
Intelligent Systems: Reasoning and Recognition

James L. Crowley

ENSIMAG 2 / MoSIG M1 Second Semester 2016/2017

Lesson 14 29 March 2017

Rule based programming - Forward chaining

Production Systems ...2	

Production System architecture .. 3	

CLIPS : “C Language Integrated Production System” 4	

The Facts List ..5	

Deftemplates... 6	

deffacts ... 8	

Rules in CLIPS..9	

Variables .. 9	

Rule Syntax: Constraints ... 14	

Predicates ... 15	

The ACTION part (RHS) of a rule ... 17	

System Actions... 17	

Rule Based programming Lesson 14

14-2

Production Systems

Three techniques are commonly used to represent knowledge:

 Rules
 Schema systems
 Logic

Many modern AI programming environment combine all three.

Rules are typically expressed as:

 if <CONDITION> then <ACTION>

Rules are often used to program procedural or reactive intelligence.

Rule based programming languages take their inspiration from the observation of
conditioned reflexes in animals and humans.

Conditioned Reflexes are trained associations (PAVLOV)

 Condition ⇒ Reaction

A reaction can be the assertion of a fact or a physical action.

The association of facts and rules poses an important problem for rule based
programming environments. If the rules can contain variables, then the algorithmic
complexity is exponential in the number of conditions.

In this lesson we will learn of a "fast" algorithm for matching rules to Facts: RETE.

In 1975, Alan Newell at CMU took on a doctoral student named Laney Forgy.
Newell asked Forgy to create a programming environment for rule based
programming. The result was a system named "OPS" (Operational Production
System")

Rule Based programming Lesson 14

14-3

Production System architecture

Interface
Utilisateur

Mémoire de Travail
("Facts List")

MATCH
(Rete) Agenda

SélectionExécution

Rules

The system implements an "inference engine" that operates as a 3 phase cycle:

The cycle is called the "recognize act" cycle.
The phases are:
 MATCH: match facts in Short Term memory to rules
 SELECT: Select the correspondence of facts and rules to execute
 EXECUTE: Execute the action par of the rule.

Newell and Forgy soon discovered that in a such a system, adding variables to the
rules greatly enhances the expressive power, but at the same time causes a problem of
algorithmic complexity in the matching of rules to facts. Newell asked Forgy to
develop a fast algorithm for matching rules to Facts. The result is the RETE
algorithm.

In this architecture, each fact is labeled with an index. In each cycle, the
CONDITION part of rules are matched to the facts. The association of facts and rules
are stored in an agenda. One of the associations is then selected for execution.

The list of associations of facts and rules are stored in an agenda. One of the
associations is selected for execution.

There are several different models for how to sort the agenda. The most popular is to
use a stack "Last In First Out" or LIFO.

Rule based programming languages:
 OPS-5 ('78) => ART ('80) => CLIPS ('85) => CLIPS 6 ('94)

The OPS system was used to construct a very successful expert system for
configuring VAX computers (R1). R1 gained several hundred million dollars for
Digital Equipment Corporation from 1980 to 1985.

Rule Based programming Lesson 14

14-4

CLIPS : “C Language Integrated Production System”

The OPS system was commercialized by DEC, but also by Teknowledge under the
name "ART" Automated Reasoning Tool. NASA selected ART as its standard.
Unfortunately ART was built in the LISP language and was very expensive.
(50 K$ for the license, 50 K$ for the LISP machine).
In 1985, NASA engineers reprogrammed ART in C. The result was called CLIPS.

The origin of CLIPS is a C language version of the ART system (Automated
Reasoning Tool) programmed by NASA engineers.

OPS, ART and CLIPS all share the same architecture, and use the RETE algorithm.

As a public organization, NASA distributed CLIPS for free (Before GNU and
ShareWare)

Successive versions of CLIPs have been distributed and a substantial user community
has emerged. We will use a version, CLIPS 6.0, that is programmed using object
oriented programming. This version integrates many different knowledge
representation styles, including Rules, Schema, and a logic based Truth Maintenance
system.

For NASA, CLIPS is used to construct Expert Systems for
1) Process Control
2) On-Board Error Diagnostic
3) Mission Planning
4) Logistics Planning.

Rule Based programming Lesson 14

14-5

The Facts List

The working memory of CLIPS is called the "Facts List".
A Fact can represent:
 • A list of items (PRIMITIVES including symbols, strings, integers or floats)
 • A template composed of a "name" and a list of "attribute-value" pairs.
 • An object from the CLIPS object oriented system.

CLIPS' working memory is represented as a list of facts.
Fact are a list or structure or items (or an object).
Items belong to a hierarchy of 13 primitive types.

