clear) also removes all the rules, as you'll see in the next chapter.

The following example shows how three facts are asserted, and the (facts) command
is used. The (clear) command is used to get rid of all facts in memory and reset the fact-
indices to start with f-0.

CLIPS> (clear)
CLIPS> (assert (a) (b) (c))
<Fact-3>
CLIPS> (facts)
f-0 (initial-fact)

 — 6 —

f-1 (a)
f-2 (b)
f-3 (c)
For a total of 4 facts.
CLIPS> (facts 0)
f-0 (initial-fact)
f-1 (a)
f-2 (b)
f-3 (c)
For a total of 4 facts.
CLIPS> (facts 1)
f-1 (a)
f-2 (b)
f-3 (c)
For a total of 3 facts.
CLIPS> (facts 2)
f-2 (b)
f-3 (c)
For a total of 2 facts.
CLIPS> (facts 1 2)
f-1 (a)
f-2 (b)
For a total of 2 facts.
CLIPS> (facts 1 3 2)
f-1 (a)
f-2 (b)
For a total of 2 facts.
CLIPS>

Notice only one (assert) is used to assert the three facts, (a), (b), and (c). The highest
fact-index is 3 and this is returned by CLIPS in the informational message <Fact-3>.
The much longer alternative would be to assert one fact per command (This may be
done by people who like to show off their typing speed.)

Sensitive Fields and Slurping

A fact such as (duck) or (quack) is said to consist of a single field. A field is a
placeholder (named or unnamed) that may have a value associated with it. As a simple
analogy, you can think of a field as a picture frame. The frame can hold a picture,
perhaps a picture of your pet duck (For those of you who are curious what a picture of a

 — 7 —

"quack" looks like, it could be (1) a photo of an oscilloscope trace of a duck saying
"quack", where the signal input comes from a microphone, or (2) for those of you who
are more scientifically inclined, a Fast Fourier Transform of the "quack" signal, or (3) a
TV-huckster selling a miracle cure for wrinkles, losing weight, etc.). Named placeholders
are only used with deftemplates, described in more detail in chapter 5.

The (duck) fact has a single, unnamed placeholder for the value duck. This is an
example of a single-field fact. A field is a placeholer for a value. As an analogy to
fields, think of dishes (fields) for holding food (values).

The order of unnamed fields is significant. For example, if a fact was defined

(Brian duck)

and interpreted by a rule as the hunter Brian shot a duck, then the fact

(duck Brian)

would mean that the hunter duck shot a Brian. In contrast, the order of named fields is
not significant, as you'll see later with deftemplate.

Actually, it is good software engineering to start the fact with a relation that describes
the fields. A better fact would be

(hunter-game duck Brian)

to imply that the first field is the hunter and the second field is the game.
A few definitions are now necessary. A list is a group of items with no implied order.

Saying that a list is ordered means that the position in the list is significant. A
multifield is a sequence of fields, each of which may have a value. The examples of
(duck Brian) and (Brian duck) are multifield facts. If a field has no value, the special
symbol nil, which means "nothing" may be used for an empty field as a placeholder. For
example,

(duck nil)

would mean that the killer duck bagged no trophies today.

Note that the nil is necessary to indicate a placeholder, even if it has no value. For

 — 8 —

example, think of a field as analogous to a mailbox. There's a big difference between an
empty mailbox, and no mailbox at all. Without the nil, the fact becomes a single-field fact
(duck). If a rule depends on two fields, it will not work with only one field, as you'll see
later.

There are a number of different types of fields available: float, integer, symbol,
string, external-address, fact-address, instance-name and instance-address The
type of each field is determined by the type of value stored in the field. In an unnamed
field, the type is determined implicitly by what type you put in the field. In deftemplates,
you can explicitlty declare the type of value that a field can contain. The use of explicit
types enforces the concepts of software engineering, which is a discipline of
programming to produce quality software.

A symbol is one type of field that starts with a printable ASCII character and is
followed optionally by zero or more printable characters. Fields are commonly delimited
or bounded, by one or more spaces or parentheses. For example,

(duck-shot Brian Gary Rey)

has four fields to indicate all the hunters shot by the killer duck. In this fact, the fields are
delimited by spaces, and the opening and closing parentheses.

Facts are not allowed to be embedded within other facts. For example, the following
is an illegal ordered fact.

(duck (shot Brian Gary Rey))

However, this could be a legal deftemplate fact if "shot" is defined as the name of a
field, while "Brian Gary Rey" are the values associated with the named field.

CLIPS is case-sensitive. Also, certain characters have special meaning to CLIPS.

 " () & | < ~ ; ? $

The "&", "|", and "~" may not be used as stand-alone symbols or as any part of a
symbol.

 Some characters act as delimiters by ending a symbol. The following characters act
as delimiters for symbols.

• any non-printable ASCII character, including spaces, carriage returns, tabs, and
linefeeds

 — 9 —

• double quotes, "
• opening and closing parentheses, ()
• ampersand, &
• vertical bar, |
• less than, <. Note that this may be the first character of a symbol
• tilde, ~
• semicolon, ; indicates start of a comment, a carriage return ends it
• ? and $? may not begin a symbol but may be inside it

The semicolon acts as the start of a comment in CLIPS. If you try to assert a
semicolon, CLIPS will think you're entering a comment and wait for you to finish. If you
accidentally enter a semicolon in top-level, just type in a closing parenthesis and
carriage return. CLIPS will respond with an error message and the CLIPS prompt will
reappear (This is one of the few approved occasions in life in which it's necessary to do
something wrong to get something right.)

 As you read through this manual, you will learn the special meanings of the
characters above. With the exception of the "&", "|", and "~", you may use the others as
described. However, it may be confusing to someone reading your program and trying
to understand what the program is doing. In general, it's best to avoid using these
characters in symbols unless you have some good reason for using them.

The following are examples of symbols.

duck
duck1
duck_soup
duck-soup
duck1-1_soup-soup
d!?#%^

The second type of field is the string. A string must begin and end with double
quotes. The double quotes are part of the field. Zero or more characters of any kind can
appear between the double quotes. Some examples of strings follow.

"duck"
"duck1"
"duck/soup"
"duck soup"

 — 10 —

"duck soup is good!!!"

The third and fourth types of field are numeric fields. A field which represents a
number which can be either an integer or floating-point type field. A floating-point type
is commonly referred to simply as a float.

All numbers in CLIPS are treated as “long long” integers or double-precision floats.
Numbers without a decimal point are treated as integers unless they are outside integer
range. The range is machine dependent on the number of bits, N, used to represent the
integer as follows.

 - 2N-1 ... 2N-1-1

For 64-bit “long long” integers, this corresponds to a range of numbers

 - 9,223,372,036,854,775,808 ... 9,223,372,036,854,775,807

As some examples of numbers, assert the following data where the last number is in
exponential notation, and uses the "e" or "E" for the power-of-ten.

CLIPS> (clear)
CLIPS> (facts)
f-0 (initial-fact)
For a total of 1 fact.
CLIPS> (assert (number 1))
<Fact-1>
CLIPS> (assert (x 1.5))
<Fact-2>
CLIPS> (assert (y -1))
<Fact-3>
CLIPS> (assert (z 65))
<Fact-4>
CLIPS> (assert (distance 3.5e5))
<Fact-5>
CLIPS> (assert (coordinates 1 2 3))
<Fact-6>
CLIPS> (assert (coordinates 1 3 2))
<Fact-7>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (number 1)

 — 11 —

f-2 (x 1.5)
f-3 (y -1)
f-4 (z 65)
f-5 (distance 350000.0)
f-6 (coordinates 1 2 3)
f-7 (coordinates 1 3 2)
For a total of 8 facts.
CLIPS>

As you can see, CLIPS prints the number entered in exponential notation as 350000.0
because it converts from power-of-ten format to floating-point if the number is small
enough.

Notice that each number must start with a symbol such as "number", "x", "y", etc.
Before CLIPS version 6.0, it was possible to enter only a number as a fact. However,
now a symbol is required as the first field. Also, certain reserved words used by CLIPS
cannot be used as the first field, but may be used for other fields. For example, the
reserved word not is used to indicate a negated pattern and may not be used as the first
field of a fact.

A fact consists of one or more fields enclosed in matching left and right parentheses.
For simplicity we'll only discusss facts in the first seven chapters, but most of the
discussion of pattern matching applies to objects as well. Exceptions are certain
functions such as assert and retract which only apply to facts, not objects. The
corresponding ways to handle objects are discussed in chapters 8–12.

A fact may be ordered or unordered. All the examples you've seen so far are
ordered facts because the order of fields makes a difference. For example, notice that
CLIPS considers these as separate facts although the same values "1", "2", and "3" are
used in each.

f-6 (coordinates 1 2 3)
f-7 (coordinates 1 3 2)

Ordered facts must use field position to define data. As an example, the ordered fact

(duck Brian) has two fields and so does (Brian duck). However, these are considered as
two separate facts by CLIPS because the order of field values is different. In contrast,
the fact (duck-Brian) has only one field because of the "-" concatenating the two values.

Deftemplate facts, described in more detail later, are unordered because they use
named fields to define data. This is analogous to the use of structs in C and other

 — 12 —

languages.
Multiple fields normally are separated by white space consisting of one or more

spaces, tabs, carriage returns, or linefeeds. For example, enter the following examples
as shown and you'll see that each stored fact is the same.

CLIPS> (clear)
CLIPS> (assert (The duck says "Quack"))
<Fact-1>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (The duck says "Quack")
For a total of 2 facts.
CLIPS> (clear)
CLIPS> (assert (The duck says "Quack"))
<Fact-1>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (The duck says "Quack")
For a total of 2 facts.
CLIPS>

Carriage returns may also be used to improve readability. In the following example, a

carriage return is typed after every field and the asserted fact is the same as before
when the fact was entered on one line.

CLIPS> (clear)
CLIPS> (assert (The
duck
says
"Quack"))
<Fact-1>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (The duck says "Quack")
For a total of 2 facts.
CLIPS>

However, be careful if you insert a carriage return inside of a string, as the following
example shows.

 — 13 —

CLIPS> (assert (The
duck
says
"Quack
"))
<Fact-2>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (The duck says "Quack")
f-2 (The duck says "Quack
")
For a total of 3 facts.
CLIPS>

As you can see, the carriage return embedded in the double quotes was output with

the string to put the closing double quote on the next line. This is important because
CLIPS considers fact f-1 as distinct from fact f-2.

Notice also that CLIPS preserved the uppercase and lowercase letters in the fields of
the fact. That is, the "T" of "The" and the "Q" of "Quack" are uppercase. CLIPS is said to
be case-sensitive because it distinguishes between uppercase and lowercase letters.
For example, assert the facts (duck) and (Duck) and then issue a (facts) command.
You'll see that CLIPS allows you to assert (duck) and (Duck) as different facts because
CLIPS is case-sensitive.

The following example is a more realistic case in which carriage returns are used to
improve the readability of a list. To see this, assert the following fact where carriage
returns and spaces are used to put fields at appropriate places on different lines.
Dashes or minus signs are used intentionally to create single fields, so CLIPS will treat
items like "fudge sauce" as a single field.

CLIPS> (clear)
CLIPS> (assert (grocery-list
 ice-cream
 cookies
 candy
 fudge-sauce))
<Fact-0>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (grocery-list ice-cream cookies candy fudge-sauce)

 — 14 —

For a total of 2 facts.
CLIPS>

As you can see, CLIPS replaced the carriage returns and tabs with single spaces.
While the use of white space in separating the facts is convenient for a person reading a
program, they are converted to single spaces by CLIPS.

A Matter of Style

It is good rule-based programming style to use the first field of a fact to describe the
relationship of the following fields. When used this way, the first field is called a relation.
The remaining fields of the fact are used for specific values. An example is (grocery-list
ice-cream cookies candy fudge-sauce). The dashes are used to make multiple words fit
in a single field.

Good documentation is even more important in an expert system than in languages
such as Java, C, Ada, etc., because the rules of an expert system are not generally
executed in a sequential manner. CLIPS aids the programmer in writing descriptive
facts like this by means of deftemplates.

Another example of related facts is (duck), (horse), and (cow). It's better style to refer
to them as

(animal-is duck)
(animal-is horse)
(animal-is cow)

or as the single fact

(animals duck horse cow)

since the relation animal-is or animals describes their relation and so provides some
documentation to the person reading the code.

The explicit relations, animal-is and animals, make more sense to a person than the
implicit meaning of (duck), (horse), and (cow). While this example is simple enough that
anyone can figure out the implicit relations, it is an easy trap to fall into to write facts in
which the relationship is not so obvious (In fact, it's much easier to make something
more complicated than easy, since people are more impressed by complexity than

 — 15 —

simplicity.)

Getting Spaced Out

Since spaces are used to separate multiple fields, it follows that spaces cannot simply
be included in facts. For example,

CLIPS> (clear)
CLIPS> (assert (animal-is walrus))
<Fact-1>
CLIPS> (assert (animal-is walrus))
FALSE
CLIPS> (assert (animal-is walrus))
FALSE
CLIPS> (facts)
f-0 (initial-fact)
f-1 (animal-is walrus)
For a total of 2 facts.
CLIPS>

Only one fact, (animal-is walrus), is asserted since CLIPS ignores white space and
considers all these facts equivalent. Thus, CLIPS responds with a FALSE when you try
to enter the last two duplicate facts. CLIPS normally does not allow duplicate facts to be
entered unless you change the set-fact-duplicate setting.

If you want to include spaces in a fact, you must use double quotes. For example,

CLIPS> (clear)
CLIPS> (assert (animal-is "duck"))
<Fact-1>
CLIPS> (assert (animal-is "duck "))
<Fact-2>
CLIPS> (assert (animal-is " duck"))
<Fact-3>
CLIPS> (assert (animal-is " duck "))
<Fact-4>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (animal-is "duck")
f-2 (animal-is "duck ")

 — 16 —

f-3 (animal-is " duck")
f-4 (animal-is " duck ")
For a total of 5 facts.
CLIPS>

 Note that the spaces make each of these facts different to CLIPS although the meaning
is the same to a person.

What if you want to include the double quotes in a field? The correct way to put
double quotes in a fact is with the backslash, "\", as the following example shows.

CLIPS> (clear)
CLIPS> (assert (single-quote "duck"))
<Fact-1>
CLIPS> (assert (double-quote "\"duck\""))
<Fact-2>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (single-quote "duck")
f-2 (double-quote ""duck"")
For a total of 3 facts.
CLIPS>

Retract that Fact

Now that you know how to put facts into the fact-list, it's time to learn how to remove
them. Removing facts from the fact-list is called retraction and is done with the retract
command. To retract a fact, you must specify the fact index of the fact as the argument
of retract. For example, set up your fact-list as follows.

CLIPS> (clear)
CLIPS> (assert (animal-is duck))
<Fact-1>
CLIPS> (assert (animal-sound quack))
<Fact-2>
CLIPS> (assert (The duck says "Quack."))
<Fact-3>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (animal-is duck)
f-2 (animal-sound quack)

 — 17 —

f-3 (The duck says "Quack.")
For a total of 4 facts.
CLIPS>

To remove the last fact with index f-3, enter the retract command and then check your
facts as follows.

CLIPS> (retract 3)
CLIPS> (facts)
f-0 (initial-fact)
f-1 (animal-is duck)
f-2 (animal-sound quack)
For a total of 3 facts.
CLIPS>

What happens if you try to retract a fact that's already retracted, or a non-existent
fact? Let's try it and see.

CLIPS> (retract 3)
[PRNTUTIL1] Unable to find fact f-3.
CLIPS>

Notice that CLIPS issues an error message if you try to retract a non-existent fact. The
moral of this is that you can't take back what you haven't given.

Now let's retract the other facts as follows.

CLIPS> (retract 2)
CLIPS> (facts)
f-0 (initial-fact)
f-1 (animal-is duck)
For a total of 2 facts.
CLIPS> (retract 1)
CLIPS> (facts)
f-0 (initial-fact)
For a total of 1 fact.
CLIPS>

To retract a fact, you must specify the fact-index.

You can also retract multiple facts at once, as shown by the following.

 — 18 —

CLIPS> (clear)
CLIPS> (assert (animal-is duck))
<Fact-1>
CLIPS> (assert (animal-sound quack))
<Fact-2>
CLIPS> (assert (The duck says "Quack."))
<Fact-3>
CLIPS> (retract 1 3)
CLIPS> (facts)
f-0 (initial-fact)
f-2 (animal-sound quack)
For a total of 2 facts.
CLIPS>

To retract multiple facts, just list the fact-id numbers in the (retract) command.

You can just use (retract *) to retract all the facts, where the "*" indicates all .

CLIPS> (clear)
CLIPS> (assert (animal-is duck))
<Fact-1>
CLIPS> (assert (animal-sound quack))
<Fact-2>
CLIPS> (assert (The duck says "Quack."))
<Fact-3>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (animal-is duck)
f-2 (animal-sound quack)
f-3 (The duck says "Quack.")
For a total of 4 facts.
CLIPS> (retract *)
CLIPS> (facts)
CLIPS>

Watch that Fact

CLIPS provides several commands to help you debug programs. One command allows
you to continuously watch facts being asserted and retracted. This is more convenient
than having to type in a (facts) command over and over again and trying to figure out

 — 19 —

what's changed in the fact-list.
To start watching facts, enter the command (watch facts) as shown in the following

example.

CLIPS> (clear)
CLIPS> (watch facts)
CLIPS> (assert (animal-is duck))
==> f-1 (animal-is duck)
<Fact-1>
CLIPS>

The right double arrow symbol, ==>, means that a fact is entering memory while the
left double arrow indicates a fact is leaving memory, as shown following.

CLIPS> (reset)
<== f-0 (initial-fact)
<== f-1 (animal-is duck)
==> f-0 (initial-fact)
CLIPS> (assert (animal-is duck))
==> f-1 (animal-is duck)
<Fact-1>
CLIPS> (retract 1)
<== f-1 (animal-is duck)
CLIPS> (facts)
f-0 (initial-fact)
For a total of 1 fact.
CLIPS>

The (watch facts) command provides a record that shows the dynamic or changing
state of the fact-list. In contrast, the (facts) command show the static state of the
fact-list since it displays the current contents of the fact-list. To turn off watching facts,
enter (unwatch facts).

There are a number of things you can watch. These include the following, which are
described in more detail in the CLIPS Reference Manual. The comment in CLIPS
begins with a semicolon. Everything after the semicolon is ignored by CLIPS.

 (watch facts)
 (watch instances) ; used with objects

 — 20 —

 (watch slots) ; used with objects
 (watch rules)
 (watch activations)
 (watch messages) ; used with objects
 (watch message-handlers) ; used with objects
 (watch generic-functions)
 (watch methods) ; used with objects
 (watch deffunctions)
 (watch compilations) ; on by default
 (watch statistics)
 (watch globals)
 (watch focus)
 (watch all) ; watch everything

As you use more of the capabilities of CLIPS, you'll find these (watch) commands
very helpful in debugging. To turn off a (watch) command, enter an unwatch command.
For example, to turn off watching compilations, enter (unwatch compilations).

With a Little Help

CLIPS has on-line help available. To access the help feature, just enter (help)
and press the carriage return key. In a short while, you'll see a menu of topics. For more
information on using (help), read the help section on HELP_USAGE. To exit from help,
keep pressing the carriage return key until the CLIPS prompt reappears. If an error
message appears that says CLIPS could not find the help file, clips.hlp, you can find out
where CLIPS expected it to be by using the command (help-path).

 — 21 —

Chapter 2 Following the Rules
If you want to get anywhere in life, don't break the rules
— make the rules!

In the previous chapter, you learned about facts. Now you'll see how the rules of an
expert system utilize facts in making a program execute.

Making Good Rules

To accomplish useful work, an expert system must have rules as well as facts. Since
you've seen how facts are asserted and retracted, it's time to see how rules work. A rule
is similar to an IF THEN statement in a procedural language like Java, C, or Ada. An IF
THEN rule can be expressed in a mixture of natural language and computer language
as follows:

IF certain conditions are true
THEN execute the following actions

Another term for the above statement is pseudocode, which literally means false
code. While pseudocode cannot be directly executed by the computer, it serves as a
very useful guide to writing executable code. Pseudocode is also helpful in documenting
rules. A translation of rules from natural language to CLIPS is not very difficult if you
keep this IF THEN analogy in mind. As your experience with CLIPS grows, you'll find
that writing rules in CLIPS becomes easy. You can either type rules directly into CLIPS
or load rules in from a file of rules created by a text editor.

The pseudocode for a rule about duck sounds might be

IF the animal is a duck
THEN the sound made is quack

 — 22 —

The following is a fact, and a rule named duck which is the pseudocode above

expressed in CLIPS syntax. The name of the rule follows immediately after the keyword
defrule. Although you can enter a rule on a single line, it's customary to put different
parts on separate lines to aid readability and editing.

CLIPS> (unwatch facts)
CLIPS> (clear)
CLIPS> (assert (animal-is duck))
<Fact-1>
CLIPS> (defrule duck
 (animal-is duck)
=>
 (assert (sound-is quack)))
CLIPS>

If you type in the rule correctly as shown, you should see the CLIPS prompt reappear.
Otherwise, you'll see an error message. If you get an error message, it is likely that you
misspelled a keyword or left out a parenthesis. Remember, the number of left and right
parentheses always must match in a statement.

The same rule is shown following with comments added to match the parts of the
rule. Also shown is the optional rule-header comment in quotes, "Here comes the
quack". There can be only one rule-header comment and it must be placed after the rule
name and before the first pattern. Although we're only discussing pattern matching
against facts now, more generally a pattern can be matched against a pattern entity. A
pattern entity is either a fact or an instance of a user-defined class. Pattern matching on
objects will be discussed later.

CLIPS tries to match the pattern of the rule against a pattern entity. Of course, white
space consisting of spaces, tabs, and carriage returns may be used to separate the
elements of a rule to improve readability. Other comments begin with a semicolon and
continue until the carriage return key is pressed to terminate a line. Comments are
ignored by CLIPS.

 — 23 —

(defrule duck "Here comes the quack" ; Rule header
 (animal-is duck) ; Pattern
=> ; THEN arrow
 (assert (sound-is quack))) ; Action

 • Only one rule name can exist at one time in CLIPS.
Entering the same rule name, in this case "duck", will replace any existing rule with

that name. That is, while there can be many rules in CLIPS, there can be only one rule
which is named "duck". This is analogous to other programming languages in which
only one procedure name can be used to uniquely identify a procedure.

The general syntax of a rule is shown following.

(defrule rule_name "optional_comment"
 (pattern_1) ; Left-Hand Side (LHS)
 (pattern_2) ; of the rule consisting of elements
 . ; before the "=>"
 .
 .
 (pattern_N)
=>
 (action_1) ; Right-Hand Side (RHS)
 (action_2) ; of the rule consisting of elements
 . ; after the "=>"
 .
 (action_M)) ; the last ")" balances the opening
 ; "(" to the left of "defrule". Be
 ; sure all your parentheses balance
 ; or you will get error messages

The entire rule must be surrounded by parentheses. Each of the rule patterns and
actions must be surrounded by parentheses. An action is actually a function which
typically has no return value, but performs some useful action, such as an (assert) or
(retract). For example, an action might be (assert (duck)). Here the function name is
"assert" and its argument is "duck". Notice that we don't want any return value such as a
number. Instead, we want the fact (duck) to be asserted. A function in CLIPS is a piece
of executable code identified by a specific name, which returns a useful value or

 — 24 —

performs a useful side-effect, such as (printout).
A rule often has multiple patterns and actions. The number of patterns and actions do

not have to be equal, which is why different indices, N and M, were chosen for the rule
patterns and actions.

Zero or more patterns may be written after the rule header. Each pattern consists of
one or more fields. In the duck rule, the pattern is (animal-is duck), where the fields are
"animal-is" and "duck". CLIPS attempts to match the patterns of rules against facts in
the fact-list. If all the patterns of a rule match facts, the rule is activated and put on the
agenda. The agenda is a collection of activations which are those rules which match
pattern entities. Zero or more activations may be on the agenda.

The symbol "=>" that follows the patterns in a rule is called an arrow. The arrow
represents the beginning of the THEN part of an IF-THEN rule (and may be read as
"implies").

The last part of a rule is the list of zero or more actions that will be executed when the
rule fires. In our example, the one action is to assert the fact (sound-is quack). The term
fires means that CLIPS has selected a certain rule for execution from the agenda.

• A program will cease execution when no activations are on the agenda.
When multiple activations are on the agenda, CLIPS automatically determines which

activation is appropriate to fire. CLIPS orders the activations on the agenda in terms of
increasing priority or salience.

The part of the rule before the arrow is called the left-hand side (LHS) and the part of
the rule after the arrow is called the right-hand side (RHS). If no patterns are specified,
CLIPS automatically activates the rule when a (reset) command is entered.

Let's Get Quacking

CLIPS always executes the actions on the RHS of the highest priority rule on the
agenda. This rule is then removed from the agenda and the actions of the new highest
salience rule is executed. This process continues until there are no more activations or
a command to stop is encountered.

You can check what's on the agenda with the agenda command. For example,

CLIPS> (agenda)
0 duck: f-1
For a total of 1 activation.

 — 25 —

CLIPS>

The first number "0" is the salience of the "duck" activation, and "f-1" is the fact-
identifier of the fact, (animal-is duck), which matches the activation. If the salience of a
rule is not declared explicitly, CLIPS assigns it the default value of zero, where the
possible salience values range from -10,000 to 10,000. In this book, we'll use the
definition of the term default as meaning the standard way.

If there is only one rule on the agenda, that rule will fire. Since the LHS pattern of the
duck-sound rule is

(animal-is duck)

this pattern will be satisfied by the fact (animal-is duck) and so the duck-sound rule
should fire.

Each field of the pattern is said to be a literal constraint. The term literal means
having a constant value, as opposed to a variable whose value is expected to change.
In this case, the literals are "animal-is" and "duck".

To make a program run, just enter the run command. Type (run) and press the
carriage return key. Then do a (facts) to check that the fact was asserted by the rule.

CLIPS> (run)
CLIPS> (facts)
f-0 (initial-fact)
f-1 (animal-is duck)
f-2 (sound-is quack)
For a total of 3 facts.
CLIPS>

Before going on, let's save the duck rule with the save command so that you don't
have to type it in again (if you haven't already saved it in an editor). Just enter a
command such as

(save "duck.clp")

to save the rule from CLIPS memory to disk and name the file "duck.clp" where the
".clp" is simply a convenient extension to remind us this is a CLIPS source code file.