It is also possible to define new types. Version 6.0 of CLIPS contains an object-
oriented environment named COOL. ("C-Language Object Oriented Language").
User defined types belong to the class COOL class USER

In later lessons we will use the COOL. For now, we will work with lists and
structures.

Facts, in CLIPS, are created and destroyed by the commands:

ASSERT: (ASSERT <<FACT>>)
RETRACT, (RETRACT <<INDEX>>)

 (RESET) - Empties the working memory
(CLEAR) - Resets the entire system to empty.

Typing (RESET) creates an "initial fact" with index 0.

Rule Based programming Lesson 14

14-6

Typing (Clear) deletes all templates, rules, facts, classes etc..
And then creates an "initial fact" with index 0.

f-0 (initial-fact)

There are 5 keywords that cannot be used in the first field in a fact:
Test, and, or, not, declare.

 Each fact is identified by a unique "index". Indices are allocated in order. They are
fundamental to the logic of CLIPS.

(assert (a b c))
ATTN (assert (1 2 3)) will generate an error. The first item must be a symbol

Deftemplates

A template is a set of "attribute - value" pairs. The attribute name are used as an
index into the template. Such structures are defined with deftemplate.

A template makes it possible to manipulate attributes of a fact without having to scan
through a list. Attributes are called "slots" in clips.

Example:

(deftemplate person ; A template for a person
 "template for a person" ; Optional Comment
 (slot name ; Name of a person
 (default "John Doe")) ; Default name
 (slot age ; age of the person
 (type INTEGER)) ; default will be 0
)

Instances of templates are created by (assert).

(assert (person))
(assert (person (name "joe")))
(assert (person (name "jim") (age 39)))

A number of commands exist inspecting templates

 (list-deftemplates)

Rule Based programming Lesson 14

14-7

 (ppdeftemplate <template-name>)
 (undeftemplate <template-name>)

examples:

CLIPS> (list-deftemplates)
initial-fact
person
For a total of 2 deftemplates.
CLIPS> (ppdeftemplate person)
(deftemplate MAIN::person "template for a person"
 (slot name (default "John Doe"))
 (slot age (type INTEGER)))
CLIPS>

We can define types and default values for slots.
We can also define a list of allowed symbols for a slot value.

example :

(deftemplate person ; A template for a person
"template for a person" ; Optional Comment
 (slot name ; Names of a person
 (type STRING)
(default "Pierre Dupont")) ; Default name
 (slot age ; age of the person
 (type INTEGER) ; default will be 0
 (range 0 120)) ; Possible ages
 (slot Profession ;
 (type SYMBOL)
 (allowed-values artist engineer salesman manager
 other none)
 (default none)
)
)

For numbers we can define a range
 (slot age
 (type NUMBER)
 (range 0 120))

Rule Based programming Lesson 14

14-8

deffacts

 A predefined list of facts can be created by the expression "deffacts".

(deffacts <NOM> ["<comment>"]
 [(<<FAIT-1>>) (<<FAIT-2>>) ... (<<FAIT-N>>))

the command (reset) will empty the facts list and create an "initial-fact" and to create
the list of default facts.

examples :

(deftemplate place
 (slot name (type SYMBOL) (default NIL))
 (slot x (type NUMBER) (default -1))
 (slot y (type NUMBER)(default -1))
 (multislot neighbors (default NIL))
)

(deffacts network-of-places
 (place (name A) (x 0) (y 0) (neighbors B C))
 (place (name B) (x 0) (y 1) (neighbors A D))
 (place (name C) (x 1) (y 0) (neighbors A I))
)

CLIPS> (deffacts network-of-places
 (place (name A) (x 0) (y 0) (neighbors B C))
 (place (name B) (x 0) (y 1) (neighbors A D))
 (place (name C) (x 1) (y 0) (neighbors A I))
)
CLIPS> (reset)
CLIPS> (facts)
f-0 (initial-fact)
f-1 (place (name A) (x 0) (y 0) (neighbors B C))
f-2 (place (name B) (x 0) (y 1) (neighbors A D))
f-3 (place (name C) (x 1) (y 0) (neighbors A I))
For a total of 4 facts.

Rule Based programming Lesson 14

14-9

 Rules in CLIPS

CLIPS rules allow programming of reactive knowledge.
Rules are defined by the "defrule" command.

(defrule <rule-name> [<comment>]
 [<declaration>] ; Rule Properties
 <conditional-element>* ; Left-Hand Side (LHS)
=>
 <action>*) ; Right-Hand Side (RHS)

If the rule with the same name exists, it is replaced.
else the rule is created.

There is no limit to the number of conditions or actions (* means 0 or more).
Actions are executed sequentially.