 — 26 —

Note that saving the code from CLIPS memory like this will only preserve the optional
rule-header comment in quotes and not any semicolon comments.

Kick your Duck

An interesting question may occur to you at this time. What if you (run) again? There is
a rule and a fact which satisfies the rule, so the rule should fire. However, if you try this
and (run) again, you'll see that the rule won't fire. This may be somewhat frustrating.
However, before you do something drastic to ease your frustration — like kicking your
pet duck — you need to know a little more about some basic principles of expert
systems.

A rule is activated if its patterns are matched by a
1. a brand new pattern entity that did not exist before or,
2. a pattern entity that did exist before but was retracted and reasserted, i.e., a

"clone" of the old pattern entity, and thus now a new pattern entity.
The rule, and indices of the matching patterns, is the activation. If either the rule or

the pattern entity, or both change, the activation is removed. An activation may also be
removed by a command or an action of another rule that fired before and removed the
conditions necessary for activation.

The Inference Engine sorts the activations according to their salience. This sorting
process is called conflict resolution because it eliminates the conflict of deciding which
rule should fired next. CLIPS executes the RHS of the rule with the highest salience on
the agenda, and removes the activation. This execution is called firing the rule in
analogy with the firing of a neuron. A neuron emits a voltage pulse when an appropriate
stimulus is applied. After a neuron fires, it undergoes refraction and cannot fire again
for a certain period of time. Without refraction, neurons would just keep firing over and
over again on exactly the same stimulus.

Without refraction, expert systems always would be caught in trivial loops. That is, as
soon as a rule fired, it would keep firing on that same fact over and over again. In the
real world, the stimulus that caused the firing eventually would disappear. For example,
a real duck might swim away or get a job in the movies. However, in the computer
world, once data is stored, it stays there until explicitly removed or the power is turned
off.

The following example shows activations and firing of a rule. Notice that the (watch)
commands are used to more carefully show every fact and activation. The arrow going

 — 27 —

to the right means an entering fact or activation while an arrow to the left would mean an
exiting fact or activation.

CLIPS> (clear)
CLIPS> (defrule duck
 (animal-is duck)
=>
 (assert (sound-is quack)))
CLIPS> (watch facts)
CLIPS> (watch activations)
CLIPS> (assert (animal-is duck))
==> f-1 (animal-is duck)
==> Activation 0 duck: f-1 ; Activation salience is 0 by
<Fact-1> ; default, then rule name:pattern entity index
CLIPS> (assert (animal-is duck)) ; Notice that duplicate fact
FALSE ; cannot be entered
CLIPS> (agenda)
0 duck: f-1
For a total of 1 activation.
CLIPS> (run)
==> f-2 (sound-is quack)
CLIPS> (agenda) ; Nothing on agenda after rule fires
CLIPS> (facts)
f-0 (initial-fact) ; Even though fact matches rule,
f-1 (animal-is duck) ; refraction will not allow this
f-2 (sound-is quack) ; activation because the rule already
For a total of 3 facts. ; fired on this fact
CLIPS> (run)
CLIPS>

You can make the rule fire again if you retract the fact and then assert it as a new fact.

Show Me the Rules

Sometimes you may want to see a rule while you're in CLIPS. There's a command
called ppdefrule – the pretty print rule – that prints a rule. To see a rule, specify the rule
name as an argument to ppdefrule. For example,

CLIPS> (ppdefrule duck)
(defrule MAIN::duck

 — 28 —

 (animal-is duck)
 =>
 (assert (sound-is quack)))
CLIPS>

CLIPS puts different parts of the rule on different lines for the sake of readability. The
patterns before the arrow are still considered the LHS and the actions after the arrow
are still considered the RHS of the rule. The term MAIN refers to the MAIN module that
this rule is in by default. You can define modules to put rules in analogous to the
statements that may be put in different packages, modules, procedures, or functions of
other programming languages. The use of modules make it easier to write expert
systems having many rules since these may be grouped together with their own
agendas for each module. For more information, see the CLIPS Reference Manual.

What if you want to print a rule but can't remember the name of the rule? No
problem. Just use the rules command in response to a CLIPS prompt and CLIPS will
print out the names of all the rules. For example, enter

CLIPS> (rules)
duck
For a total of 1 defrule.
CLIPS>

Write to Me

Besides asserting facts in the RHS of rules, you also can print out information using the
printout function. CLIPS also has a carriage return/linefeed keyword called crlf which is
very useful in improving the appearance of output by formatting it on different lines. For
a change, the crlf is not included in parentheses. As an example,

CLIPS> (defrule duck
 (animal-is duck)
=>
 (printout t "quack" crlf)) ; Be sure to type in the "t"
==> Activation 0 duck: f-1
CLIPS> (run)
quack
CLIPS>

 — 29 —

The output is the text within the double quotes. Be sure to type the letter "t" following
the printout command. This tells CLIPS to send the output to the standard output
device of your computer. Generally, the standard output device is your terminal (hence
the letter "t" after printout.) However, this may be redefined so that the standard output
device is some other device, such as a modem or disk.

Other Features

The declare salience command provides explicit control over which rules will be put on
the agenda. You must be careful in using this feature too freely lest your program
become too controlled. The set-incremental-reset command prohibits rules from
seeing facts that are entered before the rules are entered. The command to get the
current value of incremental reset is get-incremental-reset. One way to make a rule
fire again is to force the rule to be re-activated by the refresh rule command.

The load command loads in the rule that you had previously saved to disk in the file
"duck.clp" or whatever name and directory that you had saved it under. You can load a
file of rules made on a text editor into CLIPS using the load command.

A faster way to load files is to first save them in a machine readable binary format
with the save binary command called bsave. The load binary command, bload, can
then be used to read these binary rules into CLIPS memory much faster since the files
do not have to be re-interpreted by CLIPS.

Two other useful commands allow you to save and load facts using a file. These are
save-facts and load-facts. The (save-facts) will save all the facts in the fact-list to a file
while (load-facts) will load in the facts from a file into the fact-list.

The batch command allows you to execute commands from a file as if they were
typed in at the top-level.Another useful command provides an interface to your
operating system. The system command allows the execution of operating system
commands or executables within CLIPS. For more information on all these topics, see
the CLIPS Reference Manual.

 — 31 —

Chapter 3 Adding Details
It's not the big picture that is the problem—it's the details

In the first two chapters, you learned the fundamentals of CLIPS. Now you will see how
to build on that foundation to create more powerful programs.

Stop And Go

Until now, you've only seen the simplest type of program consisting of just one rule.
However, expert systems consisting of only one rule are not very useful. Practical expert
systems may consist of hundreds or thousands of rules. Let's now take a look at an
application requiring multiple rules.

Suppose you wanted to write an expert system to determine how a mobile robot
should respond to a traffic light. It is best to write this type of problem using multiple
rules. For example, the rules for the red and green light situations can be written as
follows.

(defrule red-light
 (light red)
=>
 (printout t "Stop" crlf))

(defrule green-light
 (light green)
=>
 (printout t "Go" crlf))

After the rules have been entered into CLIPS, assert a fact (light red) and run. You'll
see "Stop" printed. Now assert a (light green) fact and run. You should see "Go" printed.

 — 32 —

Take a Walk

If you think about it, other possibilities beside the simple red, green, and yellow cases
exist. Some traffic lights also have a green arrow for protected left turns. Some have a
hand that lights up to indicate whether a person can walk or not. Some have signs that
say walk or don't walk. So depending on whether our robot is walking or driving, it may
have to pay attention to different signs.

The information about walking or driving must be asserted in addition to information
about the status of the light. Rules can be made to cover these conditions, but they
must have more than one pattern. For example, suppose we want a rule to fire if the
robot is walking and if the walk-sign says walk. A rule could be written as follows:

(defrule take-a-walk
 (status walking)
 (walk-sign walk)
=>
 (printout t "Go" crlf))

The above rule has two patterns. Both patterns must be satisfied by facts in the
fact-list for the rule to fire. To see how this works, enter the rule and then assert the
facts (status walking) and (walk-sign walk). When you (run), the program will print out
"Go" since both patterns are satisfied and the rule is fired.

You can have any number of patterns or actions in a rule. The important point to
realize is that the rule is placed on the agenda only if all the patterns are satisfied by
facts. This type of restriction is called a logical AND conditional element (CE) in
reference to the AND relation of Boolean logic. An AND relation is said to be true only if
all its conditions are true.

Because the patterns are of the logical AND type, the rule will not fire if only one of
the patterns is satisfied. All facts must be present before the LHS of a rule is satisfied
and the rule is placed on the agenda.

A Question of Strategy

The word strategy was originally a military term for the planning and operations of
warfare. Today, the term strategy is commonly used in business (because business is

 — 33 —

war) to refer to the high-level plans of an organization in achieving its goals, e.g., "Make
a lot of money by selling more greasy hamburgers than anyone else in the world!"

In expert systems, one use of the term strategy is in conflict resolution of activations.
Now you might say, "Well, I'll just design my expert system so that only one rule can
possibly be activated at one time. Then there is no need for conflict resolution." The
good news is that if you succeed, conflict resolution is indeed unnecessary. The bad
news is that this success proves that your application can be well represented by a
sequential program. So you should have coded it in C, Java, or Ada in the first place
and not bothered writing it as an expert system.

CLIPS offers seven different modes of conflict resolution: depth, breadth, LEX, MEA,
complexity, simplicity, and random. It's difficult to say that one is clearly better than
another without considering the specific application. Even then, it may be difficult to
judge which is "best." For more information on the details of these strategies, see the
CLIPS Reference Manual.

The depth strategy is the standard default strategy of CLIPS. The default setting is
automatically set when CLIPS is first started. Afterwards, you can change the default
setting. In the depth strategy, new activations are placed on the agenda after activations
with higher salience, but before activations with equal or lower salience. All this simply
means is that the agenda is ordered from highest to lowest salience.

 In this book, all discussions and examples will assume depth strategy.
Now that all these different optional settings are available, be sure that before you run

an expert system developed by someone else, that your settings are the same as theirs.
Otherwise, you may find the operation is inefficient or even incorrect. In fact, it's a good
idea to explicitly encode all the settings in any system that you develop so that it will be
configured properly.

Gimme Deffacts

As you work with CLIPS, you may become tired of typing in the same assertions from
the top-level. If you are going to use the same assertions every time a program is run,
you can first load assertions from a disk using a batch file. An alternative way to enter
facts is by using the define facts keyword, deffacts. For example,

CLIPS> (unwatch facts)
CLIPS> (unwatch activations)

 — 34 —

CLIPS> (clear)
CLIPS> (deffacts walk "Some facts about walking"
 (status walking) ; fact to be asserted
 (walk-sign walk)) ; fact to be asserted
CLIPS> (reset) ; causes facts from defacts to be asserted
CLIPS> (facts)
f-0 (initial-fact)
f-1 (status walking)
f-2 (walk-sign walk)
For a total of 3 facts.
CLIPS>

The required name of this deffacts statement, walk, follows the deffacts keyword.
Following the name is an optional comment in double quotes. Like the optional
comment of a rule, the (deffacts) comment will be retained with the (deffacts) after it's
been loaded by CLIPS. After the name or comment are the facts that will be asserted in
the fact-list. The facts in a deffacts statement are asserted using the CLIPS (reset) com-
mand.

The (initial-fact) is put in automatically by a (reset). The fact-identifier of the initial-fact
is always f-0. Even without any deffacts statements, a (reset) always will assert an
(initial-fact). In prior versions of CLIPS this fact was used to activate some types of
rules, but is no longer used for this purpose. It is provided for backwards compatibility
for programs which explicitly match against this fact.

The (reset) has an advantage compared to a (clear) command in that (reset) doesn't
get rid of all the rules. The (reset) leaves your rules intact. Like (clear), it removes all
activated rules from the agenda and also removes all old facts from the fact-list. Giving
a (reset) command is a recommended way to start off program execution, especially if
the program has been run before and the fact-list is cluttered with old facts.

In summary, the (reset) does three things for facts.
(1) It removes existing facts from the fact-list, which may remove activated rules

from the agenda.
(2) It asserts (initial-fact).
(3) It asserts facts from existing (deffacts) statements.

Actually, the (reset) also does corresponding operations on objects. It deletes
instances, creates initial-object, and asserts instances from definstances.

 — 35 —

Selective Elimination

The undeffacts command excises a (deffacts) from asserting facts by eliminating the
deffacts from memory. For example,

CLIPS> (undeffacts walk)
CLIPS> (reset)
CLIPS> (facts)
f-0 (initial-fact)
For a total of 1 fact.
CLIPS>

This example demonstrates how the (deffacts) walk has been excised. To restore a
deffacts statement after an (undeffacts) command, you must enter the deffacts
statement again. You can even get rid of initial-fact with (undeffacts). In addition to facts,
CLIPS also allows you to eliminate rules selectively by using the undefrule.

Watch It!

You can watch rules firing and watch activations on the agenda. The watch
statistics prints information about the number of rules fired, run time, rules per second,
mean number of facts, maximum number of facts, mean number of activations, and
maximum number of activations. The statistics information may be useful in tuning up
an expert system to optimize its speed. Another command, called watch compilations,
shows information when rules are being loaded. The watch all command will watch
everything.

Printing of watch information to the screen or to disk with the dribble command will
slow down your program somewhat because CLIPS uses more time to print or to save
to disk. The dribble-on command will store everything entered in the Dialog Window to
a disk file until the dribble-off command is entered. This is convenient in providing a
permanent record of everything that happens. These commands are as follows.

(dribble-on <filename>)
(dribble-off <filename>)

Another useful debugging command is (run) which takes an optional argument of the

 — 36 —

number of rule firings. For example, a (run 21) command would tell CLIPS to run the
program and then stop after 21 rule firings. A (run 1) command allows you to step
through a program firing one rule at a time. The (step) command is equivalent to
(run 1).

Just like many other programming languages, CLIPS also gives you the capability of
setting breakpoints. A breakpoint is simply an indicator to CLIPS to stop execution just
prior to executing a specified rule. A breakpoint is set by the set-break command. The
remove-break command will remove a breakpoint that has been set. The show-breaks
will list all the rules which have breakpoints set. The syntax of these rules for the
argument <rulename> is shown following.

(set-break <rulename>)
(remove-break <rulename>)
(show-breaks)

A Good Match

You may encounter a situation in which you are certain a rule should be activated but
isn't. While it is possible that this is due to a bug in CLIPS, it's not very likely because of
the great skill of the people who programmed CLIPS (NOTE: PAID COMMERCIAL
ANNOUNCEMENT FOR THE DEVELOPERS)

In most cases, the problem occurs because of the way that you wrote the rule. As an
aid to debugging, CLIPS has a command called matches that can tell you which
patterns in a rule match facts. Patterns which do not match prevent the rule from
becoming activated. One common reason that a pattern won't match a fact results from
misspelling an element in the pattern or in the assertion of the fact.

The argument of (matches) is the name of the rule to be checked for matches. To see
how (matches) works, first (clear), then enter the following rule.

(defrule take-a-vacation
 (work done) ; Conditional element 1
 (money plenty) ; Conditional element 2
 (reservations made) ; Conditional element 3
=>
 (printout t "Let's go!!!" crlf))

 — 37 —

The following shows how (matches) is used. Enter the commands as shown. Notice

that (watch facts) is turned on. This is a good idea when you are asserting facts
manually since it gives you an opportunity to check the spelling of facts.

CLIPS> (watch facts)
CLIPS> (assert (work done))
==> f-1 (work done)
<Fact-1>
CLIPS> (matches take-a-vacation)
Matches for Pattern 1
f-1
Matches for Pattern 2
 None
Matches for Pattern 3
 None
Partial matches for CEs 1 - 2 ; CE is conditional element
 None
Partial matches for CEs 1 - 3
 None
Activations
 None
CLIPS>

The fact with fact-identifier f-1 matches the first pattern or conditional element in the
rule and is reported by (matches). Given that a rule has N patterns, the term partial
matches refers to any set of matches of the first N-1 patterns with facts. That is, the
partial matches begin with the first pattern in a rule and end with any pattern up to but
not including the last (Nth) pattern. As soon as one partial match cannot be made,
CLIPS does not check any further. For example, a rule with four patterns would have
partial matches of the first and second patterns and also of the first, second, and third
patterns. If all N patterns match, the rule will be activated.

Other Features

Some additional commands are useful with deffacts. For example, the command
list-deffacts will list the names of currently loaded deffacts in CLIPS. Another useful
command is ppdeffacts which prints the facts stored in a deffacts.

 — 38 —

Other functions allow you to manipulate strings easily.

Function Meaning
assert-string Performs a string assertion by taking a string as argument

and asserted as a nonstring fact.
str-cat Constructs a single-quoted string from individual items by

string concatenation
str-index Returns a string index of first occurrence of a substring
sub-string Returns a substring from a string.
str-compare Performs a string compare
str-length Returns the string length which is the length of a string:
sym-cat Returns a concatenated symbol.

If you want to printout a multifield variable without parentheses, the simplest way is by
using the string implode function, implode$.

 — 39 —

Chapter 4 Variable Interests
Nothing changes more than change

The type of rules that you've seen so far illustrates simple matching of patterns to facts.
In this chapter, you'll learn very powerful ways to match and manipulate facts.

Let's Get Variable

Just as with other programming languages, CLIPS has variables to store values.
Unlike a fact, which is static or unchanging, the contents of a variable are dynamic as
the values assigned to it change. In contrast, once a fact is asserted, it's fields can only
be modified by retracting and asserting a new fact with the changed fields, Even the
modify action (described later in the chapter on deftemplate) acts by retracting and
asserting a modified fact, as you can see by checking the fact-index.

The name of a variable, or variable identifier, is always written by a question mark
followed by a symbol that is the name of the variable. The general format is

?<variable-name>

Global variables, to be described in more detail later, have a slightly different syntax.

Just as in other programming languages, variable names should be meaningful for
good style. Some examples of valid variable names follow.

?x ?noun ?color
?sensor ?valve ?ducks-eaten

Before a variable can be used, it should be assigned a value. As an example of a

case where a value is not assigned, try to enter the following and CLIPS will respond
with the error message shown.

 — 40 —

CLIPS> (unwatch all)
CLIPS> (clear)
CLIPS> (defrule test
=>
 (printout t ?x crlf))

[PRCCODE3] Undefined variable x referenced in RHS of defrule.

ERROR:
(defrule MAIN::test
 =>
 (printout t ?x crlf))
CLIPS>

CLIPS gives an error message when it cannot find a value bound to ?x. The term
bound means the assignment of a value to a variable. Only global variables are bound
in all rules. All other variables are only bound within a rule. Before and after a rule fires,
nonglobal variables are not bound and so CLIPS will give an error message if you try to
query a nonbound variable.

Be Assertive

One common use of variables is to match a value on the LHS and then assert this
bound variable on the RHS. For example, enter

(defrule make-quack
 (duck-sound ?sound)
=>
 (assert (sound-is ?sound)))

Now assert (duck-sound quack), then (run) the program. Check the facts and you'll
see that the rule has produced (sound-is quack) because the variable ?sound was
bound to quack.

Of course, you also can use a variable more than once. For example, enter the
following. Be sure to do a (reset) and assert (duck-sound quack) again.

 — 41 —

(defrule make-quack
 (duck-sound ?sound)
=>
 (assert (sound-is ?sound ?sound)))

When the rule fires, it will produce (sound-is quack quack) since the variable ?sound is
used twice.

What the Duck Said

Variables also are used commonly in printing output, as in

(defrule make-quack
 (duck-sound ?sound)
=>
 (printout t "The duck said " ?sound crlf))

Do a (reset), enter this rule, and assert the fact and then (run) to find out what the duck
said. How would you modify the rule to put double quotes around quack in the output?

More than one variable may be used in a pattern, as the following example shows.

CLIPS> (clear)
CLIPS> (defrule whodunit
 (duckshoot ?hunter ?who)
=>
 (printout t ?hunter " shot " ?who crlf))
CLIPS> (assert (duckshoot Brian duck))
<Fact-1>
CLIPS> (run)
Brian shot duck ; Duck dinner tonight!
CLIPS> (assert (duckshoot duck Brian))
<Fact-2>
CLIPS> (run)
duck shot Brian ; Brian dinner tonight!
CLIPS> (assert (duckshoot duck)) ; Missing third field
<Fact-3>
CLIPS> (run)
CLIPS> ; Rule doesn't fire, no output

 — 42 —

Notice what a big difference the order of fields makes in determining who shot who.

You can also see that the rule did not fire when the fact (duckshoot duck) was asserted.
The rule was not activated because no field of the fact matched the second pattern
constraint, ?who.

The Happy Bachelor

Retraction is very useful in expert systems and usually done on the RHS rather than at
the top-level. Before a fact can be retracted, it must be specified to CLIPS. To retract a
fact from a rule, the fact-address first must be bound to a variable on the LHS.

There is a big difference between binding a variable to the contents of a fact and
binding a variable to the fact-address. In the examples that you've seen such as
(duck-sound ?sound), a variable was bound to the value of a field. That is, ?sound was
bound to quack. However, if you want to remove the fact whose contents are
(duck-sound quack), you must first tell CLIPS the address of the fact to be retracted.

The fact-address is specified using the left arrow, "<-". To create this, just type a "<"
symbol followed by a "-". As an example of fact retraction from a rule,

CLIPS> (clear)
CLIPS> (assert (bachelor Dopey))
<Fact-1>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (bachelor Dopey)
For a total of 2 facts.
CLIPS> (defrule get-married
 ?duck <- (bachelor Dopey)
=>
 (printout t "Dopey is now happily married " ?duck crlf)
 (retract ?duck))
CLIPS> (run)
Dopey is now happily married <Fact-1>
CLIPS> (facts)
f-0 (initial-fact)
For a total of 1 fact.
CLIPS>

 — 43 —

Notice that the (printout) prints the fact-index of ?duck, <Fact-1>, since the left arrow
bound the address of the fact to ?duck. Also, there is no fact (bachelor Dopey) because
it has been retracted.

Variables can be used to pick up a fact value at the same time as an address, as
shown in the following example. For convenience, a (deffacts) has also been defined.

CLIPS> (clear)
CLIPS> (defrule marriage
 ?duck <- (bachelor ?name)
=>
 (printout t ?name " is now happily married" crlf)
 (retract ?duck))
CLIPS> (deffacts good-prospects
 (bachelor Dopey)
 (bachelor Dorky)
 (bachelor Dicky))
CLIPS> (reset)
CLIPS> (run)
Dicky is now happily married
Dorky is now happily married
Dopey is now happily married
CLIPS>

Notice how the rule fired on all facts that matched the pattern (bachelor ?name).
CLIPS also has a function called fact-index which can be used to return the fact index
of a fact address.

It's Not Important

Instead of binding a field value to a variable, the presence of a nonempty field can be
detected alone using a wildcard. For example, suppose you're running a dating service
for ducks, and a duckette asserts that she only dates ducks whose first name is
Richard. Actually, two criteria are in this specification since there is an implication that
the duck must have more than one name. So a plain (bachelor Richard) isn't adequate
because there is only one name in the fact.

This type of situation, in which only part of the fact is specified, is very common and
very important. To solve this problem, a wildcard can be used to fire the Richards.

The simplest form of wildcard is called a single-field wildcard and is shown by a

 — 44 —

question mark, "?". The "?" is also called a single-field constraint. A single-field
wildcard stands for exactly one field, as shown following.

CLIPS> (clear)
CLIPS> (defrule dating-ducks
 (bachelor Dopey ?)
=>
 (printout t "Date Dopey" crlf))
CLIPS>
(deffacts duck
 (bachelor Dicky)
 (bachelor Dopey)
 (bachelor Dopey Mallard)
 (bachelor Dinky Dopey)
 (bachelor Dopey Dinky Mallard))
CLIPS> (reset)
CLIPS> (run)
Date Dopey
CLIPS>

The pattern includes a wildcard to indicate that Dopey's last name is not important.
So long as the first name is Dopey, the rule will be satisfied and fire. Because the
pattern has three fields of which one is a single-field wildcard, only facts of exactly three
fields can satisfy it. In other words, only Dopeys with exactly two names can satisfy this
duckette.

Suppose you want to specify Dopeys with exactly three names? All that you'd have
to do is write a pattern like

 (bachelor Dopey ? ?)

or, if only persons with three names whose middle name was Dopey,

 (bachelor ? Dopey ?)

or, if only the last name was Dopey, as in the following:

 (bachelor ? ? Dopey)

 Another interesting possibility occurs if Dopey must be the first name, but only
those Dopeys with two or three names are acceptable. One way of solving this problem

 — 45 —

is to write two rules. For example

(defrule eligible
 (bachelor Dopey ?)
=>
 (printout t "Date Dopey" crlf))

(defrule eligible-three-names
 (bachelor Dopey ? ?)
=>
 (printout t "Date Dopey" crlf))

Enter and run this and you'll see that Dopeys with both two and three names are
printed. Of course, if you don't want anonymous dates, you need to bind the Dopey
names with a variable and print them out.

Going Wild

Rather than writing separate rules to handle each field, it's much easier to use the
multifield wildcard. This is a dollar sign followed by a question mark, "$?", and
represents zero or more fields. Notice how this contrasts with the single-field wildcard
which must match exactly one field.

The two rules for dates can now be written in a single rule as follows.

CLIPS> (clear)
CLIPS> (defrule dating-ducks
 (bachelor Dopey $?)
=>
 (printout t "Date Dopey" crlf))
CLIPS> (deffacts duck
 (bachelor Dicky)
 (bachelor Dopey)
 (bachelor Dopey Mallard)
 (bachelor Dinky Dopey)
 (bachelor Dopey Dinky Mallard))
CLIPS> (reset)
CLIPS> (run)
Date Dopey
Date Dopey

 — 46 —

Date Dopey
CLIPS>

Wildcards have another important use because they can be attached to a symbolic
field to create a variable such as ?x, $?x, ?name, or $?name. The variable can be a
single-field variable or a multifield variable depending on whether a "?" or "$?" is
used on the LHS. Note that on the RHS only a ?x is used, where the "x" can be any
variable name. You can think of the "$" as a function whose argument is a single-field
wildcard or a single-field variable and returns a multifield wildcard or a multifield
variable, respectively.

As an example of a multifield variable, the following version of the rule also prints out
the name field(s) of the matching fact because a variable is equated to the name field(s)
that match:

CLIPS> (defrule dating-ducks
 (bachelor Dopey $?name)
=>
 (printout t "Date Dopey " ?name crlf))
CLIPS> (reset)
CLIPS> (run)
Date Dopey (Dinky Mallard)
Date Dopey (Mallard)
Date Dopey ()
CLIPS>

As you can see, on the LHS, the multifield pattern is $?name but is ?name when used
as a variable on the RHS. When you enter and run, you'll see the names of all eligible
Dopeys. The multifield wildcard takes care of any number of fields. Also, notice that
multifield values are returned enclosed in parentheses.

Suppose you wanted a match of all ducks who had a Dopey somewhere in their
name, not necessarily as their first name. The following version of the rule would match
all facts with a Dopey in them and then print out the names:

CLIPS> (defrule dating-ducks
 (bachelor $?first Dopey $?last)
=>
 (printout t "Date " ?first " Dopey " ?last crlf))
CLIPS> (reset)
CLIPS> (run)

 — 47 —

Date () Dopey (Dinky Mallard)
Date (Dinky) Dopey ()
Date () Dopey (Mallard)
Date () Dopey ()
CLIPS>

The pattern matches any names that have a Dopey anywhere in them.

Single- and multifield wildcards can be combined. For example, the pattern

 (bachelor ? $? Dopey ?)

means that the first and last names can be anything and that the name just prior to the
last must be Dopey. This pattern also requires that the matching fact will have at least
four fields, since the "$?" matches zero or more fields and all the others must match
exactly four.

Although multifield variables can be essential for pattern matching in many cases,
their overuse can cause much inefficiency because of increased memory requirements
and slower execution.

• As a general rule of style, you should use $? only when you don't know the length of
fields. Do not use $? simply as a typing convenience.

The Ideal Bachelor

Variables used in patterns have an important and useful property, which can be stated
as follows.

• The first time a variable is bound it retains that value only within the rule, both on the
LHS and also on the RHS, unless changed on the RHS.

For example, in the rule below

(defrule bound
 (number-1 ?num)
 (number-2 ?num)
=>)

 — 48 —

If there are some facts

f-1 (number-1 0)
f-2 (number-2 0)
f-3 (number-1 1)
f-4 (number-2 1)

then the rule can only be activated by the pair f-1, f-2, and the other pair f-3, f-4. That is,
fact f-1 cannot match with f-4 because when ?num is bound to 0 in the first pattern, the
value of ?num in the second pattern also must be 0. Likewise, when ?num is bound to 1
in the first pattern, the value of ?num in the second pattern must be 1. Notice that the
rule will be activated twice by these four facts: one activation for the pair f-1, f-2, and the
other activation for the pair f-3, f-4.

 As a more practical example, enter the following rule. Notice that the same variable,
?name, is used in both patterns. Before doing a (reset) and (run), also enter a (watch
all) command so that you can see what happens during execution.

CLIPS> (clear)
CLIPS> (defrule ideal-duck-bachelor
 (bill big ?name)
 (feet wide ?name)
=>
 (printout t "The ideal duck is " ?name crlf))
CLIPS> (deffacts duck-assets
 (bill big Dopey)
 (bill big Dorky)
 (bill little Dicky)
 (feet wide Dopey)
 (feet narrow Dorky)
 (feet narrow Dicky))
CLIPS> (watch facts)
CLIPS> (watch activations)
CLIPS> (reset)
<== f-0 (initial-fact)
==> f-0 (initial-fact)
==> f-1 (bill big Dopey)
==> f-2 (bill big Dorky)
==> f-3 (bill little Dicky)
==> f-4 (feet wide Dopey)

 — 49 —

==> Activation 0 ideal-duck-bachelor: f-1,f-4
==> f-5 (feet narrow Dorky)
==> f-6 (feet narrow Dicky)
CLIPS> (run)
The ideal duck is Dopey
CLIPS>

When the program is run, the first pattern matches Dopey and Dorky since they both
have big bills. The variable ?name is bound to each name. When CLIPS tries to match
the second pattern of the rule, only the variable ?name which is bound to Dopey also
satisfies the second pattern of (feet wide).

The Lucky Duck

Many situations occur in life where it's wise to do things in a systematic manner. That
way, if your expectations don't work out you can try again systematically (such as the
common algorithm for finding the Perfect Spouse by getting married over and over
again).

One way of being organized is to keep a list (Note: if you really want to impress
people, show them a list of your lists.) In our case, we'll keep a list of duck bachelors,
with the most likely prospect for matrimony at the front. Once an ideal duck bachelor
has been identified, we'll shoot him up to the front of the list as the lucky duck.

The following program shows how this can be done by adding a couple of rules to the
ideal-duck-bachelor rule.

(defrule ideal-duck-bachelor
 (bill big ?name)
 (feet wide ?name)
=>
 (printout t "The ideal duck is " ?name crlf)
 (assert (move-to-front ?name)))

(defrule move-to-front
 ?move-to-front <- (move-to-front ?who)
 ?old-list <- (list $?front ?who $?rear)
=>

 — 50 —

 (retract ?move-to-front ?old-list)
 (assert (list ?who ?front ?rear))
 (assert (change-list yes)))

(defrule print-list
 ?change-list <- (change-list yes)
 (list $?list)
=>
 (retract ?change-list)
 (printout t "List is : " ?list crlf))

(deffacts duck-bachelor-list
 (list Dorky Dinky Dicky))

(deffacts duck-assets
 (bill big Dicky)
 (bill big Dorky)
 (bill little Dinky)
 (feet wide Dicky)
 (feet narrow Dorky)
 (feet narrow Dinky))

The original list is given in the duck-bachelor-list deffacts. When the program is run, it
will provide a new list of likely candidates.

CLIPS> (unwatch all)
CLIPS> (reset)
CLIPS> (run)
The ideal duck is Dicky
List is : (Dicky Dorky Dinky)
CLIPS>

Notice the assertion (change-list yes) in the move-to-front rule. Without this assertion,
the print-list rule would always fire on the original list. This assertion is an example of a
control fact made to control the firing of another rule. Control facts are very important in
controlling the activation of certain rules, and you should study this example carefully to
understand why it's used. Another method of control is modules, as discussed in the
CLIPS Reference Manual.

 — 51 —

The move-to-front rule removes the old list and asserts the new list. If the old list was
not retracted, two activations would be on the agenda for the print-list rule but only one
would fire. Only one will fire because the print-list rule removes the control fact required
for the other activation of the same rule. You would not know in advance which one
would fire, so the old list might be printed instead of the new list.

 — 53 —

Chapter 5 Doing It Up In Style
Style today, gone tomorrow

In this chapter, you will learn about a keyword called deftemplate, which stands for
define template. This feature can aid you in writing rules whose patterns have a well-
defined structure.

Mr. Wonderful

Deftemplate is analogous to a struct definition in C. That is, the deftemplate defines a
group of related fields in a pattern similar to the way in which a C struct is a group of
related data. A deftemplate is a list of named fields called slots. Deftemplate allows
access by name rather than by specifying the order of fields. Deftemplate contributes to
good style in expert systems programs and is a valuable tool of software engineering.

A slot is a named single-slot or multislot. A single-slot or simply slot contains
exactly one field while a multislot contains zero or more fields. Any number of single or
multislot slots may be used in a deftemplate. To write a slot, give the field name
(attribute) followed by the field value. Note that a multislot slot with one value is strictly
not the same as a single-slot slot. As an analogy, think of a cupboard (the multislot) that
may contain dishes. A cupboard with one dish is not the same as a dish (single-slot.)
However, the value of a single-slot slot (or variable) may match a multislot slot (or
multislot variable) that has one field.

As an example of a deftemplate relation, consider the attributes of a duck who might
be considered a good matrimonial prospect.

 — 54 —

Attributes Value
 name "Dopey Wonderful"

 assets rich
 age 99

A deftemplate may be defined for the relation prospect as follows, where white space

and comments are used for readability and explanation.

(deftemplate prospect ;name of deftemplate relation
 "vital information" ;optional comment in quotes
 (slot name ;name of field
 (type STRING) ;type of field
 (default ?DERIVE)) ;default value of field name
 (slot assets ;name of field
 (type SYMBOL) ;type of field
 (default rich)) ;default value of field assets
 (slot age ;name of field
 (type NUMBER) ;type. NUMBER can be INTEGER or FLOAT
 (default 80))) ;default value of field age

In this example, the components of deftemplate are structured as:
• A deftemplate relation name
• Attributes called fields
• The field type, which can be any one of the allowed types:

SYMBOL, STRING, NUMBER, and others.
• The default for the field value

This particular deftemplate has three single-slot slots called name, assets, and age.
The deftemplate default values are inserted by CLIPS when a (reset) is done if no

explicit values are defined. For example, enter the deftemplate for prospect after a
(clear) command, and assert it as shown.

CLIPS> (assert (prospect))
<Fact-1>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (prospect (name "") (assets rich) (age 80))
For a total of 2 facts.
CLIPS>

 — 55 —

As you can see, CLIPS has inserted the default value of the null string, "", for the name
field since that is the default for a STRING. Likewise, the assets and age defaults were
also inserted by CLIPS. Different types have different default symbols such as the null
string, "", for STRING; the integer 0 for INTEGER; the float 0.0 for FLOAT and so on.
The ?DERIVE keyword selects the appropriate type of constraint for that slot, e.g., the
null string , "", for a slot of type STRING.

You can explicitly set the field values, as the following example shows.

CLIPS> (assert (prospect (age 99) (name "Dopey")))
<Fact-2>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (prospect (name "") (assets rich) (age 80))
f-2 (prospect (name "Dopey") (assets rich) (age 99))
For a total of 3 facts.
CLIPS>

Note that the order that the fields are typed in does not matter since these are named
fields.

In the deftemplate, it's important to realize that NUMBER is not a primitive field type
like symbol, string, integer, and float. The NUMBER is really a compound type that can
be integer or float. It is used for cases in which the user doesn't care what type of
numbers are stored. An alternative to NUMBER would be specifying the types as
follows.

(slot age
 (type INTEGER FLOAT)
 (default 80)))

Bye-Bye

In general, a deftemplate with N slots has the following general structure:

 (deftemplate <name>

 — 56 —

 (slot-1)
 (slot-2)
 ...
 (slot-N))

In a deftemplate, the attribute values may be specified more precisely than a simple
value such as 80 or rich. For example, in this deftemplate, a type of value is specified.

The field values can be specified by either explicitly listing them or giving a range of
values. The allowed-values can be any primitive type such as SYMBOL, STRING,
INTEGER, FLOAT and so on. For example,

 Deftemplate Enumerated Values Example
 allowed-symbols rich filthy-rich loaded
 allowed-strings "Dopey" "Dorky" "Dicky"
 allowed-numbers 1 2 3 4.5 -2.001 1.3e-4
 allowed-integers -100 53
 allowed-floats -2.3 1.0 300.00056
 allowed-values "Dopey" rich 99 1.e9

It doesn't make sense to specify both a numeric range and values allowed for the
same deftemplate field. For example, if you specify (allowed-integers 1 4 8), this
contradicts a range specification of 1 to 10 by (range 1 10). If the numbers happen to be
sequential, such as 1, 2, 3, then you could specify a range which would exactly match:
(range 1 3). However, the range would be redundant to the allowed-integers
specification. Thus, range and allowed values are mutually exclusive. That is, if you
specify a range, you can't specify the allowed values and vice versa. In general, the
range attribute cannot be used in conjunction with allowed-values, allowed-numbers,
allowed-integers, or allowed-floats.

Without the optional information, the deftemplate and a rule which uses it follows.

CLIPS> (clear)
CLIPS>
(deftemplate prospect ;name of deftemplate
 (slot name ;name of field
 (default ?DERIVE)) ;default value of field name
 (slot assets ;name of field

 — 57 —

 (default rich)) ;default value of field assets
 (slot age ;name of field
 (default 80))) ;default value of field age
CLIPS>
(defrule matrimonial_candidate
 (prospect (name ?name) (assets ?net_worth) (age ?months))
=>
 (printout t "Prospect: " ?name crlf
 ?net_worth crlf
 ?months " months old" crlf))
CLIPS> (assert (prospect (name "Dopey Wonderful") (age 99)))
<Fact-1>
CLIPS> (run)
Prospect: Dopey Wonderful
rich
99 months old
CLIPS>

Notice that the default value of rich was used for Dopey since the assets field was not
specified in the assert command.

If the assets field is given a specific value such as poor, the specified value for assets
of poor overrides the default value of rich as shown in the following example about
Dopey's penurious nephew.

CLIPS> (reset)
CLIPS> (assert (prospect (name "Dopey Notwonderful")
(assets poor) (age 95)))
<Fact-1>
CLIPS> (run)
Prospect: "Dopey Notwonderful"
poor
95 months old
CLIPS>

A deftemplate pattern may be used just like any ordinary pattern. For example, the
following rule will eliminate undesirable prospects.

 — 58 —

CLIPS> (undefrule matrimonial_candidate)
CLIPS> (defrule bye-bye
 ?bad-prospect <- (prospect (assets poor) (name ?name))
=>
 (retract ?bad-prospect)
 (printout t "bye-bye " ?name crlf))
CLIPS> (reset)
CLIPS> (assert (prospect (name "Dopey Wonderful") (assets
rich)))
<Fact-1>
CLIPS> (assert (prospect (name "Dopey Notwonderful") (assets
poor)))
<Fact-2>
CLIPS> (run)
bye-bye Dopey Notwonderful
CLIPS>

Ain't No Strings on Me

Notice that only single fields were used for the patterns in the examples so far. That is,
the field values for name, assets, and age, were all single values. In some types of
rules, you may want multiple fields. Deftemplate allows the use of multiple values in a
multislot.

As an example of multislot, suppose that you wanted to treat the name of the relation
prospect as multiple fields. This would provide more flexibility in processing prospects
since any part of the name could be pattern matched. Shown following is the
deftemplate definition using multislot and the revised rule to pattern match on multiple
fields. Notice that a multislot pattern, $?name, is now used to match all the fields that
make up the name. For convenience, a (deffacts) is also given.

CLIPS> (clear)
CLIPS> (deftemplate prospect
 (multislot name
 (type SYMBOL)
 (default ?DERIVE))
 (slot assets
 (type SYMBOL)
 (allowed-symbols poor rich wealthy loaded)
 (default rich))

 — 59 —

 (slot age
 (type INTEGER)
 (range 80 ?VARIABLE) ; The older the better!!!
 (default 80)))
CLIPS> (defrule happy_relationship
 (prospect (name $?name) (assets ?net_worth) (age ?months))
=>
 (printout t "Prospect: " ?name crlf ; Note: not ?name
 ?net_worth crlf
 ?months " months old" crlf))
CLIPS> (deffacts duck-bachelor
(prospect (name Dopey Wonderful) (assets rich) (age 99)))
CLIPS> (reset)
CLIPS> (run)
Prospect: (Dopey Wonderful)
rich
99 months old
CLIPS>

In the output, the parentheses around Dopey's name are put in by CLIPS to indicate

that this is a multislot value. If you compare the output from this multislot version to the
single-slot version, you'll see that the double quotes around "Dopey Wonderful" are
gone. The name slot is not a string in the multislot version, so CLIPS treats the name as
two independent fields, Dopey and Wonderful.

What's in a Name

Deftemplate greatly simplifies accessing a specific field in a pattern because the desired
field can be identified by its slot name. The modify action can be used to retract and
assert a new fact in one action by specifying one or more template slots to be modified.

As an example, consider the following rules which show what happens when
duck-bachelor Dopey Wonderful loses all his fish buying Donald Duck posters and
banana fishsplits for his new duckette, Dixie.

CLIPS> (undefrule *)
CLIPS>
(defrule make-bad-buys
 ?prospect <- (prospect (name $?name)

 — 60 —

 (assets rich)
 (age ?months))
=>
 (printout t "Prospect: " ?name crlf ; Note: not ?name
 "rich" crlf
 ?months " months old" crlf crlf)
 (modify ?prospect (assets poor)))
CLIPS>
(defrule poor-prospect
 ?prospect <- (prospect (name $?name)
 (assets poor)
 (age ?months))
=>
 (printout t "Ex-prospect: " ?name crlf ; Note: not ?name
 poor crlf
 ?months " months old" crlf crlf))
CLIPS> (deffacts duck-bachelor
(prospect (name Dopey Wonderful) (assets rich) (age 99)))
CLIPS> (reset)
CLIPS> (run)
Prospect: (Dopey Wonderful)
rich
99 months old

Ex-prospect: (Dopey Wonderful)
poor
99 months old

CLIPS>

If you do a (facts) command as follows, you'll see that the f-1 fact corresponding to
(prospect (assets rich) (age 99) (name Dopey Wonderful)) is gone since the (modify)
has retracted it and asserted f-2.

CLIPS> (facts)
f-0 (initial-fact)
f-2 (prospect (name Dopey Wonderful) (assets poor) (age 99))
For a total of 2 facts.
CLIPS>

The make-bad-buys rule is activated by a rich prospect as specified by the assets

 — 61 —

slot. This rule changes the assets to poor using the modify action. Notice that the slot
assets can be accessed by name. Without a deftemplate, it would be necessary to
enumerate all the fields by single variables or by using a wildcard, which is less efficient.
The purpose of the poor-prospect rule is simply to print out the poor prospects, thus
demonstrating that the make-bad-investments rule did indeed modify the assets.

 — 63 —

Chapter 6 Being Functional
Functionality is the inverse of style

In this chapter, you will learn more powerful functions for matching patterns and some
that are very useful with multifield variables. You also will learn how numeric
calculations are done.

Not My Constraint

Let's reconsider the problem of designing an expert system to help a robot cross a
street. One rule that you would have follows.

(defrule green-light
 (light green)
=>
 (printout t "Walk" crlf))

Another rule would cover the case of a red light.

(defrule red-light
 (light red)
=>
 (printout t "Don't walk" crlf))

A third rule would cover the case in which a walk-sign said not to walk. This would
take precedence over a green light.

(defrule walk-sign
 (walk-sign-says dont-walk)

 — 64 —

=>
 (printout t "Don't walk" crlf))

The previous rules are simplified and don't cover all cases such as the breakdown of
the traffic-light. For example, what does the robot do if the light is red or yellow and the
walk-sign says walk?

A way of handling this case is to use a field constraint to restrict the values that a
pattern may have on the LHS. The field constraint acts like constraints on patterns.

 One type of field constraint is called a connective constraint. There are three
types of connective constraints. The first is called a ~ constraint. Its symbol is the tilde
"~". The ~ constraint acts on the one value that immediately follows it and will not allow
that value.

As a simple example of the ~ constraint, suppose you wanted to write a rule that
would print out "Don't walk" if the light was not green. One approach would be to write
rules for every possible light condition, including all possible malfunctions: yellow, red,
blinking yellow, blinking red, blinking green, winking yellow, blinking yellow and winking
red, and so forth. However, a much easier approach is to use the ~ constraint as shown
in the following rule:

(defrule walk
 (light ~green)
=>
 (printout t "Don't walk" crlf))

By using the ~ constraint, this one rule does the work of many other rules that required
specifying each light condition.

Be Cautious

The second connective constraint is the bar constraint, "|". The "|" connective
constraint is used to allow any of a group of values to match.
 For example, suppose you wanted a rule that printed out "Be cautious" if the light was
yellow or blinking yellow. The following example shows how it's done using the "|"
constraint.

 — 65 —

CLIPS> (clear)
CLIPS> (defrule cautious
 (light yellow|blinking-yellow)
=>
 (printout t "Be cautious" crlf))
CLIPS>
(assert (light yellow))
<Fact-1>
CLIPS> (assert (light blinking-yellow))
<Fact-2>
CLIPS> (agenda)
0 cautious: f-2
0 cautious: f-1
For a total of 2 activations.
CLIPS>

And Away We Go

The third type of connective constraint is the & connective constraint. The symbol of
the & connective constraint is the ampersand, "&". The & constraint forces connected
constraints to match in union, as you'll see in the following examples. The & constraint
normally is used only with the other constraints, otherwise it's not of much practical use.
As an example, suppose you want to have a rule that will be triggered by a yellow or
blinking-yellow fact. That's easy enough—just use the | connective constraint as you did
in a previous example. But suppose that you also want to identify the light color?
 The solution is to bind a variable to the color that is matched using the "&" and then
print out the variable. This is where the "&" is useful, as shown below.

(defrule cautious
 (light ?color&yellow|blinking-yellow)
=>
 (printout t "Be cautious because light is " ?color crlf))

The variable ?color will be bound to whatever color is matched by the field
yellow|blinking-yellow.
 The "&" also is useful with the "~". For example, suppose you want a rule that triggers
when the light is not yellow and not red.

 — 66 —

(defrule not-yellow-red
 (light ?color&~red&~yellow)
=>
 (printout t "Go, since light is " ?color crlf))

It's Elementary

Besides dealing with symbolic facts, CLIPS also can perform numeric calculations.
However, you should keep in mind that an expert system language like CLIPS is not
primarily designed for number-crunching. Although the math functions of CLIPS are very
powerful, they are really meant for modification of numbers that are being reasoned
about by the application program. Other languages such as FORTRAN are better for
number-crunching in which little or no symbolic reasoning is being done. You'll find the
computational capability of CLIPS useful in many applications.

 CLIPS provides basic arithmetic and math functions +, /, *, -, div, max, min, abs,
float, and integer. For more details, see the CLIPS Reference Manual.

 Numeric expressions are represented in CLIPS according to the style of LISP. In
both LISP and CLIPS, a numeric expression that customarily would be written as 2 + 3
must be written in prefix form, (+ 2 3). In the prefix form of CLIPS, the function
precedes the arguments, and parentheses must surround the numeric expression. The
customary way of writing numeric expressions is called infix form because the math
functions are fixed in between the arguments.

 Functions can be used on the LHS and the RHS. For example, the following shows
how the arithmetic operation of addition is used on the RHS of a rule to assert a fact
containing the sum of two numbers ?x and ?y. Note that the comments are in infix
notation for your information only since infix cannot be evaluated by CLIPS.

CLIPS> (clear)
CLIPS> (defrule addition
 (numbers ?x ?y)
=>
 (assert (answer-plus (+ ?x ?y)))) ; Add ?x + ?y
CLIPS> (assert (numbers 2 3))
<Fact-1>
CLIPS> (run)
CLIPS> (facts)

 — 67 —

f-0 (initial-fact)
f-1 (numbers 2 3)
f-2 (answer-plus 5)
For a total of 3 facts.
CLIPS>

A function can be used on the LHS if an equal sign, =, is used to tell CLIPS to
evaluate the following expression rather than use it literally for pattern matching. The
following example shows how the hypotenuse is calculated on the LHS and used to
pattern match against some stock items. The exponentiation, "**", function is used to
square the x and y values. The first argument of exponentiation is the number which is
to be raised to the power of the second argument.

CLIPS> (clear)
CLIPS> (deffacts database
 (stock A 2.0)
 (stock B 5.0)
 (stock C 7.0))
CLIPS> (defrule addition
 (numbers ?x ?y)
 (stock ?ID =(sqrt (+ (** ?x 2) (** ?y 2)))) ; Hypotenuse
=>
 (printout t "Stock ID=" ?ID crlf))
CLIPS> (reset)
CLIPS> (assert (numbers 3 4))
<Fact-4>
CLIPS> (run)
Stock ID=B : Stock ID matches hypotenuse calculated
CLIPS>

Extensive Arguments

Arguments in a numeric expression can be extended beyond two for many of the math
functions. The same sequence of arithmetic calculations is performed for more than two
arguments. The following example illustrates how three arguments are used. Evaluation
proceeds from left to right. Before entering these, however, you may wish to do a (clear)
to get rid of any old facts and rules.

 — 68 —

(defrule addition
 (numbers ?x ?y ?z)
=>
 (assert (answer-plus (+ ?x ?y ?z)))) ; ?x + ?y + ?z

 Enter the above program and assert (numbers 2 3 4). After you run, you'll see the
following facts. Note that the fact-indices may be different if you've done a (reset)
instead of a (clear) before loading this program.

CLIPS> (facts)
f-0 (initial-fact)
f-1 (numbers 2 3 4)
f-2 (answer-plus 9)
For a total of 3 facts.
CLIPS>

The infix equivalent of a multiple argument CLIPS expression can be expressed as

 arg [function arg]

where the square brackets mean that there can be multiple terms.

Besides the basic math functions, CLIPS has Extended Math functions including
trig, hyperbolic, and so on. For a complete list, see the CLIPS Reference Manual. These
are called Extended Math functions because they are not considered basic math
functions like "+", "-", etc.

Mixed Results

In dealing with expressions, CLIPS tries to keep the mode the same as the arguments.
For example,

CLIPS> (+ 2 2) ;both integer arguments give integer
4 ;result

CLIPS> (+ 2.0 2.0) ;both floating-point arguments give

 — 69 —

4.0 ;floating-point result

CLIPS> (+ 2 2.0) ; mixed arguments give float result
4.0

Notice that in the last case of mixed arguments, CLIPS converts the result to standard
double-precision floating-point type.

You can explicitly convert one type to another by using the float and integer functions,
as demonstrated in the following examples.

CLIPS> (float (+ 2 2)) ;convert integer to float
4.0

CLIPS> (integer (+ 2.0 2.0)) ; convert float to integer
4

Parentheses are used to explicitly specify the order of expression evaluation if

desired. In the example of ?x + ?y * ?z, the customary infix way to evaluate it is to
multiply ?y by ?z and then add the result to ?x. However, in CLIPS, you must write the
precedence explicitly if you want this order of evaluation, as follows.

(defrule mixed-calc
 (numbers ?x ?y ?z)
=>
 (assert (answer (+ ?x (* ?y ?z))))) ; ?y * ?z + ?x

In this rule, the expression in the innermost parentheses is evaluated first; so ?y is
multiplied by ?z. The result is added to ?x.

Bound Bachelors

The analog to assigning a value to a variable on the LHS by pattern matching is
binding a value to a variable on the RHS using the bind function. It's convenient to
bind variables on the RHS if the same values will be repeatedly used.

As a simple example in a math calculation, let's first bind the answer to a variable and

 — 70 —

then print the bound variable.