Rules with no condition are activated by (Initial-Fact)

The syntax for condition elements is complex:

<conditional-element> ::= <pattern-CE> |
 <assigned-pattern-CE> |
 <not-CE> |
 <and-CE> |
 <or-CE> |
 <logical-CE> |
 <test-CE>

A condition element (CE) can be a list or a template or user defined object.

List: (<constant-1> ... <constant-n>)
Deftemplate:

(<deftemplate-name> (<slot-name-1> <constant-1>)
 •
 •
 •
 (<slot-name-n> <constant-n>))

A CE can contain constant values or variables.

Variables

Rule Based programming Lesson 14

14-10

Variables are represented by ?x
There are two sorts of variables in CLIPS:

Index Variables: are assigned the index of a fact that matches a CE.
Attribute Variables: Contain the value of a item that matched a CE.

Index Variables

Variable : ?x
Index variables are used to identify a fact that has matched a CE
This can be used to retract of modify the fact.

(defrule rule-A
 ?f <- (a)
=>
 (printout t "Retracting " ?f crlf)
 (retract ?f)
)

Attribute Variables

Attribute variables are assigned the value of an item that matched a CE.
These can be used to
 1) Recover the value for computation
 2) Detect matching facts.

Syntax for attribute variables.
 ?var - Defines a variable named var.
 The matching value is assigned to ?var.
 $?list -Defines a list of variables named list
 ? - An unnamed variable. No data is stored.
 $? - An unnamed list. no data is stored.

WITHIN condition elements, values implicitly bound to variables.

Examples :
(assert (a b c))
(assert (a b c d e f))
(assert (d e f))

(defrule choose-1
 (a)

Rule Based programming Lesson 14

14-11

=>
(printout t "a b c" crlf)
)

(defrule choose-1
 (a b c)
=>
(printout t "a b c" crlf)
)

(defrule choose-3
 (a b ?x)
=>
(printout t "a b and ?x = " ?x crlf)
)

(defrule choose-1-of-3
 (a ?x ?)
=>
(printout t "x = " ?x crlf)
)

(defrule process-a-list
 (a $?x)
=>
(printout t "The list is " $?x crlf)
)

(defrule make-a-big-list
 (a $?x $?)
=>
(printout t "The list is " $?x crlf)
)

The following "trick" is used to obtain the elements of a list:

(defrule process-a-list2
 (a $? ?x $?)
=>
(printout t "x = " ?x crlf)
)

(defrule increment-x
 ?f <- (a ?x)
=>

Rule Based programming Lesson 14

14-12

 (printout t "x = " ?x crlf)
 (bind ?x (+ ?x 1))
 (printout t "now x = " ?x crlf)
 (retract ?f)
 (assert (a ?x))
)

(defrule increment-x-example
 ?f <- (a ?x)
=>
 (printout t "x = " ?x crlf)
 (bind ?x (+ ?x 1))
 (printout t "now x = " ?x crlf)
 (modify ?f (a ?x))
)

(deftemplate a (slot x))

(defrule increment-x-example
 ?f <- (a (x ?x))
=>
 (printout t "x = " ?x crlf)
 (bind ?x (+ ?x 1))
 (printout t "now x = " ?x crlf)
 (modify ?f (x ?x))
)

WITHIN the action part of a rule, values may be assigned by
(bind ?Var Value)
e.g. (bind ?x 3) assigns 3 to ?x

ATTN: DO NOT use (bind) in condition elements

(defrule test
?c <- (a b c)
=>
(bind ?c oops)
(printout t ?c crlf)
)

Rule Activations (associations of a rule with facts that match conditions)
are placed on the agenda.

Rule Based programming Lesson 14

14-13

(deftemplate person
 "A record for a person"
 (slot family-name)
 (slot first-name)
)

(assert (person (family-name DOE) (first-name John)))
(assert (person (family-name DOE) (first-name Jane)))

(defrule Find-same-name
 ?P1 <- (person (family-name ?f) (first-name ?n1))
 ?P2 <- (person (family-name ?f) (first-name ?n2))
=>
 (printout t ?n1 " " ?f" and " ?n2 " " ?f " have the
same family name" crlf)
)

CLIPS> (assert (person (family-name DOE) (first-name
John)))
<Fact-1>
CLIPS> (assert (person (family-name DOE) (first-name
Jane)))
<Fact-2>
CLIPS> (defrule Find-same-name
 ?P1 <- (person (family-name ?f) (first-name ?n1))
 ?P2 <- (person (family-name ?f) (first-name ?n2))
=>
 (printout t ?n1 " " ?f" and " ?n2 " " ?f " have the
same family name" crlf)
)
CLIPS> (run)
Jane DOE and Jane DOE have the same family name
Jane DOE and John DOE have the same family name
John DOE and Jane DOE have the same family name
John DOE and John DOE have the same family name