CLIPS> (clear)
CLIPS> (defrule addition
 (numbers ?x ?y)
=>
 (assert (answer (+ ?x ?y)))
 (bind ?answer (+ ?x ?y))
 (printout t "answer is " ?answer crlf))
CLIPS>
(assert (numbers 2 2))
<Fact-1>
CLIPS> (run)
answer is 4
CLIPS> (facts)
f-0 (initial-fact)
f-1 (numbers 2 2)
f-2 (answer 4)
For a total of 3 facts.
CLIPS>

The (bind) also can be used on the RHS to bind single or multifield values to a

variable. The (bind) is used to bind zero, one, or more values to a variable without the
"$" operator. Recall that on the LHS, you can only create a multifield pattern by using
the "$" operator on a field, such as "$?x". However, the "$" is unnecessary on the RHS
because the arguments of (bind) explicitly tell CLIPS exactly how many values to bind.
In fact, the "$" is a useless appendage on the RHS.

The following rule illustrates some variable bindings on the RHS. The multifield
value function, create$, is used to create a multifield value. Its general syntax is as
follows.

(create$ <arg1> <arg2>...<argN>)

where any number of arguments can be appended together to create a multifield value.
This multifield value, or a single-field value, can then be bound to a variable as shown in
the RHS actions of the following rule.

CLIPS> (clear)
CLIPS> (defrule bind-values-demo

 — 71 —

=>
 (bind ?duck-bachelors (create$ Dopey Dorky Dinky))
 (bind ?happy-bachelor-mv (create$ Dopey))
 (bind ?none (create$))
 (printout t
 "duck-bachelors " ?duck-bachelors crlf
 "duck-bachelors-no-() " (implode$?duck-bachelors) crlf
 "happy-bachelor-mv " ?happy-bachelor-mv crlf
 "none " ?none crlf))
CLIPS> (reset)
CLIPS> (run)
duck-bachelors (Dopey Dorky Dinky)
duck-bachelors-no-() Dopey Dorky Dinky
happy-bachelor-mv (Dopey)
none ()
CLIPS>

Doing Your Own Thing

Just like other languages, CLIPS allows you to define your own functions with
deffunction. The deffunction is known globally, which saves you the effort of entering
the same actions over and over again.

Deffunctions also help in readability. You can call a deffunction just like any other
function. A deffunction may also be used as the argument of another function. A
(printout) can be used anywhere in a deffunction even if it's not the last action because
printing is a side-effect of calling the (printout) function.

The general syntax of a deffunction is shown following.

(deffunction <function-name> [optional comment]
 (?arg1 ?arg2 ...?argM [$?argN]) ;argument list. Last one may
 (<action1> ;be optional multifield arg.
 <action2> ;action1 to
 ... ;action(K-1) do not
 <action(K-1)> ;return a value
 <actionK>) ;only last action returned

The ?arg are dummy arguments, which mean that the names of the arguments will not

 — 72 —

conflict with variable names in a rule if they are the same. The term dummy argument is
sometimes called a parameter in other books.

Although each action may have returned values from function calls within the action,
these are blocked by the deffunction from being returned to the user. The deffunction
will only return the value of the last action, <actionK>. This action may be a function, a
variable, or a constant.

The following is an example of how a deffunction is defined to calculate the
hypotenuse, and then used in a rule. Even if the variable names in the rule are the same
as the dummy arguments, there's no conflict. That's why they're dummy, because they
don't mean anything.

CLIPS> (clear)
CLIPS> (deffunction hypotenuse ; name
 (?a ?b) ; dummy arguments
 (sqrt(+ (* ?a ?a) (* ?b ?b)))) ; action
CLIPS> (defrule calculate-hypotenuse
 (dimensions ?base ?height)
=>
 (printout t "Hypotenuse=" (hypotenuse ?base ?height) crlf))
CLIPS> (assert (dimensions 3 4))
<Fact-1>
CLIPS> (run)
Hypotenuse=5.0
CLIPS>

Deffunctions may be used with multifield values, as the following example shows.

CLIPS> (clear)
CLIPS> (deffunction count ($?arg)
 (length $?arg))
CLIPS> (count 1 2 3 a duck "quacks")
6
CLIPS>

Other Features

Other useful functions follow. For more information, see the CLIPS Reference Manual.

 — 73 —

Function Meaning
round Round toward closest integer. If exactly between two integers,

rounds toward negative infinity.
integer Truncates the decimal part of a number.
format Formats output
list-deffunctions List all deffunctions
ppdeffunction Pretty print
undeffunction Deletes a deffunction if it is not currently executing and not referred

to elsewhere. Specifying "*" for <name> deletes all.
length Number of fields, or the number of characters in a string or symbol
nth$ Specified field if exists, else nil
member$ Number of the field if literal or variable exists, else FALSE
subsetp Returns TRUE if a multifield value is a subset of another multifield

value, else FALSE
delete$ Given a field number, deletes the value in the field
explode$ Each string element is returned as part of a new multifield value
subseq$ Returns a specified range of fields
replace$ Replaces a specified value

 — 75 —

Chapter 7 How to Be in Control
When you're young, you're controlled by the world, when you're older,
you should control the world

Up to this point, you've been learning the basic syntax of CLIPS. Now you'll see how to
apply the syntax you've learned to more powerful and complex programs. You'll also
learn some new syntax for input, and see how to compare values and generate loops.

Let's Start Reading

Besides matching a pattern, a rule can get information in another way. CLIPS can read
the information that you type from the keyboard using the read function.
 The following example shows how (read) is used to input data. Note that no extra (crlf)
is needed after the (read) to put the cursor on a new line. The (read) automatically
resets the cursor to a new line.

CLIPS> (clear)
CLIPS> (defrule read-input
=>
 (printout t "Name a primary color" crlf)
 (assert (color (read))))
CLIPS>
(defrule check-input
 ?color <- (color ?color-read&red|yellow|blue)
=>
 (retract ?color)
 (printout t "Correct" crlf))
CLIPS> (reset)
CLIPS> (agenda)
0 read-input: *
For a total of 1 activation.

 — 76 —

CLIPS> (run)
Name a primary color
red
Correct
CLIPS> (reset)
CLIPS> (run)
Name a primary color
green
CLIPS> ; No "correct"

 The rule is designed to use keyboard input on the RHS, so it's convenient to trigger
the rule by not specifying any patterns on the LHS so it will automatically be activated
when a (reset) occurs. When the activation for the read-input rule is displayed by the
(agenda) command, an * is printed rather than a fact identifier such as f-1. The * is used
to indicate that the pattern is satisfied, but not by a specific fact.
 The (read) function is not a general-purpose function that will read anything you type
on the keyboard. One limitation is that (read) will read only one field. So if you try to read

primary color is red

only the first field, "primary", will be read. To (read) all the input, you must enclose the
input within double quotes. Of course, once the input is within double quotes, it is a
single literal field. You can then access the substrings "primary", "color", "is", and "red"
with the str-explode or sub-string functions.
 The second limitation of (read) is that you can't input parentheses unless they are
within double quotes. Just as you can't assert a fact containing parentheses, you can't
(read) parentheses directly except as literals.

The readline function is used to read multiple values until terminated by a carriage
return. This function reads in data as a string. In order to assert the (readline) data, an
(assert-string) function is used to assert the nonstring fact, just as input by (readline). A
top-level example of (assert-string) follows.

CLIPS> (clear)
CLIPS> (assert-string "(primary color is red)")
<Fact-1>
CLIPS> (facts)
f-0 (initial-fact)
f-1 (primary color is red)

 — 77 —

For a total of 2 facts.
CLIPS>

Notice that the argument of (assert-string) must be a string The following shows how

to assert a fact of multiple fields from (readline).

CLIPS> (clear)
CLIPS> (defrule test-readline
=>
 (printout t "Enter input" crlf)
 (bind ?string (readline))
 (assert-string (str-cat "(" ?string ")")))
CLIPS> (reset)
CLIPS> (run)
Enter input
primary color is red
CLIPS> (facts)
f-0 (initial-fact)
f-1 (primary color is red)
For a total of 2 facts.
CLIPS>

Since (assert-string) requires parentheses around the string to be asserted, the (str-cat)
function is used to put them around ?string.

Both (read) and (readline) also can be used to read information from a file by
specifying the logical name of the file as the argument. For more information, see the
CLIPS Reference Manual.

Being Efficient

CLIPS is a rule-based language that uses a very efficient pattern-matching algorithm
called the Rete Algorithm, devised by Charles Forgy of Carnegie-Mellon University for
his OPS shell. The term Rete is Latin for net, and describes the software architecture of
the pattern-matching process.

It is very difficult to give precise rules that will always improve the efficiency of a
program running under the Rete Algorithm. However, the following should be taken as
general guidelines that may help:

 — 78 —

 1. Put the most specific patterns in a rule first. Patterns with unbound variables and
wildcards should be lower down in the list of rule patterns. A control fact should be put
first in the patterns.
 2. Patterns with fewer matching facts should go first to minimize partial matches.
 3. Patterns that are often retracted and asserted, volatile patterns, should be put last
in the list of patterns.

 As you can see, these guidelines are potentially contradictory. A non-specific
pattern may have few matches (see guidelines 1 and 2). Where should it go? The
overall guideline is to minimize changes of the partial matches from one cycle of the
Inference Engine to the next. This may require much effort by the programmer in
watching partial matches. An alternative solution is simply to buy a faster computer, or
an accelerator board. This is becoming more attractive since the price of hardware
always goes down while the price of human labor always goes up. Because CLIPS is
designed for portability, any code developed on one machine should work on another.

Other Features

The test conditional element provides a very powerful way by which to compare
numbers, variables, and strings on the LHS. The (test) is used as a pattern on the LHS.
A rule will only be triggered if the (test) is satisfied together with other patterns.

Many predefined functions are provided by CLIPS as shown in the following table.

 Predefined Functions

 Logical Arithmetic

 not Boolean not / division
 and Boolean and * multiplication
 or Boolean or + addition
 - subtraction
 Comparison

 eq equal (any type). Compares type and magnitude
 neq not equal (any type)
 = equal (numeric type). Compares magnitude

 — 79 —

 <> not equal (numeric type)
 >= greater than or equal to
 > greater than
 <= less than or equal to
 < less than

All the comparison functions except "eq" and "neq" will give an error message if they
are used to compare a number and non-number. If the type is not known in advance,
the "eq" and "neq" functions should be used. The eq function checks for the same
magnitude and type of its arguments while the "=" function only checks the magnitude of
its (numeric) arguments and doesn't care if they're integer or floating-point.

The logical functions of CLIPS are and, or, and not. They can be used in
expressions as Boolean functions. In CLIPS, true and false are represented by the
symbols TRUE and FALSE. Note that upper-case must be used for logical values in
CLIPS.

In addition to all the predefined functions, you may write external functions or user-
defined functions in C, Ada, or other procedural languages and link to CLIPS. These
external functions are then used as you would any predefined function.

CLIPS also gives you the capability of specifying an explicit and conditional
element, an or conditional element, and a not conditional element on the LHS. The
absence of a fact is specified as a pattern on the LHS using the "not" conditional
element.

The alteration of our information to conform to reality is called truth maintenance.
That is, we try to maintain the state of our minds to contain only true information so as to
minimize conflicts with the real world.

While people can do this fairly easily (practice makes perfect), it's difficult for
computers because they don't normally know which pattern entities are logically
dependent on other pattern entities. CLIPS has a feature to support truth maintenance
which will internally tag those pattern entities which are logically dependent on others. If
these other pattern entities are retracted, CLIPS will automatically retract the logically
dependent ones. The logical conditional element uses the keyword logical around a
pattern to indicate that the matching pattern entities provide logical support to the
assertions on the RHS.

Although the logical support works for assertions, it does not reassert retracted facts.
The moral is, if you lose something due to erroneous information, you can't get it back

 — 80 —

(like losing money on your stockbrokers advice.)
CLIPS has two functions to help with logical support. The dependencies function

lists the partial matches from which a pattern entity receives logical support, or none if
there is no support. The second logic function is dependents which lists all pattern
entities which receive logical support from a pattern entity.

The connective constraint, uses "&", "|", or "~". Another type of field constraint is
called a predicate constraint and is often used for pattern matching of more complex
fields. The purpose of a predicate constraint is to constrain a field depending on the
result of a Boolean expression. If the Boolean returns FALSE, the constraint is not
satisfied and the pattern matching fails. You'll find that the predicate constraint is very
useful with numeric patterns.

 A predicate function is one which returns a FALSE or a non-FALSE value. The
colon ":" followed by a predicate function is called a predicate constraint. The ":" may
be preceded by "&", "|", or "~" or may stand by itself as in the pattern (fact :(> 2 1)). It is
typically used with the & connective constraint as "&:"

Predicate Function Check if <arg> is

(evenp <arg>) even number
(floatp <arg>) floating-point number
(integerp <arg>) integer
(lexemep <arg>) symbol or string
(numberp <arg>) float or integer
(oddp <arg>) odd number
(pointerp <arg>) external address
(sequencep <arg>) multifield value
(stringp <arg>) string
(symbolp <arg>) symbol

There are often cases in which it's convenient to have values which are globally

known in an expert system. For example, it is inefficient to have to redefine universal
constants such as π. CLIPS provides the defglobal construct so that values may be
universally known to all rules.

Another type of useful function is random numbers. CLIPS has a random function
which returns a "random" integer value. The random number function of CLIPS actually
returns pseudorandom numbers, which means they are not truly random but are

 — 81 —

generated by a mathematical formula. For most purposes the pseudorandom numbers
will be fine. Note that the random function of CLIPS uses the ANSI C library function
rand which may not be available on all computers that do not adhere to this standard.
For more information on all these topics, please see the CLIPS Reference Manual.

In addition to control facts to control the execution of programs, CLIPS provides a
more direct way of control by the explicit assignment of salience to rules. The main
problem associated with explicitly using salience while you were just starting to learn
CLIPS is the tendency to overuse salience and write sequential programs. This overuse
defeats the whole purpose of using a rule-based language, which is to provide a natural
vehicle for those applications best represented by rules. In the same way, procedural
languages are best for strong control-oriented applications, while object-oriented
languages are best for representing objects. CLIPS has keywords called declare
salience which can be used to explicitly set the priority of rules.

Salience is set using a numeric value ranging from the smallest value of -10000 to the
highest of 10000. If a rule has no salience explicitly assigned by the programmer, CLIPS
assumes a salience of zero. Notice that a salience of zero is midway between the
largest and smallest salience values. A salience of zero does not mean that the rule has
no salience but, rather, that it has an intermediate priority level.

CLIPS provides some procedural programming structures that can be used on the
RHS. These structures are the while and if then else that also are found in modern
high-level languages such as Ada, C, and Java.

Another useful function with (while) loops is the break which ends the currently
executing (while) loop. The return function immediately ends the currently executing
deffunction, generic function, method, or message-handler.

Any function may be called from the RHS, which greatly contributes to the power of
CLIPS. Many other CLIPS functions are available that may return with numbers,
symbols, or strings. These functions may be used for their return values or for their
side-effects. An example of a function only used for its side-effect is (printout). The
value returned by the (printout) is meaningless. The importance of (printout) is in its
side-effect of output. In general, functions may have nested arguments if appropriate to
your desired effect.

Before a file can be accessed for reading or writing, it must be opened using the
open function. The number of files that can be opened at once is dependent on your
operating system and hardware. When you no longer need to access a file, you should
close it with the close function. Unless a file is closed, there is no guarantee that the

 — 82 —

information written to it will be saved.
The logical name of a file is how CLIPS identifies the file. The logical name is a

global name by which CLIPS knows this file in all rules. Although the logical name could
be identical to the filename, you may want to use something different. Another
advantage of a logical name is that you can easily substitute a different filename without
making major program changes.

The function to read data from a file is the familiar (read) or (readline). The only new
thing that you have to do is to specify the logical name from which to read as the
argument of (read) or (readline).

To (read) more than one field, you must use a loop. Even with (readline), a loop is
necessary to read multiple lines. A loop can be written by having one rule trigger
another or with a while-loop. The loop should not try to read past the end of file or the
operating system will issue an error message. To help prevent this, CLIPS returns an
EOF symbolic field if you try to read past the end of file (EOF).

The evaluation function, eval, is used for evaluating any string or symbol except the
"def" type constructs such as defrule, deffacts, etc., as if entered at the top-level. The
build function takes care of the "def" type constructs. The (build) function is the
complement of (eval). The build function evaluates a string or symbol as if it were
entered at the top-level and returns TRUE if the argument is a legal def-type construct
such as (defrule), (deffacts), and so forth.

 — 83 —

Chapter 8 Matters of Inheritance
The easiest way to obtain wealth is to inherit it; the second best way is to
make it off the labor of others; marrying wealth is too much like work.

This chapter is an overview of object-oriented programming in CLIPS. Unlike rule-based
programming in which you can just jump right in and write a rule without caring what
else is in the system, object-oriented programming requires some essential background
material.

How to be Objective

A key characteristic of good program design is flexibility. Unfortunately, the rigid
methodology of structured programming techniques does not provide the needed
flexibility for fast, reliable, and efficient changes. The object-oriented programming
(OOP) paradigm. provides this flexibility.

The term paradigm comes from the Greek word paradeigma which means a model,
example, or pattern. In computer science, a paradigm is a consistent, organized
methodology for trying to solve a problem. Today, there are many programming
paradigms such as OOP, procedural, rule-based, and connectionist. The term
artificial neural systems, is a modern synonym for the older term connectionist.

Traditional programming is procedural because it emphasizes algorithms or
procedures in solving problems. Many languages have been developed to support this
procedural paradigm, such as Pascal, C, Ada, FORTRAN, and BASIC. These
languages have also been adapted for object-oriented design (OOD) by either adding
extensions or imposing a design methodology on the programmers. In contrast, new
languages have been developed to provide OOP, which is not the same as OOD. You
can do OOD in any language, even assembly language.

CLIPS provides three paradigms: rules, objects, and procedures. You will learn more

 — 84 —

about the objects in the CLIPS Object-Oriented Language (COOL) which is integrated
with the rule and procedural based paradigms of CLIPS. CLIPS supports the procedural
paradigm through generic functions, deffunctions, and user-defined external functions.
Depending on the application, you can use rules, objects, procedures, or a combination.

 Rather than imposing a single paradigm on the user, our philosophy is that a variety
of specialized tools, a multi-paradigm approach, is better than trying to force everyone
to use a single general purpose tool. As an analogy, while you could use a hammer and
nails for fastening everything, there are cases in which other fasteners are preferred.
For example, imagine fastening your pants with a hammer and nails instead of a zipper.
(NOTE: if anyone does use a hammer and nails on their pants, please contact the
Guiness Book of World Records.)

The Class Stuff

In OOP a class is a template which describes the common characteristics or attributes
of objects. Note that this use of the term template is not the same as a deftemplate as
described in an earlier chapter. Here, the word template is used in the sense of a tool
that is used to build objects having common attributes. As analogies, a straightedge is a
template for drawing straight lines while a cookie-cutter is a curvaceous template.

Classes of objects are arranged in a hierarchy or in a graph to describe the
relationships of objects in a system. Each class is an abstraction of a real-world
system or some other logical system that we are trying to model. For example, one
abstract model of a real-world system might be an automobile. Another abstract model
of a logical system could be financial instruments such as stocks and bonds, or complex
numbers. The term abstraction refers to (1) the abstract description of a real-world
object or other system that we are trying to model, or (2) the process of representing a
system in terms of classes. Abstraction is one of the five generally accepted features of
a true OOP language. The others are inheritance, encapsulation, polymorphism and
dynamic binding. These terms will be explained in detail as you read through this
book. CLIPS supports all five of these features.

The term abstract means that we are not concerned with nonessential details. An
abstract description of a complex system is a simplified description that concentrates on
relevant information for a specific purpose. Thus, the system is represented by a
simpler, easier to understand model. As a familiar example, when certain people drive
cars, they utilize an abstract model of driving that consists of two items — the steering

 — 85 —

wheel and the accelerator. That is, these people are not concerned with the hundreds of
components that make up an automobile, nor the theory of internal combustion engines,
traffic laws, and so forth. Knowing only how to use the steering wheel and accelerator is
their abstract model of driving.

One of the five fundamental features of OOP is inheritance. Classes are arranged in
a hierarchy with the most general classes at the top and the more specialized classes
below. This allows new classes to be easily defined as specialized refinements or
modifications of existing classes.

The use of inheritance can greatly speed up software development and increase
reliability because new software does not need to be created from scratch each time a
new program is made. OOP makes it easy to utilize reusable code. OOP programmers
often make use of object libraries consisting of hundreds or thousands of objects. These
objects can be used or modified as desired in a new program. In addition to public
domain object libraries, a number of companies market commercial object libraries.
Although the concept of reusable software components has been around since the early
days of FORTRAN subroutine libraries in the 1960s, the concept has never before been
so successfully used for general software development.

In order to define a class, you must specify one or more parent classes or
superclasses of the class to be defined. As an analogy to superclasses, every person
has parents; people do not spontaneously come into existence (although sometimes
you may wonder if certain people really had parents.) The opposite of a superclass is a
child class or subclass.

This determines the inheritance of the new class. A subclass inherits attributes from
one or more superclasses. The term attribute in COOL refers to the properties of an
object, which are named slots that describe it. For example, an object to represent a
person might have slots for name, age, address, and so forth.

An instance is an object that has values for the slots such as John Smith, 28, 1000
Main St., Clear Lake City, TX. Lower-level classes automatically inherit their slots from
higher-level classes, unless the slots are explicitly blocked. New slots are defined in
addition to the inherited slots to set all the attributes that describe the class.

An object's behavior is defined by its message-handlers, or handlers for short. A
message-handler for an object responds to messages and performs the required
actions. For example, sending the message

(send [John_Smith] print)

 — 86 —

would cause the appropriate message-handler to print the values of the slots of the
instance John_Smith. Instances are generally specified within brackets, []. A message
begins with the send function, followed by the instance name, message name, and any
required arguments. For example, in the case of the print message, there are no
arguments. An object in CLIPS is an instance of a class.

The encapsulation of slots and handlers inside an object is another of the five
generally accepted features of an OOP. The term encapsulated means that a class is
defined in terms of its slots and handlers. Although an object of a class may inherit slots
and handlers from its superclasses, with a few exceptions discussed later, the object's
slot values cannot be altered or examined without sending a message to the object.

The root class or simply root of CLIPS is a predefined system class called
OBJECT. The predefined system class USER is a subclass of OBJECT.

How the UPPIES Get Theirs

As an example, suppose we wanted to define a class called UPPIE, which is a
colloquial term for urban professional. Note that in this book, we'll follow the
convention of writing classes in all uppercase.

Fig. 1.1 illustrates how the UPPIEs get their inheritance all the way up to the root
class OBJECT. Notice that UPPIE is defined as a subclass of USER. The boxes or
nodes represent classes while the connecting arrows are called links. Lines are often
used instead of arrows for simplicity in drawing. Also, since CLIPS supports only is-a
links, the "is-a" relationship will not be explicitly written next to each link from now on.

 — 87 —

OBJECT

USER

UPPIE

is-a

is-a

UPPIE is-a USER

USER is-a OBJECT

Relationship

Fig. 1.1 The UPPIE Class

The convention we will follow for the relationship between classes is that the tail end of
the arrow is on the subclass while the head points at the superclass. The relationships
in Fig. 1.1 follow this convention. Another possible convention is to use arrows to point
at the subclasses.

The is-a link indicates the inheritance of slots from a class to its subclass. A class
may have zero or more subclasses. All classes except OBJECT must have a
superclass. Since UPPIE also inherits all slots of USER, and USER inherits all slots of
OBJECT, it follows that UPPIE inherits all slots of OBJECT too. The same principle of
inheritance also applies to the message-handlers of each class. For example, UPPIE
inherits all the handlers of USER and OBJECT.

The inheritance of slots and handlers is particularly important in OOP since it means
that you do not have to redefine the properties and behavior of each new class of
objects that is defined. Instead, each new class inherits all the properties and behavior
from its higher-level classes. Since the new behavior is inherited, it may substantially
reduce the verification and validation (V&V) of the handlers. V&V essentially means
that the product was built properly and that it meets the requirements. The task of
verifying and validating software may take more time and money than the software
development itself, especially if the software affects human life and property. Inheritance
of handlers allows for efficient reuse of existing code and speeds up development.

Classes are defined in CLIPS using the defclass construct. The UPPIE class is
defined in one statement as follows.

 — 88 —

(defclass UPPIE (is-a USER))

Notice the similarity between the UPPIE–USER relationship in Fig. 1.1 and the
(defclass) construct.

You do not have to enter the USER or the OBJECT classes since these are
predefined classes and so CLIPS already knows their relationship. In fact, if you try to
define USER or OBJECT, an error message will result since you cannot change the
predefined classes, unless you change the source code of CLIPS.

Since CLIPS is case-sensitive, commands and functions must be entered in
lowercase. Predefined system classes such as USER and OBJECT must be entered in
uppercase. Although you can enter user-defined classes in lowercase or uppercase, we
will follow the convention of using all uppercase for classes for the sake of readability.

The basic format of the defclass command to define classes only, and not slots, is,

(defclass <class> (is-a <direct-superclasses>))

The list of classes, <direct-superclasses>, is called a direct superclass precedence
list because it defines how a class is linked to its direct superclasses. The direct
superclasses of a class are the one or more classes named after the is-a keyword. In
our example, class DUCKLING is the direct superclass of DUCK. Note that at least one
direct superclass must be given in the direct superclass precedence list.

If the direct superclass list was as follows,

(defclass DUCK (is-a DUCKLING USER OBJECT))

then USER and OBJECT would also be direct superclasses of DUCK. In this example, it
makes no difference whether USER and OBJECT are specified in addition to
DUCKLING. In fact, since USER and OBJECT are predefined classes that are always
linked such that USER is-a OBJECT, and OBJECT is the root, you need never specify
them except when defining a subclass of USER. Since USER only inherits from
OBJECT, it is not necessary to specify OBJECT if USER is specified.

The indirect superclasses of a class are all the classes not named after the "is-a"
that contribute slots and message-handlers by inheritance. In our example, the indirect
superclasses are USER and OBJECT. A class inherits slots and message-handlers
from all its direct and indirect superclasses. Thus, DUCK inherits from DUCKLING,
USER, and OBJECT.

 — 89 —

A direct subclass is connected by a single link to the class above it. An indirect
subclass has more than one link. Fig. 1.2 summarizes the class terminology.

 Fig. 1.2 Class Relationships

The root class OBJECT is the only class that does not have a superclass.
Using this fancy new terminology allows us to state the

Principle of OOP Inheritance

A class may inherit from all its superclasses.

This is a simple, yet powerful concept fully exploited in OOP. This principle means
that slots and message-handlers may be inherited to save us the trouble of redefining
them for new subclasses. In addition, slots may be easily customized for new
subclasses as modifications and as composites of superclass slots. By allowing easy
and flexible reuse of existing code, program development time and cost are decreased.
In addition, the reuse of working, existing code minimizes the amount of verification and

 — 90 —

validation needed. All these advantages facilitate the program maintenance tasks of
debugging, modification, and enhancement once the code is released.

The reason for using may in the principle is to emphasize that inheritance of slots
from a class may be blocked by including a no-inherit facet in the class slot definition.

The direct and indirect classes of a class are all those that lie on an inheritance path
to OBJECT. An inheritance path is a set of connected nodes between the class and
OBJECT. In our example, the single inheritance path of DUCK is DUCK, DUCKLING,
USER, and OBJECT. You will see examples later, such as Fig. 1.6, in which a class has
multiple inheritance paths to OBJECT.

Fig. 1.3 illustrates a very simplified taxonomy of organisms that illustrates inheritance
in Nature. The term taxonomy means a classification. Biological taxonomies are
designed to show the kinship of organisms. That is, a biological taxonomy emphasizes
similarities between organisms by grouping them together.

ORGANISM

ANIMAL

MAMMAL

MAN

PLANT

BIRD

DUCK

ANGIOSPERMAE

DUCKWEED

Fig. 1.3 Simple Taxonomy of Living Organisms With is-a Links

In a taxonomy like Fig. 1.3, the connecting lines are all is-a links. For example, a DUCK
is-a BIRD. A BIRD is-a ANIMAL. An ANIMAL is-a ORGANISM and so forth. Although
the genetic inheritance of each individual is different, the characteristics of MAN and
DUCK are the same for each species.

In Fig. 1.3, notice that the most general class, ORGANISM, is at the top, while more
specialized classes are lower in the taxonomy. In CLIPS terminology, we would say that
each subclass inherits the slots of its parent classes. For example, since mammals are
warm-blooded and give birth to live young, with the exception of the platypus, the class
MAN inherits the attributes of the parent MAMMAL class. The direct superclass of
MAMMAL is ANIMAL and the direct subclass of MAMMAL is MAN. The indirect
superclass of MAMMAL is ORGANISM.

The other classes such as BIRD, DUCK, and so forth have no relationship to
MAMMAL because they are not on an inheritance path from the most general class

 — 91 —

ORGANISM. An inheritance path is any path from one class to another that does not
involve backtracking or retracing the path. A class such as PLANT is not on an
inheritance path to MAMMAL because we would have to backtrack to ORGANISM
before continuing down to MAMMAL. Thus, MAMMAL does not automatically obtain any
slots from PLANT or any other classes not on the inheritance path to MAMMAL. This
model of inheritance mirrors the real world, since otherwise we might have grass
growing on our heads instead of hair.

The Illegitimate YUKKIE

Now that you've got the basic idea of classes, let's add some additional classes to the
UPPIE diagram of Fig. 1.1 in order to make the example more realistic. This type of
development by adding lower-level classes is the way that OOP is done, by adding
classes from the most general to the most specific classes.

Fig. 1.5 shows the inheritance diagram of the illegitimate YUKKIE. For simplicity, the
OBJECT and USER classes are not shown. The hierarchy of Fig. 1.5 is a tree because
every node has exactly one parent.

UPPIE

MUPPIESUPPIE YUPPIE

PUPPIE

YUKKIE

LEGEND

UPPIE–Urban Professional (UP)

YUPPIE–Young UP

MUPPIE–Middle-age UP

SUPPIE–Senior UP

PUPPIE–Pregnant UP

YUKKIE–Yuppie kid

Fig. 1.5 The Illegitimate YUKKIE

A familiar example of a tree organizational structure is that often used by companies
which have a hierarchy consisting of president, vice-presidents, department heads,
managers and so forth down to the lowest employee. In this case, the hierarchical
structure mirrors the authority of people in the organization. Trees are generally used for

 — 92 —

organizations of people because every person has exactly one boss, except the top dog
who has no boss. Nodes in the organizational chart represent the positions such as
president, vice president, etc. Lines connecting the positions are the branches that
indicate the division of responsibility. Links are often called branches in a tree.

In Fig. 1.5, every class except YUKKIE is legal or legitimate. For example, a SUPPIE
is-a UPPIE. A MUPPIE is-a UPPIE. A YUPPIE is-a UPPIE. A PUPPIE is-a YUPPIE (no
middle-aged YUPPIE moms allowed.) We would also like to say that a YUKKIE is-a
YUPPIE and a YUKKIE is-a UPPIE by inheritance. However, we don't want to say that a
YUKKIE is-a PUPPIE, which is what the is-a link between YUKKIE and PUPPIE means.

The is-a link between YUKKIE and PUPPIE is a natural mistake for a person to make
since a YUKKIE is the child of a PUPPIE (actually an ex-PUPPIE after she gives birth.)
Although making an is-a link between YUKKIE and PUPPIE does allow the YUKKIE to
inherit from YUPPIE and UPPIE as desired, it also produces an illegitimate relationship
by saying that a YUKKIE is-a PUPPIE. This means that a YUKKIE will inherit all the
slots of a PUPPIE. Assuming that one of the PUPPIE slots specifies how many months
pregnant the PUPPIE is, this means that every Yuppie kid will have a slot to indicate
how many months pregnant he or she is too!

It is possible to correct the figure. However, we need to use a graph instead of a tree.
In contrast to trees, in which every node except the root has exactly one parent, each
node in a graph may have zero or more nodes connected to them. A familiar example of
a graph is a roadmap in which cities are nodes, and roads are the links connecting
them. Another difference between trees and graphs is that most types of trees have a
hierarchical structure while general types of graphs do not.

Fig. 1.6 shows the legitimate Yuppie class YUKKIE. A new class CHILD has been
created and is-a links made between YUKKIE and its two superclasses, YUPPIE and
CHILD. Notice there is no longer an illegitimate link between YUKKIE and PUPPIE.

UPPIE

MUPPIE YUPPIESUPPIE

PUPPIE YUKKIE

USER

CHILD

Fig. 1.6 The Legitimate YUKKIE

 — 93 —

This is a graph because the YUKKIE class has two direct superclasses instead of only
one as in a tree. This is also a hierarchical graph because the classes are arranged
using is-a links from the most general, USER, to most specific, SUPPIE, MUPPIE,
PUPPIE, and YUKKIE. Using Fig. 1.6, we can say that a YUKKIE is-a YUPPIE, and
also that a YUKKIE is-a CHILD.

Shown following are the commands to add the subclasses shown in Fig. 1.6.

CLIPS> (clear)
CLIPS> (defclass UPPIE (is-a USER))
CLIPS> (defclass CHILD (is-a USER))
CLIPS> (defclass SUPPIE (is-a UPPIE))
CLIPS> (defclass MUPPIE (is-a UPPIE))
CLIPS> (defclass YUPPIE (is-a UPPIE))
CLIPS> (defclass PUPPIE (is-a YUPPIE))
CLIPS> (defclass YUKKIE (is-a YUPPIE CHILD))

The order that classes are defined must be such that a class is defined before its
subclasses. Thus,

(defclass CHILD (is-a USER))

must be entered before

(defclass YUKKIE (is-a YUPPIE CHILD))

CLIPS will issue an error message if you try to enter the YUKKIE class before the
CHILD class.

Notice the left-to-right order that SUPPIE, MUPPIE, and YUPPIE are drawn in Fig.
1.6. This corresponds to the order that these classes are entered into CLIPS and is the
convention that we will follow. You can also see why CHILD is drawn to the right of
UPPIE since it was entered after the UPPIE class.

In Fig. 1.6, notice that the link YUKKIE—YUPPIE is drawn to the left of the link
YUKKIE—CHILD. Another convention that we will follow is to write the direct
superclasses from left to right in the precedence list according to their left-to-right order
drawn in a graph. The ordering YUPPIE CHILD in the precedence list of YUKKIE is
done to satisfy this convention.

 — 94 —

Show Me

CLIPS provides a number of functions to show information about classes, such as
predicate functions to test whether a class is a superclass or subclass of another.

The superclassp function returns TRUE if <class1> is a superclass of <class2>, and
FALSE otherwise. The subclassp function returns TRUE if <class1> is a subclass of
<class2>, and FALSE otherwise. The general form of both functions is

(function <class1> <class2>)

For example,

CLIPS> (superclassp UPPIE YUPPIE)
TRUE
CLIPS> (superclassp YUPPIE UPPIE)
FALSE
CLIPS> (subclassp YUPPIE UPPIE)
TRUE
CLIPS> (subclassp UPPIE YUPPIE)
FALSE
CLIPS>

Now let's check to see if CLIPS accepted all these new classes. One way of doing
this is with the list-defclasses command. Following is the output of the command.

CLIPS> (list-defclasses)
FLOAT
INTEGER
SYMBOL
STRING
MULTIFIELD
EXTERNAL-ADDRESS
FACT-ADDRESS
INSTANCE-ADDRESS
INSTANCE-NAME
OBJECT
PRIMITIVE
NUMBER
LEXEME

 — 95 —

ADDRESS
INSTANCE
USER
INITIAL-OBJECT
UPPIE
CHILD
SUPPIE
MUPPIE
YUPPIE
PUPPIE
YUKKIE
For a total of 24 defclasses.
CLIPS>

Notice that the (list-defclasses) command does not indicate the hierarchical class
structure. That is, list-defclasses does not indicate which classes are subclasses or
superclasses of others.

If you look down this list, you will see all the user-defined classes that you entered:
UPPIE, CHILD, YUPPIE, MUPPIE, SUPPIE, PUPPIE, and YUKKIE. In addition to the
predefined system classes OBJECT and USER that have been discussed so far, there
are a number of other predefined classes. You should recognize most of them as having
the same name as the familiar CLIPS types that you learned about in earlier chapters.
The predefined types of CLIPS are also defined as classes so that they can be used
with COOL.

The general inheritance diagram of the predefined classes from the CLIPS Reference
Manual , is shown in Fig. 1.7, where the arrows point to the subclasses.

STRING

OBJECT

PRIMITIVE

USER

LEXEME

SYMBOL

NUMBER

INTEGER FLOAT

MULTIFIELDADDRESSINSTANCE

INSTANCE-ADDRESSINSTANCE-NAME FACT-ADDRESS EXTERNAL-ADDRESS

INITIAL-OBJECT

 — 96 —

Fig. 1.7 The Predefined CLIPS Classes

 The OBJECT class is the root of the tree and is connected by branches to its
superclass. The terms branch, edge, link, and arc are basically synonymous in that
they all indicate a connection between nodes. Each subclass is one level lower than its
superclass. The classes are numbered by level. Level 0 is the root class OBJECT.

Larger level numbers indicate that a class has higher specificity. The term specificity
means that a class is more restrictive. For example, LEXEME is a superclass of
SYMBOL and STRING. If you were told that an object was of the LEXEME class, you
would know that it could only be a SYMBOL or a STRING. However, if an object is a
SYMBOL, it cannot be a STRING and vice versa. Thus, the classes SYMBOL and
STRING are more specific than LEXEME.

The browse-classes command shows the class hierarchy through indentation.

CLIPS> (browse-classes)
OBJECT
 PRIMITIVE
 NUMBER
 INTEGER
 FLOAT
 LEXEME
 SYMBOL
 STRING
 MULTIFIELD
 ADDRESS
 EXTERNAL-ADDRESS
 FACT-ADDRESS
 INSTANCE-ADDRESS *
 INSTANCE
 INSTANCE-ADDRESS *
 INSTANCE-NAME
 USER
 INITIAL-OBJECT
 UPPIE
 SUPPIE
 MUPPIE
 YUPPIE
 PUPPIE
 YUKKIE *
 CHILD
 YUKKIE *

 — 97 —

CLIPS>

The asterisk after a class name indicates that it has multiple superclasses.
The (browse-classes) command has an optional argument which specifies the

starting class for the subclasses you want to see. This is convenient if you are not
interested in listing all the classes. The following examples illustrate how to show
portions of the YUPPIE graph of Fig. 1.6, called subtrees or subgraphs depending on
whether the nodes and links form a tree or graph.

CLIPS> (browse-classes UPPIE)
UPPIE
 SUPPIE
 MUPPIE
 YUPPIE
 PUPPIE
 YUKKIE *
CLIPS> (browse-classes YUPPIE)
YUPPIE
 PUPPIE
 YUKKIE *
CLIPS> (browse-classes YUKKIE)
YUKKIE *
CLIPS>

An abstract class is designed for inheritance only. The abstract class USER cannot
have direct instances defined for it, which are instances defined directly for a class. In
addition to the class information, the inheritance precedence of the classes is
described. This is an ordered list in which the order from left to right indicates the
highest to lowest precedence that classes contribute by inheritance. The inheritance
precedence lists all the superclasses of a class back to the root class OBJECT. You can
also see that the direct superclasses information indicates the superclass that is one
link above a class while the inheritance precedence list shows all superclasses.

Even if a class has no direct instances, it will have indirect instances if it has
subclasses which have instances. The indirect instances of a class are all the instances
of its subclasses

A concrete class is allowed to have direct instances. For example, given a concrete
class COW, the direct instance Elsie would be the famous TV salescow. Normally
classes inheriting from abstract classes are also abstract classes. However, classes

 — 98 —

inheriting from system classes, such as USER, are considered to be concrete unless
otherwise specified. So UPPIE and YUPPIE are also concrete classes.

It is strongly recommended that all classes you define in CLIPS be subclasses of
USER. CLIPS will automatically provide handlers for print, init, and delete if your classes
are subclasses of USER.

The YUKKIE class has multiple inheritance since it has two direct superclasses,
CHILD and YUPPIE. If you think back to the analogy of inheritance to bosses in an
organization, the issue of multiple inheritance brings up an interesting question— Who's
the boss? In the case of a tree structure, every class has only one direct superclass
(boss) and so its easy to figure out who to take orders from. However, in the case of
multiple inheritance, there appears to be multiple "bosses" of equal authority which are
the direct superclasses.

For the case of classes arranged in a tree, i.e., single inheritance, the inheritance is
simply all classes along the inheritance path back to OBJECT. The inheritance path in a
tree is just the shortest path from a class back to OBJECT. This concept of inheritance
also applies to a subgraph of a graph which is a tree. For example, the inheritance
precedence of the subgraph UPPIE, SUPPIE, MUPPIE, YUPPIE, and PUPPIE is a tree
since each of them has only one parent. Thus, the inheritance precedence of each of
them is the shortest sequence of links back to OBJECT. For example, the inheritance
precedence of PUPPIE is PUPPIE, YUPPIE, UPPIE, USER, and OBJECT.

Fig. 1.8 is another example of a graph. Notice that some nodes such as rhombus
have more than one parent.

 — 99 —

QUADRILATERAL

KITE

RECTANGLE

SQUARE

TRAPEZOID

ISOSCELES

 TRAPEZOID

RHOMBUS

PARALLELOGRAM

Fig. 1.8 The Quadrilateral Graph

For simplicity, we will only discuss single inheritance in this book. For more details on
multiple inheritance, see the CLIPS Reference Manual.

Other Features

Some other functions useful with classes are shown following.

Function Meaning
ppdefclass Pretty-print the defclass internal structure
undefclass Eliminate class
describe-class Additional information about classes
class-abstractp Predicate function returns TRUE if the class is abstract

For more information on these functions and topics mentioned in this chapter, see the

CLIPS Reference Manual.

 — 101 —

Chapter 9 Meaningful Messages
It's always better to please your superiors than your subordinates.
 — Bowen

In this chapter you'll learn more about classes and objects called instances. You will see
how to specify the attributes of classes using slots and how to send messages to
objects.

The Birds and the Bees

In Chapter 1 you learned the basic ideas of inheritance. The reason that inheritance is
so important in OOP is that inheritance allows the easy construction of customized
software. By customized software, we don't mean that the software is built from
scratch. Rather, it's more like taking a mass produced item and modifying it for a special
application. The mass produced item can be considered a product of a software
factory that quickly, economically, and reliably produces items of a general type that
are meant to be easily customized.

The heart of the OOP paradigm is the creation of a class hierarchy to quickly, easily,
and reliably produce software. Generally, this software is a modification of existing
software so that programmers are not always "reinventing the loop."

Although in the past, people have tried to provide reusable code through such
mechanisms as subroutine libraries, the pure OOP paradigm in languages such as
Smalltalk carries the concept of reusable code to its logical conclusion by trying to build
all the software in a system as reusable code. In Smalltalk, everything is an object, even
the classes. In CLIPS, instances of the primitive types such as NUMBER, SYMBOL,
STRING and so forth, as well as user-defined instances are objects. Classes are not
objects in CLIPS. For example, the NUMBER 1, the SYMBOL Duck, the STRING
"Duck", and the user-defined instance Duck are all objects.

 — 102 —

The OOP paradigm is quite different from the subroutine library approach in which
bits and pieces of subroutine code may or may not be used depending on the
programmer's whim. The OOP paradigm encourages and supports modular code— the
message-handlers— that can be easily modified and maintained. This feature of code
maintainability is playing an increasingly important role as the size and cost of systems
increase.

A class in OOP is like a software factory which has the design information about an
object. In other words, a class is like a template which can be used to produce identical
objects that are the instances of the class. The classic analogy is that a class is like the
blueprint of a cow, and the object that produces milk, such as Elsie, is the instance.

The general syntax of an instance name is simply a symbol surrounded by brackets,
[], as follows.

[<name>]

The brackets are not actually part of the instance name, which is a symbol, like Elsie.
Brackets are used to surround an instance name if there is danger of ambiguity in using
the name. This may occur in the (send) function and so brackets are used in a (send). In
case of doubt, use brackets, since it doesn't hurt.

Some of the different types of objects in CLIPS are indicated in the following table.

Object Class
Dorky_Duck SYMBOL
"Dorky_Duck" STRING
1.0 FLOAT
1 INTEGER
(1 1.0 Dorky_Duck "Dorky_Duck") MULTIFIELD
<Pointer: 00AB12CD> EXTERNAL-ADDRESS
[Dorky_Duck] DUCK

The classes of SYMBOL, STRING, FLOAT, INTEGER, and MULTIFIELD have the
same names as those you are familiar with from rule-based programming in CLIPS.
These are called primitive object types because they are provided by CLIPS and
automatically maintained as needed. These primitive types are mainly provided for use
in generic functions. Two compound classes are NUMBER which is FLOAT or
INTEGER, and LEXEME which is SYMBOL or STRING. The compound classes are
provided for convenience if the type of number, or type of characters doesn't matter.

 — 103 —

In contrast, user-defined object types are those that you define through
user-defined classes. If you refer back to the predefined CLIPS classes of Fig. 1.7 in
chapter 1, you'll see that primitive and user-defined classes are the top-level division of
classes in CLIPS.

Two functions convert a symbol to an instance name, and vice versa. The
symbol-to-instance-name converts a symbol to an instance name, as shown by the
following.

CLIPS> (clear) ; Get rid of any old classes
CLIPS> (symbol-to-instance-name Dorky_Duck)
[Dorky_Duck]
CLIPS> (symbol-to-instance-name (sym-cat Dorky "_" Duck))
[Dorky_Duck]
CLIPS>

Notice how standard CLIPS functions such as (sym-cat), which concatenates items, can
be used with the object system of CLIPS.

The opposite function, instance-name-to-symbol, converts an instance name to a
symbol, as the following examples show.

CLIPS> (instance-name-to-symbol [Dorky_Duck])
Dorky_Duck
CLIPS> (str-cat (instance-name-to-symbol [Dorky_Duck]) " is a
DUCK")
"Dorky_Duck is a DUCK"
CLIPS>

Dorky Duck

There is a difference between Nature and OOP. In Nature, objects are reproduced only
from like objects, like the birds and the bees (the chicken and the egg are the
exceptions to this rule.) However, in OOP instances are only created using the class
template. In a pure OOP like Smalltalk, an instance of a specific class is created by
sending the class a message. In fact, the heart of OOP involves sending different types
of messages from one object to another, even from an object to itself.

In order to see how messages work, let's start by entering the following commands to
create a user-defined DUCK class and check that it's entered. Notice that no role

 — 104 —

descriptor is specified for the DUCK class. If a class has role concrete, direct instances
of the class can be created. If the role is unspecified, CLIPS determines the role by
inheritance. For determining role by inheritance, system classes behave as concrete
classes. Thus by default, any class inheriting from USER is a concrete class and does
not need to be declared as such in order to allow direct instances to be created.

If a class has role abstract no direct instances of it can be made. Abstract classes
are defined for inheritance purposes only. For example, an abstract class called
PERSON could be defined whose properties such as name, address, age, height,
weight, and so on are inherited by concrete classes MAN and WOMAN. A direct
instance of MAN could be a man-person called Harold, and a direct instance of
WOMAN is a woman-person called Henrietta.

CLIPS> (defclass DUCK (is-a USER))
CLIPS> (describe-class DUCK)
==
**
Concrete: direct instances of this class can be created.
Reactive: direct instances of this class can match defrule
patterns.

Direct Superclasses: USER
Inheritance Precedence: DUCK USER OBJECT
Direct Subclasses:
--
Recognized message-handlers:
init primary in class USER
delete primary in class USER
create primary in class USER
print primary in class USER
direct-modify primary in class USER
message-modify primary in class USER
direct-duplicate primary in class USER
message-duplicate primary in class USER
**
==
CLIPS>

Since classes are not objects in CLIPS, we can't send a message to make an object.

Instead, the make-instance function is used to make an instance object. The basic
syntax is as follows.

 — 105 —

(make-instance [<instance-name>] of <class> <slot-override>)

Normally, you specify an instance-name. However, If you do not, CLIPS will generate
one using the gensym* function. Slot values also can be specified.

Now that we have a duck factory, let's make some instances as follows, where the
name of the instance is in brackets. Note the use of the "of" keyword to separate the
instance name from the class name. You must include the "of" or a syntax error will
result. Also, note that the brackets in the code mean an instance name, while brackets
in the metasyntax such as for (make-instance) above, mean option.

CLIPS> (make-instance [Dorky] of DUCK)
[Dorky]
CLIPS> (make-instance [Elsie] of COW)
[PRNTUTIL1] Unable to find class COW.
CLIPS> (make-instance Dorky_Duck of DUCK)
[Dorky_Duck]
CLIPS> (instances)
[initial-object] of INITIAL-OBJECT
[Dorky] of DUCK
[Dorky_Duck] of DUCK
For a total of 3 instances.
CLIPS>

After the instance is successfully created, CLIPS responds with the name of the

instance. If it is not possible to create an instance, CLIPS responds with a FALSE. Also,
like the (rules) and (facts) commands, CLIPS has an instances function to print out the
instances of a class. The initial-object object listed is similar to the initial-fact fact. It was
provided in previous versions of CLIPS to initially activate some types of rules, but it
now only provided for backwards compatibility for programs which directly reference it.

For the case of (make-instance), the brackets around the instance name is optional
for a USER-defined class. As an example, let's create Dorky's cousin, Dorky_Duck,
without brackets as follows.

CLIPS> (make-instance Dorky_Duck of DUCK)
[Dorky_Duck] ; Instance Dorky_Duck is made.
CLIPS>

 — 106 —

There are two important rules about instances to keep in mind.

• Only one instance of the same name may be used in a module.
• A class cannot be redefined if instances of the class exist.

For example, let's make a clone of Dorky_Duck as follows (It's this evil clone that
always gets Dorky_Duck in trouble because no one can tell them apart. Kids often have
clones like this too, and some adults.)

CLIPS> (make-instance Dorky_Duck of DUCK)
[Dorky_Duck]
CLIPS> (instances)
[initial-object] of INITIAL-OBJECT
[Dorky] of DUCK
[Dorky_Duck] of DUCK ; Still only one Dorky_Duck
For a total of 3 instances.
CLIPS>

Much Ado About Instances

If a (reset) command is issued, all the instances in memory are deleted and an instance
[initial-instance] is created, analogous to the fact, initial-fact.

CLIPS> (reset)
CLIPS> (instances)
[initial-object] of INITIAL-OBJECT
For a total of 1 instance.
CLIPS>

Just as (deffacts) defines facts, there is also a definstances to define instances
when a (reset) is issued. The following (definstances) also illustrates the optional
comment in double quotes after the instance name, DORKY_OBJECTS.

CLIPS> (definstances DORKY_OBJECTS "The Dorky Cousins"
 (Dorky of DUCK)
 (Dorky_Duck of DUCK))
CLIPS> (instances)
[initial-object] of INITIAL-OBJECT
For a total of 1 instance.
CLIPS> (reset)

 — 107 —

CLIPS> (instances)
[initial-object] of INITIAL-OBJECT
[Dorky] of DUCK
[Dorky_Duck] of DUCK
For a total of 3 instances.
CLIPS>

The Disappearing Duck

Although a (reset) will delete all instances except [initial-instance], it will also make new
instances from (definstances). If you want to permanently delete an instance, the
function unmake-instance will delete one or all instances, depending on its argument.
To delete all instances, use the "*".

The following examples illustrate the (unmake-instance) command.

CLIPS> (unmake-instance *) ; Delete all instances
TRUE
CLIPS> (instances) ; Check that all are gone
CLIPS> (reset) ; Create new instances again
CLIPS> (instances) ; Check new instances created
[initial-object] of INITIAL-OBJECT
[Dorky] of DUCK
[Dorky_Duck] of DUCK
For a total of 3 instances.
CLIPS> (unmake-instance [Dorky]) ; Delete a specific instance
TRUE
CLIPS> (instances)
[initial-object] of INITIAL-OBJECT
[Dorky_Duck] of DUCK
For a total of 2 instances.
CLIPS>

Another way to delete a specific instance is to send a delete message. The general
syntax of the (send) function is as follows.

(send [<instance-name>] <message>)

• Only one instance name can be specified in a command and it must be surrounded

 — 108 —

by brackets if it is a user-defined name.

For example, the following will make Dorky_Duck disappear.

CLIPS> (reset) ; Create new instances again
CLIPS> (instances) ; Check new instances created
[initial-object] of INITIAL-OBJECT
[Dorky] of DUCK
[Dorky_Duck] of DUCK
For a total of 3 instances.
CLIPS> (send [Dorky_Duck] delete)
TRUE
CLIPS> (instances)
[initial-object] of INITIAL-OBJECT
[Dorky] of DUCK
For a total of 2 instances.
CLIPS>

The "*" in a (send) will not work to delete all instances. The "*" only works with the
(unmake) function. Another alternative is to define your own handler for delete that will
accept the "*" and thus allow you to (send [instance-name] my_delete *) messages.