Question: Why does the rule execute 4 times?
Answer: Twice because a fact can match itself and twice because the rule matches
Jane with John as well as John with Jane

(defrule Find-same-name
 ?P1 <- (person (family-name ?f) (first-name ?n1))
 ?P2 <- (person (family-name ?f) (first-name ?n2))

Rule Based programming Lesson 14

14-14

 (test (neq ?n1 ?n2))
=>
 (printout t ?n1 " " ?f" and " ?n2 " " ?f " have the
same family name" crlf)
)

Rule Syntax: Constraints

Variable assignment and matching in conditions can be "constrained" by constraints.
There are two classes of constraints: "Logic Constraints" and Predicate Functions

Logic Constraints are composed using"&", "|", "~"

"&"- AND - Conjunctive constraint
"|" - OR - Disjunctive Constraint
"~" - NOT - Negation

(defrule Find-same-name
 ?P1 <- (person (family-name ?f) (first-name ?n1))
 ?P2 <- (person (family-name ?f)
 (first-name ?n2&~?n1))

=>
 (printout t ?n1 " " ?f" and " ?n2 " " ?f " have the
same family name" crlf)
)

example :

(?x & green | blue) - ?x must be green or blue for the
condition to match
(?x & ~red) - ?x cannot match red.

(defrule Stop-At-Light
 (color ?x & red | yellow)
=>
 (assert (STOP))
 (printout t "STOP! the light is " ?x crlf)
)
 (assert (color red))

Rule Based programming Lesson 14

14-15

Predicates

 Predicates provide functions for defining constraints.
 For Predicate functions, the variable is followed by ":".

(?x&:(<predicate> <<arguments>>) The condition is satisfied if

1) a value is assigned to ?x , and
2) the predicate is true for arguments

(?x|: (<predicate> <<arguments>>) The condition is satisfied if
1) a value is assigned to ?x , or
2) the predicate is true for arguments

(?x&~(<predicate> <<arguments>>) The condition is satisfied if
1) a value is assigned to ?x , and
2) the predicate is false for arguments

(defrule Find-same-name
 ?P1 <- (person (family-name ?f) (first-name ?n1))
 ?P2 <- (person (family-name ?f)
 (first-name ?n2&:(neq ?n1 ?n2)))

=>
 (printout t ?n1 " " ?f" and " ?n2 " " ?f " have the
same family name" crlf)
)

There are many predefined predicates. For example.
 (numberp <arg>) - true if <arg> is a PRIMITIVE of type NUMBER
 (stringp <arg>) - true if <arg> is a PRIMITIVE of type STRING
 (wordp <arg>) - true if <arg> is a PRIMITIVE of type WORD
Additional functions can be found in the manual

(defrule example-1
 (data ?x&:(numberp ?x))
 =>)

(defrule example-2
 (data ?x&~:(symbolp ?x))
 =>)

Rule Based programming Lesson 14

14-16

(defrule example-3
 (data ?x&:(numberp ?x)&:(oddp ?x))
 =>)

(defrule example-4
 (data ?y)
 (data ?x&:(> ?x ?y))
 =>)

(defrule example-4
 (data ?y)
 not (data ?x&:(> ?x ?y))
 =>)

(defrule example-5
 (data $?x&:(> (length$?x) 2))
 =>)

Rule Based programming Lesson 14

14-17

The ACTION part (RHS) of a rule

In the action part (or RHS) the rule contains a sequence of actions.
Any command recognized by the interpreter can be placed in the action part of a rule.
Each action enclosed in parentheses (<fonction> <<args>>*)
The first symbol in parentheses is interpreted as a function.

New variables can be defined and assigned with bind: (bind ?x 0).
Values may be read from a file or from ttyin by read and readline.

example :
(defrule ask-user
 (person)
=>
 (printout t "first name? ")
 (bind ?firstname (read))
 (printout t "Family name? ")
 (assert (person ?firstname (read)))
)

System Actions

1) assert : facts are created with "ASSERT"
Syntax : (assert (<<fait>>) [(<<faits>>)])

(defrule I-Think-I-Exist
 (I think)
=>
 (assert-string "(I exist)")
)
2) retract - Facts are deleted with retract

(defrule I-dont-think-I-Exits
 ?me <- (I do not think)
=>
 (printout t "oops!" CRLF)
 (retract ?me)
)
3) Str-assert Assert a string

(defrule I-Think-I-Exist
 (I think)
=>
 (str-assert "I Think therefore I exist")

Rule Based programming Lesson 14

14-18

)
4) Halt : Stop execution.