A (send) message is acted upon only by a target object which has an appropriate
handler. CLIPS automatically provides handlers for print, init, delete and so on for each
user-defined class. It's important to realize that the message (send [Dorky_Duck] delete)
works only because this instance is a user-defined class. If you define classes which do
not inherit from USER such as a subclass of INTEGER, you must also create
appropriate handlers to carry out all desired tasks such as printing, creating, and
deleting instances. It's much easier to define subclasses of USER and take advantage
of system-supplied handlers.

What Did You Have For Breakfast

The (send) function is the heart of OOP operation since it is the only proper way for
objects to communicate. According to the principle of object encapsulation, one object
should only be allowed to access another object's data by sending a message.

For example, if someone wants to know what you had for breakfast, they'll generally
ask you, i.e., send a message. An impolite alternative would be to yank open your

 — 109 —

mouth and peer down your throat. If the principle of object encapsulation is not followed,
any object can fool around with the private parts of other objects, with potentially
disastrous results.

One useful application of (send) is to print information about an object. So far all the
examples of objects that you have seen have no structure. However, just as deftemplate
gives structure to a rule pattern, the slots give an object structure. For both deftemplate
and objects, a slot is a named location in which data can be stored. However, unlike
deftemplate slots, objects obtain their slots from classes, and classes use inheritance.
Thus, the information in object slots can be effectively inherited by objects of
subclasses. An unbound slot is one that has no values assigned. All slots must be
bound.

As a simple example, let's make an object with slots to hold personal information and
then send messages to it. The following commands will first set up the CLIPS
environment with the appropriate constructs. The slots named sound and age initially
contain no data, i.e., nil values.

CLIPS> (clear)
CLIPS> (defclass DUCK (is-a USER)
 (slot sound)
 (slot age))
CLIPS> (definstances DORK_OBJECTS
 (Dorky_Duck of DUCK))
CLIPS> (reset)
CLIPS> (send [Dorky_Duck] print)
[Dorky_Duck] of DUCK
(sound nil)
(age nil)
CLIPS> (send [Dorky_Duck] put-sound quack)
quack
CLIPS> (send [Dorky_Duck] print)
[Dorky_Duck] of DUCK
(sound quack)
(age nil)
CLIPS>

Notice that the slots are printed in the order defined in the class. However, if the
instance inherits slots from more than one class, the slots from the more general
classes will be printed first.

 — 110 —

The value of a slot is changed using the put- message. By default, CLIPS creates a
put- handler for each slot of a class to handle put- messages. Notice the dash, "-", at the
end of "put-". The dash is an essential part of the message syntax since it separates the
"put" from the slot name. Only one "put-" is allowed in a (send). Thus, to change multiple
slots or the same slot of many instances, you must send multiple messages. Instead of
doing this manually, it's possible to write a function to do multiple sends, or use the
modify-instance function.

The value of a slot can be set by a slot-override in a make-instance. As an example,

CLIPS> (make-instance Dixie_Duck of DUCK (sound quack) (age 2))
[Dixie_Duck]
CLIPS> (send [Dixie_Duck] print)
[Dixie_Duck] of DUCK
(sound quack)
(age 2)
CLIPS>

The complementary message to "put-" is get- which gets the data from a slot, as

shown in the following example. If a put- is successful it returns the new value, while if
get- is successful it returns the appropriate data. If the put- or get- does not succeed, an
error message will be returned. The following examples show how this works.

CLIPS> (send [Dorky_Duck] put-color white) ; No slot color
[MSGFUN1] No applicable primary message-handlers found for put-
color.
FALSE
CLIPS> (send [Dorky_Duck] get-age)
nil
CLIPS> (send [Dorky_Duck] put-age 1) ; Value put in age
1
CLIPS> (send [Dorky_Duck] get-age) ; Check value is correct
1
CLIPS>

In contrast to the put- message, the get- message returns the value of a slot. Since
the value of get- is returned, it can be used by another function, assigned to a variable,
and so forth. In contrast, a value that is printed out cannot be used by another function,
assigned to a variable, and so forth because the value goes to the standard output
device. One way of getting around this problem is to print out to a file and then read in

 — 111 —

the data from the file. While this is not an elegant solution, it does work. Another way is
to write your own print message-handler that also returns values.

A very important point about slots is that you cannot modify the slots of a class by
adding slots, deleting slots, or changing the characteristics of slots. The only way to
change a class is to (1) delete all instances of the class, and (2) use a (defclass) with
the same class name and the desired slots. This situation is analogous to modifying a
rule by loading in a new rule with the same name.

Class Etiquette

Now that you've learned about slots and instances, it's time to discuss class etiquette.
The term etiquette refers to a set of guidelines for doing something.

In contrast to standard procedural programming, the OOP paradigm is class
oriented. Each object is intrinsically related to a class, and that class is part of a class
hierarchy. Rather than concentrating on actions first and foremost, the OOP
programmer considers the overall class hierarchy or class architecture, and how
messages will be sent between objects. Thus, actions in customary procedural
programs are performed explicitly, while the actions are performed implicitly in OOP. In
either case, the end result is the same. However, the OOP system can be more easily
verified, validated, and maintained.

The proper use of classes is summarized in the following three rules.

 Rules of Class Etiquette
1. The class hierarchy should be in specialized logical increments using is-a links.
2. A class is unnecessary if it has only one instance.
3. A class should not be named for an instance and vice versa.

The first rule discourages the creation of a single class for your application. If a single

class is adequate, then you probably don't need OOP. By creating classes in
increments, you can more easily verify, validate, and maintain your code. In addition,
incremental class hierarchies can be easily put in class libraries to greatly facilitate the
creation of new code. This concept of class libraries is analogous to subroutine libraries
for actions. Only is-a links can be used since this is the only relationship that Version
6.3 of CLIPS supports.

 — 112 —

The second rule encourages the idea that classes are intended as a template to
produce multiple objects of the same kind. Of course you can start out with zero or one
instance. However, if you'll never need more than one instance in a class, you should
consider modifying its superclass to accomodate the instance rather than defining a new
subclass. If all your classes only have one instance, it is probable that your application
is simply not well-suited to OOP and that coding in a procedural language may be best.

The third rule means that classes should not be named after instances and vice
versa, to eliminate confusion.

Other Features

There are a number of useful predicate functions for slots. If you use these predicate
functions to test for appropriate values to functions, your program will be more robust
against crashes. In general, if a function does not return TRUE, it returns FALSE.

Function Meaning
class-slot-existp Returns TRUE if the class slot exists
slot-existp Returns TRUE if the instance slot exists
slot-boundp Returns TRUE if the specified slot has a value
instance-address Returns the machine address at which the specified instance

is stored.
instance-name Returns the name given an address and vice versa
instancep Returns TRUE if its argument is an instance
instance-addressp Returns TRUE if its argument is an instance address
instance-namep Returns TRUE if its argument is an instance name
instance-existp Returns TRUE if instance exists
list-definstances Lists all the definstances
ppdefinstances Pretty-prints the definstance
watch instances Allows you to watch instances being created and deleted.
unwatch instances Turns off watching instances.
save-instances Save instances to a file
load-instances Load instances to a file
undefinstances Deletes the named definstance.

 — 113 —

Chapter 10 Fascinating Facets
If you want to have class, then act, dress, and talk like your friends.

In this chapter you'll learn more about slots and how to specify their characteristics by
using facets. Just as slots describe instances, facets describe slots. The use of facets
is good software engineering because there is a greater chance of CLIPS flagging an
illegal value rather than risking a runtime error or crash. There are many types of facets
that may be used to specify slots, as summarized in the following table.

 Facet Name Description
 default and default-dynamic Set initial values for slots
 cardinality Number of multifield values
 access type Read-write, read-only, initialize-only access
 storage Local slot in instance or shared slot in class
 propagation Inherit, or no inherit slots
 source composite or exclusive inheritance
 documentation Documentation of slots
 override-message Indicate message to send for slot override
 create-accessor Create put- and get- handlers
 visibility Public, or private to defining class only
 reactive Changes to a slot trigger pattern-matching

For reasons of space, we'll only describe a few facets in more detail in the rest of this
chapter. For more details, see the CLIPS Reference Manual.

A Slot Named Default

The default facet sets the default value of a slot when an instance is created or
initialized, as shown in the following example.

 — 114 —

CLIPS> (clear)
CLIPS> (defclass DUCK (is-a USER)
 (slot sound (default quack))
 (slot ID)
 (slot sex (default male)))
CLIPS> (make-instance Dorky_Duck of DUCK)
[Dorky_Duck]
CLIPS> (send [Dorky_Duck] print)
[Dorky_Duck] of DUCK
(sound quack)
(ID nil)
(sex male)
CLIPS>

As you can see, the default values for slot sex and slot sound were set by the default
facet values. Following the default keyword can be any valid CLIPS expression that
does not involve a variable. For example, the default expression of the sound slot is the
symbol quack. Functions may be used in the facet expression as will be shown in the
next example.

This default facet is a static default because the value of its facet expression is
determined when the class is defined and never changed unless the class is redefined.
For example, let's set the default value of slot ID to the (gensym*) function which returns
a new value not in the system every time it's called.

CLIPS> (clear)
CLIPS> (defclass DUCK (is-a USER)
 (slot sound (default quack))
 (slot ID (default (gensym*)))
 (slot sex (default male)))
CLIPS> (make-instance [Dorky_Duck] of DUCK) ; Dorky_Duck #1
[Dorky_Duck]
CLIPS> (send [Dorky_Duck] print)
[Dorky_Duck] of DUCK
(sound quack)
(ID gen1)
(sex male)
CLIPS> (make-instance [Dorky_Duck] of DUCK) ; Dorky_Duck #2
[Dorky_Duck]
CLIPS> (send [Dorky_Duck] print)
[Dorky_Duck] of DUCK

 — 115 —

(sound quack)
(ID gen1)
(sex male)
CLIPS>

As you can see, the ID is always gen1 since (gensym*) is only evaluated once, and
not again when the second instance is created. Note that the (gensym*) values may be
different on your computer if you have already called the (gensym*) since it increments
by one each time it is called, and is not reset by a (clear). The (gensym*) function is
reset to its starting value only if you restart CLIPS.

Now suppose that we want to keep track of the different Dorky_Duck instances that
have been created. Rather than using the static default, we can use the facet called
default dynamic which will evaluate its facet expression every time a new instance is
created. Notice the difference between the following example and the previous.

CLIPS> (clear)
CLIPS> (defclass DUCK (is-a USER)
 (slot sound (default quack))
 (slot ID (default-dynamic (gensym*)))
 (slot sex (default male)))
CLIPS> (make-instance [Dorky_Duck] of DUCK) ; Dorky_Duck #1
[Dorky_Duck]
CLIPS> (send [Dorky_Duck] print)
[Dorky_Duck] of DUCK
(sound quack)
(ID gen2)
(sex male)
CLIPS> (make-instance [Dorky_Duck] of DUCK) ; Dorky_Duck #2
[Dorky_Duck]
CLIPS> (send [Dorky_Duck] print)
[Dorky_Duck] of DUCK
(sound quack)
(ID gen3) ; Note ID is different from Dorky_Duck #1
(sex male)
CLIPS>

In this example which uses dynamic default, the ID of the second instance, gen3, is
different from the first instance, gen2. In contrast, for the previous example of static
default, the ID values were the same, gen1, since the (gensym*) was only evaluated
once when the class was defined rather then for every new instance in the case of

 — 116 —

dynamic default.

Cardinal Properties

The cardinality of a slot refers to one of two types of fields that a slot can hold: (1)
single-field, or (2) multifield. The term cardinality refers to a count. A bound single-field
slot contains only one field, while a bound multifield slot may contain zero or more fields.
The bound single-field slot and the bound multifield slot each contain one value.
However, the one multifield value may have multiple fields in it. For example, (a b c) is a
single multifield value with three fields. The empty string "" is a single-field value, just as
"a b c" is. In contrast, an unbound slot has no value.

As an analogy to single and multifield variables, think of a slot as your mailbox.
Sometimes you may find a single piece of junk-mail that doesn't have an envelope.
Instead, an address label has just been stuck on a folded piece of paper addressed to
"Resident." Other times you may find an envelope with multiple ads in it. The single
piece of junk mail without an envelope is like a single-field value while the envelope with
multiple ads is like the multifield value. If the junk-mail distributor slips up and mails you
an envelope with nothing inside, this corresponds to the empty multifield variable.
(Come to think of it, if the junk-mail envelope is empty, have you really received junk-
mail?)

A multiple facet with keyword multislot, is used to store a multifield value as shown
in the following example.

CLIPS> (clear)
CLIPS> (defclass DUCK (is-a USER)
 (multislot sound (default quack quack)))
CLIPS> (make-instance [Dorky_Duck] of DUCK)
[Dorky_Duck]
CLIPS> (send [Dorky_Duck] print)
[Dorky_Duck] of DUCK
(sound quack quack)
CLIPS>

A multifield value can be accessed using get- and put- as shown in the following
examples, which shows how to keep track of quacks.

CLIPS> (send [Dorky_Duck] put-sound quack1 quack2 quack3)

 — 117 —

(quack1 quack2 quack3)
CLIPS> (send [Dorky_Duck] get-sound)
(quack1 quack2 quack3)
CLIPS>

Standard CLIPS functions such as nth$ to get the nth field of a multislot value can be
used. The following example shows how to pick a certain quack.

CLIPS> (nth$ 1 (send [Dorky_Duck] get-sound))
quack1
CLIPS> (nth$ 2 (send [Dorky_Duck] get-sound))
quack2
CLIPS> (nth$ 3 (send [Dorky_Duck] get-sound))
quack3
CLIPS>

Other Features

CLIPS has several multifield slot functions as shown in the following table.

Function Meaning
slot-replace$ Replace the specified range
slot-insert$ Insert the specified range
slot-delete$ Delete the specified range

A multifield slot with no values, e.g., the empty multifield value (), may be assigned to
a slot with a (multiple) facet. Note that there is a difference between a slot with an empty
multifield value () and an unbound slot. If you think of an empty multifield value as
analogous to an empty bus, you can see there is a difference between no people
(unbound slot) and a bus with no people (empty multifield value, ()).

A create-accessor facet tells CLIPS whether to create put- and get- handlers for a
slot. By default, all slots have a read-write create-accessor so you donʼt actually have
to specify this facet to create handlers. If you define your own handlers, then you need
to use ?NONE with the create-accessor facet. The other facet types for create accessor
are read and write.

A storage facet defines one of two places that a slot value is stored: (1) in an

 — 118 —

instance, or (2) in the class. A slot value stored in the instance is called local because
the value is only known to the instance. Thus, different instances may exist that have
different local slot values. In contrast, a slot value stored in a class is called shared
because it is the same for all instances of the class.

A local value is specified by the local facet, which is the default for a slot. A shared
value is specified by the shared facet and all instances with this slot type will have their
slot value automatically changed if one changes. An access facet defines one of three
types of access for a slot, whether you use the handlers created by CLIPS or else
define your own. The default type, read-write, allows you to both read and write the
value of the slot. The other types are read-only and initialize-only.

Another way to set the instance values is with the initialize-instance function. An
(initialize-instance) can be called at any time to reset the default values and retain
values in non-(default) slots.

A (reset) can be thought of as a cold-initialization since all values in non-(default)
slots are cleared, while a (initialize-instance) can be considered a warm-initialization
since non-(default) values are retained. Of course, only (definstances) can be
cold-initialized since non-(definstances) will simply be deleted. Also, slot-overrides may
be used in (initialize-instance) as the last example shows.

Two predicate functions are designed for use with the access facets. Both these
predicate functions return an error message if the specified slot or instance does not
exist. The slot-writablep is a predicate function which returns TRUE if a slot is writable
and FALSE if it is not. The slot-initablep predicate function returns TRUE if the slot is
initializable and FALSE if it is not. The term initializable means that it is not read-only.

The inherit facet, which is the default, specifies that indirect instances of a class may
inherit this slot from the class. As you recall, the indirect instances of a class are the
instances of its subclasses, while the direct instances are those defined specifically for
the class. The indirect instances of a class are direct instances of the subclasses in
which they are defined. For example, [Dorky_Duck] is a direct instance of DUCK and an
indirect instance of USER which is the superclass of DUCK. The no-inherit facet
specifies that only a direct instance has the class slot.

It's important to realize that the (no-inherit) facet only prohibits inheritance from the
class and not from its superclasses. This means that an instance may still inherit from
superclasses of the (no-inherit) class.

The composite facet. facet states that facets which are not explicitly defined in the
highest precedence class take their facets from the next higher precedence class. If the
facet is not explicitly set in the next higher precedence class and it is composite too,

 — 119 —

CLIPS tries the next higher and so on until the facet is defined or there are no more
classes. If the next higher class is not composite, CLIPS does not check further. The
opposite to the composite facet is the exclusive facet, which is the default. For more
information, see the CLIPS Reference Manual.

 — 121 —

Chapter 11 Handling Handlers
There are two steps in learning how to use a shovel: (1) finding which
part is the handle, and (2) what to do with the handle.

Handlers are essential in OOP because they support object encapsulation. The only
proper way that objects can respond to messages is by having an appropriate handler
to receive the message and take appropriate action. In this chapter you'll learn the how
messages are interpreted by objects. You'll see how to modify existing
message-handlers, and how to write your own.

Your Primitive Self

So far you've learned about the static structure of classes through the inheritance
hierarchy and slots. However, the dynamic part of an object is determined by its
message-handlers, or handlers for short, which receive messages and performs actions
in response. The handlers are responsible for the dynamic properties of an object,
which determine its behavior. You've already used one handler many times — the print
in a (send).

Polymorphism is one of the five generally accepted features of a true OOP language.
For example, the same type of message, (send <instance-name> print), may have
different actions depending on the class of the object which receives it. In addition to
egg-of and color, DUCK objects print out sound, ID, and age, while DUCKLING objects
only print out sound and age.

In languages without polymorphism, you would have to define one function,
(send-egg-print) for egg types and another function, (send-duckling-print) for the
duckling type. However, in OOP, no matter how many classes are defined, the same
message, (send <instance-name> print), will print the object slots. This greatly improves
the efficiency of program development since you do not have to define new functions for

 — 122 —

every new type.
Polymorphism can be carried to extremes by having the same message do

completely different things. For example, a print message-handler could be defined that
would print objects of a certain class and delete objects of another class. Another
extreme possibility would be not having the print handler print anything. Instead, it would
delete objects of one class, save objects of another class, add objects of another class,
and so forth.

This extreme use of polymorphism would create a programmer's Tower of Babel and
make it very hard to understand the code since everything would be run-time
dependent. Defining message-handlers of the same name in different classes that do
completely different things goes against the Principle of Least Astonishment.

Another example of polymorphism could be defined using a message-handler for "+".
If a message for "+" is sent to strings or symbols, i.e., LEXEME objects, they will be
concatenated because of a handler defined for the LEXEME class. If the "+" is sent to
ordinary numbers, the result is addition because of the predefined system handler for
addition of numbers. If the "+" is sent to complex numbers, defined as a subclass of
USER called COMPLEX, a handler defined for the COMPLEX class will do complex
number addition. Thus, the "+" does related types of operations that matches our
intuition, and does not surprise us.

In addition to the predefined handlers such as print, you may define your own
handlers. Let's start by writing a handler to add numbers through messages.

As you can see from Fig. 1.7 of chapter 1, the class NUMBER has subclasses
INTEGER and FLOAT. Since these are predefined classes, it would seen natural to do
numeric calculations by sending messages to numbers. Let's try it as follows.

CLIPS> (clear)
CLIPS> (send 1 + 2)
[MSGFUN1] No applicable primary message-handlers found for +.
FALSE
CLIPS>

Well, as you can see, this example didn't work. The reason why is implied in the error

message. Let's check it out by obtaining more information about the INTEGER class
since that was the target object of the print message.

 — 123 —

CLIPS> (describe-class INTEGER)
==
**
Abstract: direct instances of this class cannot be created.

Direct Superclasses: NUMBER
Inheritance Precedence: INTEGER NUMBER PRIMITIVE OBJECT
Direct Subclasses:
**
==
CLIPS>

The problem is that the INTEGER class has no handler for "+". In fact, it has no
handlers at all since none are listed. As you recall, the USER class and its subclasses
always have print, delete, and other handlers automatically defined by CLIPS. If we
want to send print messages to an object like 1 of the INTEGER class, we'll have to
make our own print handler.

Before writing this handler, let's answer a question that you may have concerning
how INTEGER can have instances. Since INTEGER is an abstract class, you may
wonder how it can have instances such as 1, 2, 3, etc. Although you cannot make direct
instances of an abstract class, you can make use of existing instances. For the case of
the predefined system class INTEGER, all the integers up to the maximum allowed are
available as objects. Likewise, strings and symbols are available for the system defined
abstract classes STRING and SYMBOL, and so forth for the other predefined classes.

Shown following is the definition of a handler for the NUMBER class that will handle
addition by messages. The handler is defined for NUMBER rather than INTEGER
because we would also like to handle FLOAT objects too. Instead of defining the same
handler for FLOAT and for INTEGER, it's easier to just define a handler for the
superclass NUMBER. If a handler for a message is not defined in the class of the
object, CLIPS tries all the handlers in the inheritance precedence list. Since "+" is not
defined for INTEGER, CLIPS tries NUMBER next, finds the applicable handler, and
returns the result of 3.

CLIPS>
(defmessage-handler NUMBER + (?arg) ; Argument of handler
 (+ ?self ?arg)) ; Function addition of handler
CLIPS> (send 1 + 2)
3

 — 124 —

CLIPS> (send 2.5 + 3)
5.5
CLIPS> (send 2.5 + 2.6)
5.1
CLIPS> (describe-class NUMBER)
==
**
Abstract: direct instances of this class cannot be created.

Direct Superclasses: PRIMITIVE
Inheritance Precedence: NUMBER PRIMITIVE OBJECT
Direct Subclasses: INTEGER FLOAT
--
Recognized message-handlers:
+ primary in class NUMBER
**
==
CLIPS>

The variable ?self is a special variable in which CLIPS stores the active instance.
The ?self is a reserved word that cannot be explicitly included in a handler argument,
nor can it be bound to a different value. The active instance is the instance to which the
message was sent. In our example, all the predefined classes such as NUMBER,
INTEGER, and FLOAT are all subclasses of the PRIMITIVE class. This is in contrast to
USER, which is the other main subclass of OBJECT.

As another example, lets write a handler to concatenate strings, symbols or both.

CLIPS>
(defmessage-handler LEXEME + (?arg) ; Argument of handler
 (sym-cat ?self ?arg)); Function concatenation of handler
CLIPS> (send Dorky_ + "Duck") ; SYMBOL + STRING
Dorky_Duck ; SYMBOL result
CLIPS>

Notice that the handler is defined for the LEXEME class since that is a superclass of
both SYMBOL and STRING. In this case, the handler returns a SYMBOL since
(sym-cat) is used.

This example also illustrates why brackets may be necessary in a (send). As shown
in this example, the message goes to the SYMBOL Dorky_ without brackets. With
brackets, the message goes to an object [Dorky_] of a user-defined class. Here we

 — 125 —

assume that [Dorky_] could be an object of a user-defined class, such as DUCK.

Make 'Em Pay Through the Nose

The real utility of handlers is with subclasses of USER since you can define instances of
these classes. To see how handlers work in this case, let's first set up the environment
as follows.

CLIPS> (clear)
CLIPS>
(defclass DUCKLING (is-a USER)
 (slot sound (default quack))
 (slot age (visibility public)))
CLIPS>
(defclass DUCK (is-a DUCKLING)
 (slot sound (default quack)))
CLIPS>
(definstances DUCKY_OBJECTS
 (Dorky_Duck of DUCK (age 2))
 (Dinky_Duck of DUCKLING (age .1)))
CLIPS> (reset)
CLIPS>

As a simple example, let's write a handler that will print out the slots of the active
instance. We can make use of the ppinstance function to print out the slots of the
active instance. This function does not return a value and is used only for its side-effect
of printing to the standard device. Also, it can only be used from within a handler since
only there is the active instance known. Shown following is a USER-defined handler
called print-slots that prints out the slots of the active instance using (ppinstance).

CLIPS> (defmessage-handler USER print-slots ()
 (ppinstance))
CLIPS> (send [Dorky_Duck] print-slots)
[Dorky_Duck] of DUCK
(age 2)
(sound quack)
CLIPS>

 — 126 —

Although the handler could be defined just for DUCK in this case, a handler defined
for USER will be called for all subclasses of USER, not just DUCKLING and DUCK.
Thus, the handler print-slots will work for all subclasses that we may define of USER.

Of course it's possible to get carried away and define all your message handlers as
USER handlers. However, it's good style and improves efficiency to define handlers as
close as possible to the class or classes for which they are intended. Efficiency is
improved because CLIPS does not have to keep searching through a lot of classes to
find the applicable handler.

Getting Around

Let's examine message-handlers in more detail now. We'll define a handler to print out a
header when an object receives a message to print itself. The message-handler is
defined using a defmessage-handler construct as follows.

CLIPS> (defmessage-handler USER print before ()
 (printout t "*** Starting to print ***" crlf))
CLIPS> (send [Dorky_Duck] print)
*** Starting to print ***
[Dorky_Duck] of DUCK
(age 2)
(sound quack)
CLIPS>

The reason that a header is printed rather than a trailer at the end has to do with the
handler type. A before type handler is used before the print message. To make a
trailer, use the after type handler as shown in the following example.

CLIPS> (defmessage-handler USER print after ()
 (printout t "*** Finished printing ***" crlf))
CLIPS> (send [Dorky_Duck] print)
*** Starting to print ***
[Dorky_Duck] of DUCK
(age 2)
(sound quack)
*** Finished printing ***
CLIPS>

 — 127 —

The general format of a message-handler is as follows.

(defmessage-handler <class-name> <message-name> [handler-type]
 [comment]
 (<parameters>* [wildcard-parameter])
 <action>*)

While there may be multiple actions in a handler, only the value of the last action is
returned. Notice that this is just like a (deffunction).

Since [Dorky_Duck] is of class DUCK, a subclass of USER, we can take advantage of
the print handler that is predefined by CLIPS for the USER class. All subclasses of
USER can take advantage of the handlers of USER, which saves you the trouble of
writing handlers for every class that you define. Notice how the concept of inheritance
from USER to its subclass DUCK simplifies program development by allowing reuse of
existing code, i.e., the print handler of USER.

The empty parentheses () that follow the before handler type mean that there are
neither parameters nor a wildcard parameter. In other words, the header handler takes
no arguments and so the parentheses are empty, but required. Note that while multiple
parameters may be used, there can be only one wildcard.

Primary Considerations

As you can see, the trailer handler is the same as the header handler except that an
after handler type is used, and the action text is different. Thus, a before handler type
does its task before the primary type handler, and an after handler does its task after
the primary handler. A primary is intended to do the major task. An around handler type
is intended to set up the environment for the rest of the handlers. The before and after
types are intended for minor tasks such as initializing variables or printing, while the
primary does the major task.

The following table summarizes the handler types.

 — 128 —

 Handler Type Class Role Return Value
 around Set up environment for other handlers Yes
 before Auxilliary work before primary No
 primary Perform major task of message Yes
 after Auxilliary work after primary No

Summary of Message-Handler Types

The handler types are listed in the order that they are normally called during
execution of a message. Depending on the handler type, CLIPS knows when to execute
it. That is, an around handler starts before any before handlers. A before handler is
executed before any primary handlers, which are followed by the after handlers. The
exception to this sequential handler execution is the around type handler. If an around
handler is defined, it will start execution before any of the others, perform specified
actions, and then complete its actions after all the other handler types have finished.
You'll see a detailed example of these handlers execution soon.

The class role describes the intended purpose of each type. The column headed
"Return Value" describes whether the handler type is generally intended for a return
value or simply to provide a useful side-effect such as printing. This consideration will
depend on the handler. For example, many user-defined primary handlers may be
written to return a value as the result of some numeric calculation or string operation. An
exception to returning a useful return value is a print primary handler whose main task is
the side-effect of printing, and does not have a return value.

The following table lists the predefined primary handlers of USER. By inheritance,
these are available for all subclasses of USER.

 Primary Type Class Role
 init Initialize an instance
 delete Delete an instance
 print Print the object
 direct-modify Directly modifies slots
 message-modify Modifies slots using put- messages
 direct-duplicate Duplicates instance without put- message
 message-duplicate Duplicates an instance using messages

Predefined USER Message-handlers of Primary Type

These primary handlers are predefined and cannot be modified unless you change
the source code of CLIPS. However, you may define the before, after and around
handler types for these primaries. You've already seen an example of changing the

 — 129 —

before and after handler types for the USER print handler. Now let's look at some
examples of defining the before and after handler types for the init primary handler.

CLIPS> (defmessage-handler USER init before ()
 (printout t "*** Starting to make instance ***" crlf))
CLIPS> (defmessage-handler USER init after ()
 (printout t "*** Finished making instance ***" crlf))
CLIPS> (reset)
*** Starting to make instance ***
*** Finished making instance ***
*** Starting to make instance ***
*** Finished making instance ***
*** Starting to make instance ***
*** Finished making instance ***
CLIPS> (make-instance Dixie_Duck of DUCK (age 1))
*** Starting to make instance ***
*** Finished making instance ***
[Dixie_Duck]
CLIPS> (instances)
[initial-object] of INITIAL-OBJECT
[Dorky_Duck] of DUCK
[Dinky_Duck] of DUCKLING
[Dixie_Duck] of DUCK
For a total of 4 instances.
CLIPS>

The Power of Belief

The self parameter is useful because it can be used to read a slot value in the form

 ?self:<slot-name>

It can also be used to write a slot value using the bind function. The "?self:" notation is
more efficient than sending messages but can only be used from within a handler on its
active instance. In contrast, the dynamic-get- and dynamic-put- functions can be used
from within a handler to read and write a slot value of the active instance. Although you
can use messages from inside a handler, such as the following, it's not efficient.

(send ?self dynamic-get-<slot>)

 — 130 —

(send ?self dynamic-put-<slot>)

As an example of dynamic-get-, let's change our example as follows.

CLIPS> (defmessage-handler USER print-age primary ()
 (printout t "*** Starting to print ***" crlf
 "Age = " (dynamic-get age) crlf
 "*** Finished printing ***" crlf))
CLIPS> (send [Dorky_Duck] print-age)
*** Starting to print ***
Age = 2
*** Finished printing ***
CLIPS>

The ?self:age can only be used in a class and its subclasses which inherit the slot
age. The ?self:<slot-name> is evaluated in a static way through inheritance. This means
that if a subclass redefines a slot, a superclass message-handler will fail if it tries to
directly access the slot using ?self:<slot-name>.

In contrast, the dynamic-get- and dynamic-put- can be used by superclasses and
subclasses because these check slots dynamically. In order for a superclass to
dynamically reference a slot, however, the visibility facet of the slot must be public. The
following example would not work if DUCK is changed to USER.

CLIPS> (defmessage-handler DUCK print-age primary ()
 (printout t "*** Starting to print ***" crlf
 "Age = " ?self:age crlf
 "*** Finished printing ***" crlf))
CLIPS> (send [Dorky_Duck] print-age)
*** Starting to print ***
Age = 2
*** Finished printing ***
CLIPS>

As an example of using a dynamic-put- function in a handler, suppose we want to
help Dorky_Duck regain some of his youth. The following example shows how his age
can be changed using a handler. This example also illustrates how a value can be
passed to a handler through the ?change variable.

CLIPS> (clear)
CLIPS> (defclass DUCK (is-a USER)

 — 131 —

 (slot sound (default quack))
 (slot age))
CLIPS> (defmessage-handler DUCK lie-about-age (?change)
 (bind ?new-age (- ?self:age ?change))
 (dynamic-put age ?new-age)
 (printout t "*** Starting to print ***" crlf
 "I am only " ?new-age crlf
 "*** Finished printing ***" crlf))
CLIPS> (make-instance [Dorky_Duck] of DUCK (age 3))
[Dorky_Duck]
CLIPS> (send [Dorky_Duck] lie-about-age 2)
*** Starting to print ***
I am only 1
*** Finished printing ***
CLIPS>

As you can see, Dorky_Duck's belief is so strong that the changed age is put in his
age slot. Notice how the handler uses the variable ?new-age to store the changed age,
which is then put into the age slot of the instance.

The Truthful Daemon

A daemon is a handler which executes whenever some basic action like initialization,
deletion, get, or put is performed on an instance. A rule cannot be considered a daemon
because it's not certain that it will be executed just because its LHS patterns are
satisfied. The only thing that is certain is that a rule will become activated when its LHS
is satisfied — not that it will execute.

There is no explicit keyword for daemon since it's just a concept. The before and after
handlers that printed strings can be considered print daemons. These handlers waited
for a (send [Dorky_Duck] print-age) message to trigger their action. First the before
handler printed its string, then the primary handler printed, and finally the after handler
printed. One daemon is the before handler which waits for a print message. The second
daemon is the after handler that waits for the print primary to finish printing.

Printing is not considered a basic action because there is no return value associated
with a (send <instance> print). The print message is only sent for the side-effect of
printing. In contrast, a (send <instance> get-<slot>) message will return a value that
may be used by other code. Likewise, the initialization, deletion, and put all have an

 — 132 —

effect on an instance and so are considered basic actions like get.
Daemons are easily implemented using before and after handlers since these will be

executed before and after their primary handler. Implementing daemons like this is
called declarative implementation because no explicit actions on the part of the
handler is necessary for it to be executed. That is, CLIPS will always execute a before
handler before its primary and will always execute an after handler after its primary. In a
declarative daemon implementation, the normal operation of CLIPS will cause the
daemons to be activated when their time has come. Thus, the declarative
implementation is implicit in the normal operation.

The opposite of implicit execution is the imperative implementation in which the
actions are explicitly programmed. The around handler is very convenient to use for
imperative daemons. The basic idea of the around handler is as follows.

1. Start before any other handlers.
2. Call the next handler using either call-next-handler to pass the same arguments or

override-next-handler to pass different ones.
3. Continue execution when the last handler finishes.
4. After any other around, before, primary, or after handlers finish, the around handler

resumes execution.
The keyword call-next-handler is used to call the next handler(s). A handler is said to

be shadowed by a shadower if it must be called from the shadower by a function such
as call-next-handler. The call-next-handler may be used multiple times to call the same
handler(s).

A predicate function called next-handlerp is used to test for the existence of a
handler before the call is made. If no handler exists, then next-handlerp will return
FALSE.

The following example illustrates the around handler through a truthful daemon that
tells on Dorky_Duck whenever he lies about his age.

CLIPS> (defmessage-handler DUCK lie-about-age around (?change)
 (bind ?old-age ?self:age)
 (if (next-handlerp) then
 (call-next-handler))
 (bind ?new-age ?self:age)
 (if (<> ?old-age ?new-age) then
 (printout t "Dorky_Duck is lying!" crlf
 "Dorky_Duck is lying!" crlf
 "He's really " ?old-age crlf)))

 — 133 —

CLIPS> (make-instance [Dorky_Duck] of DUCK (age 3))
[Dorky_Duck]
CLIPS> (send [Dorky_Duck] lie-about-age 1)
*** Starting to print ***
I am only 2
*** Finished printing ***
Dorky_Duck is lying!
Dorky_Duck is lying!
He's really 3
CLIPS>

Although Dorky_Duck may still lie about his age, the daemon tells the truth.

Notice the ?change argument. Although the around handler does not use ?change,
the lie-about-age primary that is called by the call-next-handler does need it to change
the age. Thus, ?change must be passed to the primary by the around handler. An error
message will occur if you leave out the ?change.

The call-next-handler always passes the arguments of the shadower to the shadowed
handler. It's possible to pass different arguments to a shadowed handler by use of the
override-next-handler function as shown in the following example.

CLIPS> (defmessage-handler DUCK lie-about-age around (?change)
 (bind ?old-age ?self:age)
 (if (next-handlerp) then
 (override-next-handler (/ ?change 2))) ; Divide age
 ; in half!
 (bind ?new-age ?self:age)
 (if (<> ?old-age ?new-age) then
 (printout t "Dorky_Duck is lying!" crlf
 "Dorky_Duck is lying!" crlf
 "He's really " ?old-age crlf)))
CLIPS> (make-instance [Dorky_Duck] of DUCK (age 3))
[Dorky_Duck]
CLIPS> (send [Dorky_Duck] lie-about-age 1)
*** Starting to print ***
I am only 2.5
*** Finished printing ***
Dorky_Duck is lying!
Dorky_Duck is lying!
He's really 3
CLIPS>

 — 134 —

• It's important to keep in mind that the return value of call-next-handler and

override-next-handler is that of the shadowed handlers.
Shown following are the rules of message dispatch. However, note the following

prerequisite to any message handling:
• There must be at least one applicable primary handler .

 Rules of Message-handler Precedence
 1. All the around handlers start execution. Then the before, primary, and after
 handlers start and finish, followed by completion of the arounds execution.
 2. The around, before, and primary handlers are called in order of highest
 precedence class to lowest.
 3. The after handlers are called from lowest precedence class to highest.
 4. Each around handler must explicitly call the next shadowed handler.
 5. Higher precedence primaries must explicitly call lower precedence (shadowed)
 primaries if they are to execute.

Since only around and primary handlers can return values, and the around shadows

primaries, it follows that the return value of a (send) will be the around return value. If
there is no around, then the return value will be that of the highest precedence primary.
As mentioned before, there must always have at least one applicable primary handler.

The following table summarizes the return value of the handler types.

Handler Type Return Value
 around Ignore or capture return value of next most specific around or primary
 before Ignore. Side-effect only
 primary Ignore or capture return value of more general primary
 after Ignore. Side-effect only.

Message-handler Return Values

Get the Point

Up to now, we've discussed inheritance using only is-a links. As you've seen, this type
of inheritance relationship is good for defining classes that are more and more

 — 135 —

specialized. That is, you start off by defining the most general classes as a subclass of
USER, and then define more specialized classes with more slots in the lower levels of
the class hierarchy.

Normally, you design new classes as specializations of existing ones. This paradigm
is Inheritance by Specialization. As you recall from the quadrilateral example of Fig.
1.8 of chapter 1, the highest level is quadrilateral, and the lower levels are trapezoid,
parallelogram, rectangle, and then square along one inheritance path. Trapezoid is a
special class of quadrilateral, parallelogram is a special class of trapezoid, rectangle is
a special class of parallelogram, and square is a special class of rectangle.

Inheritance can also be used to build up more complex classes. However, this is not
quite as direct in CLIPS. As an example, the basic class for geometry is a POINT
containing a single slot point1. A LINE can be then defined by adding point2 to POINT.
A TRIANGLE is defined by adding point3 to LINE, and so on for QUADRILATERALS,
PENTAGONS, etc.

(defclass POINT (is-a USER)
 (multislot point1))
(defclass LINE (is-a POINT)
 (multislot point2))
(defclass TRIANGLE (is-a LINE)
 (multislot point3))

Notice how each class is a specialization of its parent class by inheriting the superclass
points and then adding one new point.

The opposite paradigm is Inheritance by Generalization in which more general
classes are built up from simple ones. For example, a LINE is considered made up of
two points. A TRIANGLE is made up of three lines. A QUADRILATERAL is made up of
four lines, and so forth. This would be a good paradigm for building an object-oriented
drawing system in which new objects could be built up out of simpler ones.

There is a subtle but important difference between this example of specialization, and
generalization. In specialization, new classes are built up by adding specialized slots
which are the same type as superclass slots. Thus, POINT, LINE, and TRIANGLE all
have point-type slots.

In contrast, generalization builds up using new types of slots defined for each class.
Class POINT has a point-type slot. LINE has two point-type slots. TRIANGLE has three
line-type slots. QUADRILATERAL has four line-type slots, and so on. Generalization is

 — 136 —

good for synthesis, which means a building up. The opposite of synthesis is analysis,
which means taking apart or a simplification. The model for analysis is specialization.

Fig. 10.1 illustrates one inheritance scheme for polygons in which classes are built by
inheritance. In this case, the link between classes would be "is-made-of". Thus, a LINE
is-made-of POINT. A POLYGON is-made-of LINE, and so forth.

POLYGON

USER

POINT

IRREGULAR

POLYGON

REGULAR

POLYGON

SQUARE

LINE

EQUILATERAL

TRIANGLE

EQUILATERAL

PENTAGON

Fig. 10.1 Polygon Hierarchy Showing a Few Regular Polygon Classes

Links such as "is-made-of" can be simulated in CLIPS by appropriate slot definitions
even though only is-a links are supported in Version 6.3. As an example of
generalization, let's build up a LINE class as a generalization of a POINT class. The
POINT class will provide instances that have a position. In order to make this example
realistic, we'll assume an arbitrary number of dimensions by defining the position as
(multiple). Thus, a one-dimensional point will have one value in the position slot, a two-
dimensional point will have two values, and so forth. The definition of the POINT class is
very simple.

 — 137 —

CLIPS> (clear)
CLIPS> (defclass POINT (is-a USER)
 (multislot position (propagation no-inherit)))
CLIPS>

The (no-inherit) facet is used to prevent a LINE from inheriting a position slot. Instead, a
LINE will be defined by two points called slot point1 and slot point2. These two slots will
define the line and it is extraneous to have an additional position slot by inheritance.

The definition of the LINE class is a little more complex. The reason for the added
complexity is that the details of implementation are included in the (defclass) because
Version 6.3 only supports is-a relationships.

(defclass LINE (is-a POINT)
 (slot point1 (default-dynamic
 (make-instance (gensym*) of POINT))
 (propagation no-inherit))
 (slot point2 (default-dynamic
 (make-instance (gensym*) of POINT))
 (propagation no-inherit))
 (message-handler find-point)
 (message-handler print-points)
 (message-handler find-distance)
 (message-handler print-distance))

Note that the message-handlers of LINE are forward-declared for documentation
purposes.

At this time you may be wondering why POINT and LINE are not both defined as
subclasses of USER since all their slots have (no-inherit) facets. Since all the slots of
POINT, LINE, and the TRIANGLE class to be defined later have (no-inherit) facets, all
these classes could be defined as direct subclasses of USER rather than defining LINE
as a subclass of POINT and TRIANGLE as a subclass of LINE.

However, the whole point of this example is to illustrate Inheritance by Generalization,
which is a logical concept that is not directly supported by Version 6.3. Thus, defining
LINE as a subclass of POINT and TRIANGLE as a subclass of LINE is done for reasons
of documenting the logical concept of Inheritance by Generalization. Admittedly, a
comment could be added by the (defclass LINE (is-a USER)) and (defclass TRIANGLE
(is-a USER)) stating that we are trying to implement Inheritance by Generalization, but

 — 138 —

seeing the code in place is better documentation. If Inheritance by Generalization is
ever directly supported by CLIPS, these (defclass) statements will make it easy to
convert.

The reason for including the (make-instance (gensym*)) in the LINE slots is to provide
the inheritance from the POINT class. With the standard Inheritance by Specialization,
only one position slot of LINE is possible because POINT has only one position slot. It is
not possible for both slot point1 and slot point2 of LINE to inherit the position slot of
POINT. The actual slot value of each LINE will be a gensym* value. Each gensym*
value will be the instance name of a point instance. The point position can then be
accessed through the gensym* value. Thus, the gensym* values act as pointers to
different instances.

This indirect access technique of (gensym*) values is analogous to using a pointer
to access a value in a procedural language. Thus, the different slots of LINE can
indirectly inherit the same slots of POINT. It's convenient to use (gensym*) because we
don't care what the pointer names of LINE are, any more than we care what the pointer
addresses are in a procedural language.

The following examples show how the points are accessed for one-dimensional
points at position 0 and 1.

CLIPS> (definstances LINE_OBJECTS
 (Line1 of LINE))
CLIPS> (reset)
CLIPS>
(send (send [Line1] get-point1) put-position 0)
(0)
CLIPS>
(send (send [Line1] get-point2) put-position 1)
(1)
CLIPS> (send [Line1] print)
[Line1] of LINE
(point1 [gen1])
(point2 [gen2])
CLIPS>
(send (send [Line1] get-point1) get-position)
(0)
CLIPS>
(send (send [Line1] get-point2) get-position)
(1)
CLIPS>

 — 139 —

Now that you understand how the indirect access works, let's define some handlers to

avoid the trouble of entering the nested (send) messages, as in the last two cases. Let's
define a handler called find-point to print out a specified point value, and a handler
called print-points to print out the values of both LINE points as follows. The argument of
find-point will be either a 1 for point1 or a 2 for point2.

CLIPS> (defmessage-handler LINE find-point (?point)
 (send (send ?self (sym-cat "get-point" ?point))
 get-position))
CLIPS> (defmessage-handler LINE print-points ()
 (printout t "point1 " (send ?self find-point 1) crlf
 "point2 " (send ?self find-point 2) crlf))
CLIPS> (send [Line1] find-point 1)
(0)
CLIPS> (send [Line1] find-point 2)
(1)
CLIPS>

For real use, it would be best to provide error detection so that only a 1 or 2 is allowed.

As you can see, the handler works fine for one-dimensional points. It can be tested
for two-dimensional points as follows. We'll assume the first number for each point is the
X-value, and the second number is the Y-value. That is, point1 has X-value 1 and
Y-value 2.

CLIPS> (send (send [Line1] get-point1) put-position 1 2)
(1 2)
CLIPS> (send (send [Line1] get-point2) put-position 4 6)
(4 6)
CLIPS> (send [Line1] print)
[Line1] of LINE
(point1 [gen1])
(point2 [gen2])
CLIPS> (send (send [Line1] get-point1) get-position)
(1 2)
CLIPS> (send (send [Line1] get-point2) get-position)
(4 6)
CLIPS>

As expected, the handler also works correctly for two-dimensional points.

 — 140 —

Now that we have the two point positions, it's easy to find the distance between the
points, which is the length of the line. The distance can be determined by defining a new
handler called find-distance which uses the Pythagorean Theorem to calculate the
distance as the square root of the sum of the squares. Since no assumptions were
made as to the number of dimensions, the (nth) function is used to pick out each
multifield value up to the maximum number of coordinates, as stored in the ?len
variable.

CLIPS> (defmessage-handler LINE find-distance ()
 (bind ?sum 0)
 (bind ?index 1)
 (bind ?len (length (send ?self find-point 1)))
 (bind ?Point1 (send ?self find-point 1))
 (bind ?Point2 (send ?self find-point 2))
 (while (<= ?index ?len)
 (bind ?dif (- (nth ?index ?Point1)
 (nth ?index ?Point2)))
 (bind ?sum (+ ?sum (* ?dif ?dif)))
 (bind ?index (+ ?index 1)))
 (bind ?distance (sqrt ?sum)))
CLIPS> (defmessage-handler LINE print-distance ()
 (printout t "Distance = " (send ?self find-distance) crlf))
CLIPS> (send [Line1] print-distance)
Distance = 5.0
CLIPS>

The values 1, 2 for point1 and 4, 6 for point2 were chosen for an easy check of the
handler since these coordinates define a 3–4–5 triangle. As you can see, the distance is
5.0, as expected.

Treasure Maps

Now that the POINT and LINE classes have been defined by generalized inheritance,
why stop now? Let's continue with the next simplest class that can be defined from a
line — the triangle. Shown following are the three defclasses required.

CLIPS> (clear)
CLIPS>
(defclass POINT (is-a USER)

 — 141 —

 (multislot position (propagation no-inherit)))
CLIPS>
(defclass LINE (is-a POINT)
 (slot point1 (default-dynamic
 (make-instance (gensym*) of POINT))
 (propagation no-inherit))
 (slot point2 (default-dynamic
 (make-instance (gensym*) of POINT))
 (propagation no-inherit)))
CLIPS>
(defclass TRIANGLE (is-a LINE)
 (slot line1 (default-dynamic
 (make-instance (gensym*) of LINE))
 (propagation no-inherit))
 (slot line2 (default-dynamic
 (make-instance (gensym*) of LINE))
 (propagation no-inherit))
 (slot line3 (default-dynamic
 (make-instance (gensym*) of LINE))
 (propagation no-inherit)))
CLIPS>

Notice that the (no-inherit) facets in TRIANGLE are technically not necessary since
there is no subclass of TRIANGLE defined. The reason for including the (no-inherit)
facets is because of defensive-programming, which is analogous to defensive-driving.
If another subclass is added, either by you or someone else, the (defclass) of
TRIANGLE must be modified to include the (no-inherit) facets. This is bad style because
it means that existing, debugged code must be modified. If you're going to enhance
existing, debugged code, you shouldn't have to modify it. It's better to plan ahead for
enhancements.

Next we'll define a triangle instance and check the instances generated. Note that
your gen values may be different from those shown unless you've just started or
restarted CLIPS, or have not used (gensym*) or (gensym) since you started.

CLIPS> (definstances TRIANGLE_OBJECTS
 (Triangle1 of TRIANGLE))
CLIPS> (reset)
CLIPS> (instances)
[initial-object] of INITIAL-OBJECT
[Triangle1] of TRIANGLE

 — 142 —

[gen3] of LINE
[gen4] of POINT
[gen5] of POINT
[gen6] of LINE
[gen7] of POINT
[gen8] of POINT
[gen9] of LINE
[gen10] of POINT
[gen11] of POINT
For a total of 11 instances.
CLIPS>

At first you may be surprised at all the gensym* values created. However, all of them
are necessary. First, gen3 was created for slot line1, which required gen4 and gen5 for
the slots point1 and point2 associated with it by inheritance. Second, gen6 was created
for slot line2, which required gen7 and gen8 for its slots point1 and point2. Finally, gen9
was created for slot line3, which required gen10 and gen11 for the slots point1 and
point2 associated with it . The slots for [Triangle1] and one of its pointer values, [gen3],
is shown following.

CLIPS> (send [Triangle1] print)
[Triangle1] of TRIANGLE
(line1 [gen3])
(line2 [gen6])
(line3 [gen9])
CLIPS> (send [gen3] print)
[gen3] of LINE
(point1 [gen4])
(point2 [gen5])
CLIPS>

Now lets put in the X, Y coordinates of [Triangle1] as follows.

CLIPS> (send (send (send [Triangle1] get-line1) get-point1) put-position -1
0)
(-1 0)
CLIPS> (send (send (send [Triangle1] get-line1) get-point2) put-position 0 2)
(0 2)
CLIPS> (send (send (send [Triangle1] get-line2) get-point1) put-position 0 2)
(0 2)
CLIPS> (send (send (send [Triangle1] get-line2) get-point2) put-position 1 0)
(1 0)
CLIPS> (send (send (send [Triangle1] get-line3) get-point1) put-position 1 0)

 — 143 —

(1 0)
CLIPS> (send (send (send [Triangle1] get-line3) get-point2) put-position -1
0)
(-1 0)
CLIPS>

The stored values are as follows.

CLIPS> (send [Triangle1] print)
[Triangle1] of TRIANGLE
(line1 [gen3])
(line2 [gen6])
(line3 [gen9])
CLIPS> (send [gen3] print)
[gen3] of LINE
(point1 [gen4])
(point2 [gen5])
CLIPS> (send [gen4] print)
[gen4] of POINT
(position -1 0)
CLIPS> (send [gen5] print)
[gen5] of POINT
(position 0 2)
CLIPS>

As you can see, the line1 pointer [gen1] points to point1 and point2 with their pointers
[gen2] and [gen3]. These last two pointers finally point to the actual values of (-1 0) and
(0 2) that define line1 of [Triangle1]. It's analogous to Long John Silver finding a treasure
chest with a map, [gen1], which leads to another chest with two maps, [gen2] and
[gen3], which lead to the two buried treasures at the locations specified by [gen2] and
[gen3].

The values stored for each line of [Triangle1] can be retrieved by a single command
using nested messages such as the following.

(send (send (send [Triangle1] get-line1)
 get-point1)
 get-position)

Although these commands work, it's not much fun to type them in unless you get paid
by the hour and need the typing practice. As you might have guessed from the LINE

 — 144 —

handlers that we defined in the previous section, it's possible to define TRIANGLE
handlers as follows.

CLIPS>
(defmessage-handler TRIANGLE find-line-point (?line ?point)
 (send (send (send ?self (sym-cat "get-line" ?line))
 (sym-cat "get-point" ?point)) get-position))
CLIPS>
(defmessage-handler TRIANGLE print-line (?line)
 (printout t "point1 " (send ?self find-line-point ?line 1)
crlf
 "point2 " (send ?self find-line-point ?line 2)
crlf))
CLIPS> (send [Triangle1] print-line 1)
point1 (-1 0)
point2 (0 2)
CLIPS>

Using these handlers is a lot more convenient than typing in the nested messages.

At this point, you might be tempted to define a handler called find-line which returns
both point values of the specified line. Recall that find-line-point requires the
specification of both the line and one of the two points which define the line. So why not
just send two messages in the same handler to return both point values of the specified
line? Shown following is the handler for find-line and what it returns for line1 of
[Triangle1].

CLIPS>
(defmessage-handler TRIANGLE find-line (?line)
 (send (send (send ?self (sym-cat "get-line" ?line))
 get-point1) get-position)
 (send (send (send ?self (sym-cat "get-line" ?line))
 get-point2) get-position))
CLIPS> (send [Triangle1] find-line 1)
(0 2)
CLIPS>

As you can see, the handler only returns the last message value of (0 2). Thus, the
first value of (-1 0) is not returned by CLIPS. This is like the case of deffunctions which
only return the last action. One way of getting around this problem and returning both
point values of the line is shown following.

 — 145 —

CLIPS>
(defmessage-handler TRIANGLE find-line (?line)
 (create$ (send (send (send ?self (sym-cat "get-line"
 ?line)) get-point1) get-position)
 (send (send (send ?self (sym-cat "get-line"
 ?line)) get-point2) get-
position)))
CLIPS> (send [Triangle1] find-line 1)
(-1 0 0 2)
CLIPS>

Notice that the (create$) function was used to combine both point values into a single
multifield value (-1 0 0 2) which was then returned.

Other Features

A number of other functions are useful with handlers. Some of these follow.

Function Meaning
undefmessage-handler Deletes a specified handler
list-defmessage-handlers Lists the handlers
delete-instance Operates on the active instance
message-handler-existp Returns TRUE if handler exists, else FALSE

The grouping functions group COOL items into a multifield variable.

Function Meaning
get-defmessage-handler-list Groups the class names, message names and types

(direct or inherited)
class-superclasses Groups all superclass names (direct or inherited.)
class-subclasses Groups all subclass names (direct or inherited).
class-slots Groups all slot names (explicitly defined or inherited)
slot-existp Returns TRUE if class slot exists, else FALSE
slot-facets Groups the specified slot facet values of a class
slot-sources Groups the slot names of classes which contribute to

 — 146 —

a slot in the specified class

The preview-send function is useful in debugging since it displays the sequence of
all handlers that potentially may be involved in processing a message. The reason for
the term potentially is that shadowed handlers will not be executed if the shadower does
not use call-next-handler or override-next-handler.

Handlers are arranged in a message-handler precedence which determines how
they are called. The process of determining which handlers should be called and in what
order is called the message dispatch. Every time a message is sent to an object,
CLIPS arranges the message dispatch for the applicable handlers of that object, which
can be viewed by the (preview-send) command. The applicable handlers are all
handlers in all classes along the object's inheritance path that may respond to the type
of message. Other functions useful with pattern matching objects by rules follow.

Function Meaning
object-pattern-match-delay Delay pattern matching of rules until after instances

are created, modified, or deleted
modify-instance Modifies instance using slot overrides. Object

pattern matching delayed until after modifications.
active-modify-instance Change the values of the instance concurrent with

object pattern matching with direct-modify message
message-modify-instance Change the values of the instance. Delay object

pattern matching until all slots are changed
active-message-modify-instance Change the values of the instance concurrent with

object pattern matching using message-modify

 — 147 —

Chapter 12 Questions and Answers
The best way to learn is by asking yourself questions; the best way to be
sorry is by answering all of them.

In this chapter you'll learn how to pattern match on instances. One way is with rules.
Also, CLIPS has a number of query functions to match instances. In addition, control
facts and slot daemons can be used for pattern matching.

Object Lessons

One of the new features of Version 6.0 is the ability of rules to pattern match on objects.
The following example shows how the value of the slot sound is pattern matched by a
rule.

CLIPS> (clear)
CLIPS>
(defclass DUCK (is-a USER)
 (multislot sound (default quack quack)))
CLIPS> (make-instance [Dorky_Duck] of DUCK)
[Dorky_Duck]
CLIPS> (make-instance [Dinky_Duck] of DUCK)
[Dinky_Duck]
CLIPS> (defrule find-sound
 ?duck <- (object (is-a DUCK)(sound $?find))
=>
 (printout t "Duck " (instance-name ?duck) " says " ?find
crlf))
CLIPS> (run)
Duck [Dinky_Duck] says (quack quack)
Duck [Dorky_Duck] says (quack quack)
CLIPS>

 — 148 —

The object-pattern conditional element object is followed by the classes and slots to
be matched against. Following the is-a and the slot-name can be constraint expressions
involving ?, $?, &, and |.

In addition, instance names can be specified for pattern matching. The following
example shows how only one instance of the DUCK class is matched using the name
constraint, name, of instances. Note that name is a reserved word and cannot be used
as a slot name.

CLIPS> (defrule find-sound
 ?duck <- (object (is-a DUCK)
 (sound $?find)
 (name [Dorky_Duck]))
=>
 (printout t "Duck " (instance-name ?duck) " says " ?find
crlf))
CLIPS> (run)
Duck [Dorky_Duck] says (quack quack)
CLIPS>

Objects in the Database

Consider the following general type of problem. Given some instances, how many
satisfy a specified condition? For example, shown following are the defclasses and
definstances of Joe's Home showing the various types of sensors and the appliances
connected to them. Notice that an abstract class DEVICE is defined since both
SENSOR and APPLIANCE inherit common slots type and location.

CLIPS> (clear)
CLIPS>
(defclass DEVICE (is-a USER)(role abstract)
 (slot type (access initialize-only));Sensor type
 (slot loc (access initialize-only)));Location
CLIPS>
(defclass SENSOR (is-a DEVICE)(role concrete)
 (slot reading)
 (slot min (access initialize-only)) ;Min reading
 (slot max (access initialize-only)) ;Max reading
 (slot app (access initialize-only)));SEN. APP.
CLIPS>
(defclass APPLIANCE (is-a DEVICE)(role concrete)
 (slot setting) ; Depends on appliance
 (slot status)) ; off or on

 — 149 —

CLIPS>
(definstances ENVIRONMENT_OBJECTS
 (T1 of SENSOR (type temperature)
 (loc kitchen)
 (reading 110) ; Too hot
 (min 20)
 (max 100)
 (app FR))
 (T2 of SENSOR (type temperature)
 (loc bedroom)
 (reading 10) ; Too cold
 (min 20)
 (max 100)
 (app FR))
 (S1 of SENSOR (type smoke)
 (loc bedroom)
 (reading nil) ; Bad sensor nil reading
 (min 1000)
 (max 5000)
 (app SA))
 (W1 of SENSOR (type water)
 (loc basement)
 (reading 0) ; OK
 (min 0)
 (max 0)
 (app WP))
 (FR of APPLIANCE (type furnace)
 (loc basement)
 (setting low) ; low or high
 (status on))
 (WP of APPLIANCE (type water_pump)
 (loc basement)
 (setting fixed)
 (status off))
 (SA of APPLIANCE (type smoke_alarm)
 (loc basement)
 (setting fixed)
 (status off)))
CLIPS>

Suppose the following questions or queries are asked. What are all the objects in the
database? How are all the objects arranged? What are the relationships between
objects? What are all the devices? What are all the sensors? What are all the
appliances? Which sensor is connected to which appliance? Are there any sensors
whose type is temperature? What sensors of type temperature have a reading between
min and the max? An even more basic query is whether or not there are any sensors
present.

 — 150 —

The query system of COOL is a set of six functions that may be used for pattern
matching an instance-set and performing actions. An instance-set is a set of instances,
such as the instances of SENSOR. The instances in the instance-set may come from
multiple classes that do not have to be related. In other words, the classes do not have
to be from the same inheritance path.

The following table from the CLIPS Reference Manual, summarizes the predefined
query functions that may be used for instance-set access.

Function Purpose
any-instancep Determines if one or more instance-sets satisfy a query

find-instance Returns the first instance-set that satisfies a query

find-all-instances Groups and returns all instance-sets which satisfy a query

do-for-instance Performs an action for the first instance-set which satisfies a query

do-for-all-instances Performs an action for every instance-set which satisfies a query as they are found

delayed-do-for-all-instances Groups all instance-sets which satisfy a query and then iterates an action over this group

Instance-set Query Functions

I'll Take Any

The any-instancep function is a predicate function that returns TRUE if there is an
instance matching the pattern and FALSE otherwise. Shown following is an example of
this query function used with the SENSOR and APPLIANCE classes and instances. The
query function determines if there is any instance in the SENSOR class.

CLIPS> (reset)
CLIPS> (instances)
[initial-object] of INITIAL-OBJECT
[T1] of SENSOR
[T2] of SENSOR
[S1] of SENSOR
[W1] of SENSOR
[FR] of APPLIANCE
[WP] of APPLIANCE
[SA] of APPLIANCE
For a total of 8 instances.
CLIPS> (any-instancep ((?ins SENSOR)) TRUE)
TRUE ;Function returns TRUE because there is a SENSOR instance

 — 151 —

CLIPS> (any-instancep ((?ins DUCK)) TRUE) ; Evaluation error—
Bad!
[PRNTUTIL1] Unable to find class DUCK. ; No DUCK class
CLIPS>

The basic format of a query function involves an instance-set-template to specify
the instances and their classes, an instance-set-query as the boolean condition that
the instances must satisfy, and actions to specify the actions to be taken. The predicate
function class-existp returns TRUE if the class exists and FALSE otherwise.

The combination of instance name followed by the one or more class restrictions is
called an instance-set-member-template. The query functions may generally be used
like any other function in CLIPS. Shown following are the Rules of Scope which
describe the restrictions on the use of variables in a query function. The term scope
means the section of code where a variable is visible or known. The term reference
means the name or address by which a variable is accessed. In other words, the scope
of a variable means where the variable can be referenced, e.g., bound or printed.
Anything which is not prohibited by these rules is allowed, such as nesting. Also, the
term query refers to the query portion of the query function, not the query function itself.

There are two steps involved in trying to satisfy a query. First, CLIPS generates all
the possible instance-sets that match the instance-set-template. Second, the boolean
instance-set-query is applied to all the instance-sets to see which ones, if any, satisfy
the query. Instance-sets are generated by a simple permutation of the members in a
template, where the rightmost members are varied first. Note that a permutation is not
the same as a combination because order matters in a permutation but not in a
combination.

The function find-all-instances returns a multifield value of all instances which
satisfy the query, or an empty multifield value for none. The do-for-instance query
function is similar to find-instance except that it performs a single distributed action
when the query is satisfied. The do-for-all-instances function is similar to the do-for-
instance except that it performs its actions for every instance-set that satisfies the
query.

Design Decisions

In contrast to rules which are only activated when their patterns are satisfied,

 — 152 —

deffunctions are explicitly called and then executed. Just because a rule is activated
does not mean it will be executed. Deffunctions are completely procedural in nature
because once called by name, their code is executed in a procedural manner, statement
by statement. Also, no pattern matching involving constraints is used in a deffunction to
decide if its actions should be executed. Instead, any arguments that match the number
expected by the deffunction argument list will satisfy the deffunction and cause its
actions to be executed.

The basic idea of deffunctions as named procedural code is carried to a much greater
degree with defgenerics and the defmethods that describe their implementation. A
defgeneric is like a deffunction but much more powerful because it can do different
tasks depending on its argument constraints and types. The ability of a generic function
to perform different actions depending on the classes of its arguments is called
overloading the function name.

By proper use of operator overloading, it's possible to write code that is more
readable and reusable. For example, a defgeneric for the "+" function can be defined
with different defmethods. The expression,

(+ ?a ?b)

could add two real numbers represented by ?a and ?b, or two complex numbers, or two
matrices, or concatenate two strings, and so forth depending if there is a defmethod
defined for the argument classes. CLIPS does this by first recognizing the type of the
arguments and then calling the appropriate defmethod defined for those types. A
separate overloaded defmethod for "+" would be defined for each set of argument types
except for the predefined system types such as real numbers. Once the defgeneric is
defined, it's easy to reuse in other programs.

Any named function that is system defined or external can be overloaded using a
generic function. Notice that a deffunction cannot be overloaded. An appropriate use of
a generic function is to overload a named function. If overloading is not required, you
should define a deffunction or an external function.

The syntax of defgenerics is very simple, consisting of just the legal CLIPS symbol
name and an optional comment.

(defgeneric <name> [<comment>])

As a simple example of generic functions, consider the following attempt in CLIPS to

 — 153 —

compare two strings using the ">" function.

CLIPS> (clear)
CLIPS> (> "duck2" "duck1")
[ARGACCES5] Function > expected argument #1 to be of type
integer or float
CLIPS>

It's not possible to do this comparison with the ">" function because it expects
NUMBER types as arguments.

However, it's easy to define a (defgeneric) which will overload the ">" to accept
STRING types as well as NUMBER types. For example, if the arguments of ">" are of
type STRING, the defgeneric will do a string comparison, letter by letter starting from the
left until the ASCII codes differ. In contrast, if the arguments of ">" are of type NUMBER,
the system compares the sign and magnitude of the numbers. The user-defined ">" for
STRING types is an explicit method, while a system-defined or user-defined external
function such as ">" for NUMBER type is an implicit method.

The technique of overloading a function name so that the method which implements it
is not known until run-time is another example of dynamic binding. Any object reference
of name or address may be bound at run-time in CLIPS to functions through dynamic
binding also.

Some languages such as Ada have a more restrictive type of overloading in which the
function name must be known at compile time rather than at run-time. The run-time
dynamic binding is the least restrictive since methods can be created during execution
by the (build) statement. However, you should be careful in using (build) since
dynamically creating constructs is often hard to debug. Also, the resulting code may be
difficult to verify and validate since you'll have to stop execution to examine the code.
Dynamic binding is a characteristics of a true object-oriented programming language.

Following is an example of a defgeneric, ">", for STRING types and its method.

CLIPS> (defgeneric >) ; Header declaraction. Actually
unnecessary
CLIPS> (defmethod > ((?a STRING) (?b STRING))
 (> (str-compare ?a ?b) 0))
CLIPS> (> "duck2" "duck1") ; The overload ">" works correctly
TRUE ; in all three cases.
CLIPS> (> "duck1" "duck1")
FALSE

 — 154 —

CLIPS> (> "duck1" "duck2")
FALSE
CLIPS>

The (defgeneric) acts as a header declaration to declare the type of function being
overloaded. It's not actually necessary to use a defgeneric in this case because CLIPS
implicitly deduces the function name from the defmethod name, which is the first symbol
following "defmethod". The header is a forward declaration that is necessary if the
(defgeneric) methods have not yet been defined, but other code such as defrules,
defmessage-handlers, and so forth refers to the (defgeneric) name.

Other Features

Compared to deffunctions, a method has an optional method index. If you don't supply
this index, CLIPS will provide a unique index number among the methods for that
generic function, that can be viewed by the list-defmethods command. The method
body can be printed using the ppdefmethod command. A method can be removed with
an undefmethod function call.

The ranking of methods determines the method precedence of a generic function. It
is the method precedence which determines the methods order of listing. Higher
precedence methods are listed before lower precedence methods. The highest
precedence method will also be tried first by CLIPS.

A shadowed method is one in which one method must be called by another. The
process by which CLIPS picks the method with highest precedence is called the
generic dispatch. For more information, see the CLIPS Reference Manual.

 — 155 —

Support Information

Questions and Information

Inquiries related to the use or installation of CLIPS can be sent via electronic mail to
clipsYYYY@ghg.net where YYYY is the current year (for example, 2007). Include the
words ʻCLIPS USERʼ in the subject line.

The URL for the CLIPS Web page is http://www.ghg.net/clips/CLIPS.html. The CLIPS
Expert System group, a forum for the discussion of CLIPS related topics, is available at
http://groups.google.com/group/CLIPSESG/.

CLIPS Source Code and Executables

CLIPS executables are available at http://www.ghg.net/clips/download/executables/.
The source code can be downloaded from http://www.ghg.net/clips/download/source/.

Documentation

The CLIPS Reference Manuals and User's Guide are available in Portable Document
Format (PDF) at http://www.ghg.net/clips/download/documentation/. Adobe Acrobat
Reader is needed to view PDF files. It can be downloaded at
http://www.adobe.com/prodindex/acrobat/readstep.html,

Expert Systems: Principles and Programming, 4th Edition, by Giarratano and Riley
(ISBN 0-534-38447-1) comes with a CD-ROM containing CLIPS 6.22 executables
(DOS, Windows XP, and Mac OS), documentation, and source code. The first half of the
book is theory oriented and the second half covers rule-based programming using
CLIPS. It is published by Course Technology.

 — 157 —

Index
$?, 45
&, 65
& connective constraint, 65
&:, 80
*, 107
**, 67
:, 80
?, 44
?self, 124
[], 86
\, 16
|, 64
~, 64
~ constraint, 64
<-, 42
=, 67
==>, 19
=>, 24
abstract class, 97
abstraction, 84
access facet, 118
access type, 113
action, 151
actions, 23
activations, 24
active instance, 124
active-message-modify-

instance, 146
active-modify-instance, 146
after, 126
agenda, 24
ampersand, 65
analysis, 136
and, 79
and conditional element, 79
angle-brackets, 3
any-instancep, 150
arc, 96
arguments, 66
around, 128
arrow, 24
artificial neural systems, 83
assert, 3
assert-string, 38
attributes, 84, 85
backslash, 16
backtracking, 91
bar constraint, 64
basic action, 131
batch, 29
before, 126
behavior, 85, 121

bind function, 69
binding, 69
bload, 29
bound, 40
bound variable, 70
brackets, 86
branches, 92, 96
break, 81
breakpoints, 36
browse-classes, 96
bsave, 29
build, 82
call-next-handler, 132
cardinality, 113, 116
case-sensitive, 13, 88
CE, 32
child class, 85
class architecture, 111
class etiquette, 111
class oriented, 111
class restrictions, 151
class role, 128
class-existp, 151
class-slot-existp, 112
class-slots, 145
class-subclasses, 145
class-superclasses, 145
clear, 4, 5
CLIPS Object-Oriented

Language, 84
close, 81
cold-initialization, 118
colon, 80
combination, 151
commands, 2
comment, 19
composite facet, 118
compound classes, 102
concrete class, 97
conflict resolution, 26
connectionist, 83
connective constraint, 64
control fact, 50
COOL, 84
create$, 70
create-accessor, 117
crlf, 28
customized software, 101
declarative implementation,

132
declare salience, 29, 81
default, 25

default and default-dynamic,
113

default dynamic, 115
default facet, 113
default strategy, 33
defclass, 87
defensive-programming, 141
deffacts, 33
deffunction, 71
defgenerics, 152
defglobal, 80
define template, 53
definstances, 34, 106
defmethods, 152
deftemplate default values, 54
deftemplates, 7, 14
delete, 107
delete$, 73
delete-instance, 145
delimited, 8
dependencies, 80
dependents, 80
depth strategy, 33
direct instances, 97, 118
direct subclass, 89
direct superclass precedence

list, 88
distributed action, 151
documentation, 113
do-for-all-instances, 151
do-for-instance, 151
double-precision, 10
dribble, 35
dribble-off, 35
dribble-on, 35
dummy arguments, 71
dynamic, 39
dynamic binding, 84, 153
dynamic-get-, 129
dynamic-put-, 129
edge, 96
encapsulation, 84
EOF, 82
equal sign, 67
eval, 82
evaluation, 82
evenp, 80
exclusive facet, 119
exit, 2
expert systems, 1
explicit method, 153
explode$, 73

 — 158 —

exponentiation, 67
Extended Math, 68
external functions, 79
external-address, 8
facet expression, 114
facets, 113
fact, 11
fact identifier, 4
fact-address, 8, 42
fact-index, 4, 43
fact-list, 1
facts, 1
facts command, 3
field, 6
field constraint, 64
find-all-instances, 151
fires, 24
float, 8, 10, 102
floating-point, 10
floatp, 80
format, 73
forward declaration, 154
forward-declared, 137
function, 23
generic, 152
generic dispatch, 154
generic functions, 102
gensym*, 114
get-, 117
get-defmessage-handler-list,

145
get-incremental-reset, 29
grouping functions, 145
handler type, 126
handlers, 85, 121
header declaration, 154
help, 20
help-path, 20
hierarchy, 91
if then else, 81
imperative implementation,

132
implicit method, 153
implode$., 38
indirect access, 138
indirect instances, 97, 118
indirect subclass, 89
indirect superclasses, 88
inference engine, 1
inferences, 1
infix form, 66
inherit facet, 118
inheritance, 84, 85
Inheritance by Generalization,

135
Inheritance by Specialization,

135
inheritance path, 90
inheritance precedence, 97

init, 129
initial-fact, 4
initialize-instance, 118
initialize-only, 118
initial-object, 34
instance, 85
instance-address, 8, 112
instance-addressp, 112
instance-existp, 112
instance-list, 1
instance-name, 8, 112
instance-namep, 112
instance-name-to-symbol, 103
instancep, 112
instances, 102, 105
instance-set, 150
instance-set-member-template

, 151
instance-set-query, 151
instance-set-template, 151
integer, 8, 10, 73, 102
integerp, 80
is-a, 86
knowledge-base, 1
left arrow, 42
left double arrow, 19
legitimate, 92
length, 73
level, 96
LEXEME, 102
lexemep, 80
LHS, 24
link, 96
links, 86
list, 7
list-defclasses, 94
list-deffacts, 37
list-deffunctions, 73
list-definstances, 112
list-defmessage-handlers, 145
list-defmethods, 154
literal, 25
literal constraint, 25
load, 29
load-facts, 29
load-instances, 112
local, 118
local facet, 118
logical, 79
logical AND conditional

element, 32
logical conditional element, 79
logical functions, 79
logical name, 82
logical support, 79
logically dependent, 79
make-instance, 104
matches, 36
member$, 73

message dispatch, 146
message-handler precedence,

146
message-handler-existp, 145
message-handlers, 85
message-handlers,, 121
message-modify-instance, 146
messages, 85
method body, 154
method index, 154
method precedence, 154
modify, 59
modify-instance, 110, 146
multifield, 7, 102
multifield slot functions, 117
multifield value function, 70
multifield variable, 46
multifield wildcard, 45
multi-paradigm, 84
multiple facet, 116
multiple inheritance, 90, 98
multislot, 53, 116
name, 148
name constraint, 148
named function, 152
next-handlerp, 132
nil, 7
nil, 109
nodes, 86
no-inherit facet, 118
not, 79
not conditional element, 79
nth$, 73
NUMBER, 102
numberp, 80
numeric fields, 10
object, 86
object-oriented design, 83
object-oriented programming,

83
object-pattern-match-delay,

146
objects, 1
oddp, 80
of, 105
OOD, 83
OOP, 83
open, 81
or, 79
or conditional element, 79
order, 7
ordered, 7, 11
ordered list, 97
overloading, 152
override-message, 113
override-next-handler, 132
paradigm, 83
parameter, 72
parent classes, 85

 — 159 —

partial matches, 37
pattern, 22
permutation, 151
pointerp, 80
pointers, 138
polymorphism, 84
ppdefclass, 99
ppdeffacts, 37
ppdeffunction, 73
ppdefinstances, 112
ppdefmethod, 154
ppdefrule, 27
ppinstance, 125
predefined system class, 86
predicate constraint, 80
predicate function, 80
predicate functions, 94
prefix form, 66
preview-send, 146
primary, 127
primitive object types, 102
Principle of Least Astonishment,

122
print, 127
printout, 28
procedural, 83
propagation, 113
properties, 85
pseudocode, 21
pseudorandom, 80
pure OOP, 101
put-, 117
query functions, 150
query system, 150
random, 80
reactive, 113
read, 75, 117
readline, 76
read-only, 118
read-write, 117, 118
refraction, 26
refresh, 29
relation, 14
relationship, 87
remove-break, 36
replace$, 73
reset, 4, 34, 106
Rete Algorithm, 77
retract *, 18
retracted, 5
return, 81
return value, 23, 128
reusable code, 85
RHS, 24
right double arrow, 19
role abstract, 104
role concrete, 104
root, 86, 96
root class, 86

round, 73
rule-base, 1
rule-based, 83
rule-header, 22
rules, 1, 28
Rules of Message-handler

Precedence, 134
Rules of Scope, 151
run, 25
salience, 24, 81
save, 25
save-facts, 29
save-instances, 112
scope, 151
select, 2
semicolon, 19
send, 86, 107
sequencep, 80
set-break, 36
set-fact-duplication, 4
set-incremental-reset, 29
shadowed method, 154
shadower, 132
shared, 118
shared facet, 118
shell, 1
show-breaks, 36
side-effects, 81
single-field, 7
single-field constraint, 44
single-field variable, 46
single-field wildcard, 43
single-slot, 53
slot-boundp, 112
slot-delete$, 117
slot-existp, 112, 145
slot-facets, 145
slot-initablep, 118
slot-insert$, 117
slot-replace$, 117
slots, 53, 85, 109
slot-sources, 145
slot-writablep, 118
software engineering, 8
software factory, 101
source, 113
specificity, 96
standard output device, 29
static, 19, 39
static default, 114
step, 36
storage, 113
storage facet, 117
strategy, 32
str-cat, 38
str-compare, 38
str-explode, 76
str-index, 38
string, 8, 9, 102

string assertion, 38
string compare, 38
string concatenation, 38
string implode function, 38
string length, 38
stringp, 80
str-length, 38
subclass, 85
subclassp, 94
subgraphs, 97
subseq, 73
subsetp, 73
sub-string, 38
sub-string functions, 76
subtrees, 97
superclasses, 85
superclassp, 94
symbol, 8, 102
symbolp, 80
symbol-to-instance-name, 103
sym-cat, 38
synthesis, 136
system, 29
t, 29
target object, 108
taxonomy, 90
template, 84
test conditional element, 78
tilde, 64
tool, 1
top-level, 2
tree, 91
truth maintenance, 79
tuning up, 35
type, 56
types, 8
unbound slot, 109
undeffacts, 35
undeffunction, 73
undefinstances, 112
undefmessage-handler, 145
undefmethod, 154
undefrule., 35
unmake-instance, 107
unordered, 11
unwatch, 20
unwatch facts, 19
unwatch instances, 112
urban professional, 86
USER, 86
user-defined functions, 79
user-defined object types, 103
V&V, 87
value, 8
variable identifier,, 39
variables, 39
verification and validation, 87
visibility, 113
volatile patterns, 78

 — 160 —

warm-initialization, 118
watch activations, 35
watch all, 35
watch compilations, 35
watch facts, 18
watch instances, 112
watch rules, 35
watch statistics, 35
while, 81
white space, 12, 15
wildcard, 43
write, 117

