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Kernel Functions 
 
Linear discriminant functions can provide very efficient 2-class classifiers, provided 
that the class features can be separated by a linear decision surface.  
 
For many domains, it is possible to find a  “kernel” function, that transforms the data 
into a space where the two classes are separate.   
 
Instead of a decision surface:   

! 

g(
! 
X ) =

! 
W T
! 
X + b  

 
We will use a decision surface of the form:  
 

  

! 

g(
! 
X ) =

! 
W T f (

! 
X )+ b  

 

where 
  

! 

! 
W = f (

! 
Z ) = am ym f (

! 
X m )

m=1

M

"   is learned from the transformed training data.  
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Support Vector Machines with Kernels 
 
Let us assume that a training data composed of M training samples   

! 

! 
X m{ }  and their 

indicator variable,  

! 

ym{ }, where , ym is -1 or +1.  
 
 
We will seek a linear decision surface   

! 

g(
! 
X ) =

! 
W T f (

! 
X )+ b such that the training data 

fall into two separable classes. That is  
 
   

! 

"m :   ym (
! 

W T f (
! 
X )+ b) > 0 

 
If we assume that the data is separable, then for all training samples:  
 
   

! 

ymg(
! 
X m ) > 0   

 
For any training sample   

! 

! 
X m   the perpendicular distance to the decision surface is:  

 
 

  

! 

dm =
ymg(

! 
X m )! 

W 
=

ym (
! 

W T f (
! 
X m )+ b)
! 

W 
 

 
The margin is the smallest distance from the decision surface:  
 

 
 

   

! 

" =min{ym (
! 

W T f (
! 
X m )+ b)} 

 
For a decision surface, (  

! 

! 
W , b), the support vectors are the subset   

! 

! 
X s{ } of the training 

sample,   

! 

! 
X s{ }"

! 
X m{ } that minimize the margin, γm,  

 

 
  

! 

" =min
n

"n{ } =min
m

1
! 

W 
ym (
! 

W T
! 
X m + b)

# 
$ 
% 

& % 

' 
( 
% 

) %  

 
We will seek to maximize the margin by finding the   

! 

! 
X s{ } training samples that 

maximize:  
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! 

argmax! 
W ,b

1
! 

W 
min

m
ym (
! 

W T f (
! 
X m )+ b){ }

" 
# 
$ 

% $ 

& 
' 
$ 

( $  

 
The factor 

  

! 

1
! 

W 
 can be removed from the optimization because   

! 

! 
W  does not depend 

on m.  
 
Direct solution would be very difficult because we do not know how many support 
vectors will be required.  
Fortunately the problem can be converted to an equivalent problem.  
 
Note that rescaling the problem changes nothing.  Thus we will scale the equation 
such for the sample that is closest to the decision surface (smallest margin):  
 
   

! 

ym (
! 

W T f (
! 
X m )+ b) =1   that is:     

! 

ymg(
! 
X m ) =1 

 
For all other sample points:  
 
   

! 

ym (
! 

W T f (
! 
X m )+ b) >1 

 
This is known as the Canonical Representation for the decision hyperplane.  
 
The training sample where   

! 

ym (
! w T f (

! 
X m )+ b) =1 are said to be the "active" 

constraint.   All other training samples are "inactive".  
 
By definition there is always at least one active constraint.  
 
When the margin is maximized, there will be D+1 active constraints.  
 
Thus the optimization problem is to maximize 

  

! 

argmin! 
W ,b

1
2
! 

W 
2" 

# 
$ 

% 
& 
' 
 subject to the active 

constraints.  
 
The factor of ½ is a convenience for later analysis.  
 
To solve this problem, we will use Lagrange Multipliers, an ≥ 0, with one multiplier 
for each constraint. This gives a Lagrangian function:  
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! 

L(
! 

W ,b, ! a ) =
1
2
! 

W 
2
" am ym (

! 
W T f (

! 
X m )+ b)"1{ }

m=1

M

#  

 
Setting the derivatives to zero, we obtain:  
 

 
  

! 

"L
"
! 

W 
= 0#  

  

! 

! 
W = am ym f (

! 
X m )

m=1

M

"  

 

 

! 

"L
"b

= 0#  

! 

amym
m=1

M

" = 0  

 
Eliminating   

! 

! w ,b  from   

! 

L( ! w ,b, ! a ) we obtain:  
 

 
  

! 

L(a) = am
m=1

M

" #
1
2

anam ynym
n=1

M

" k(
! 
X n ,
! 
X m )

m=1

M

"  

 
with constraints:  
 
 am ≥ 0 for m=1, ..., M 
  

 

! 

amym
m=1

M

" = 0  

 
where the kernel function is :    

! 

k(
! 
X 1,
! 
X 2 ) = f (

! 
X 1)

T f (
! 
X 2 ) 

 
The solution takes the form of a quadratic programming problem in Dk variables (the 
dimension of the Kernel space).  This would normally take O(Dk

3) computations.  
 
In going to the dual formulation, we have converted this to a dual problem over M 
data points, requiring O(M3) computations.  
 
This can appear to be a problem, but the solution only depends on a small number of 
points Ms << M.  
 
To classify a new observed point, we evaluate:  
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! 

g(
! 
X ) = am ym

m=1

M

" k(
! 
X m ,
! 
X )+ b  

The solution to optimization problems of this form satisfy the "Karush-Kuhn-Tucker" 
condition, requiring:  
 
 am ≥ 0 
   

! 

ymg(
! 
X m )"1#  0  

   

! 

am ymg(
! 
X m )"1{ } #  0  

 
For every observation in the training set,    

! 

! 
X m{ } , either  

 
 am = 0 or    

! 

ymg(
! 
X m ) =1 

Any point for which am = 0 does not contribute to 
  

! 

g(
! 
X ) = am ym

m=1

M

" k(
! 
X m ,
! 
X )+ b  

and thus is not used! (is not active) . 
 
The remaining Ms samples  for which am ≠ 0 are the Support vectors.  
These points lie on the margin at    

! 

ymg(
! 
X m ) =1  of the maximum margin hyperplane.  

Once the model is trained, all other points can be discarded!  
 
Let us define the support vectors as the set   

! 

! 
X s{ }. 

 
Now that we have solved for   

! 

! 
X s{ } and a, we can solve for b:  

 
we note that for any active training sample m in   

! 

! 
X s{ } 

 

 
  

! 

ym anyn
n"S
# k(

! 
X n ,
! 
X m )+ b

$ 

% 
& 

' 

( 
) =1 

 
averaging over all support vectors in   

! 

! 
X s{ } gives:  

 

 
  

! 

b =
1

M S

ym " anynk(
! 
X n,
! 
X m )

n#S
$

% 

& 
' 

( 

) 
* 

m#S
$  

 

From Bishop p 331.  
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Soft Margin SVM's - Non-separable training data. 
 
So far we have assumed that the data are linearly separable in   

! 

f (
! 
X ).  

For many problems some training data may overlap.  
 
The problem is that the error function goes to ∞ for any point on the wrong side of 
the decision surface. This is called a "hard margin" SVM.  
 
We will relax this by adding a "slack" variable, zn for each training sample.  
 
 zm ≥ 1  
 
We will define  
 
 zm = 0     for training samples on the correct side of the margin, and  
   

! 

zm = ym " g(
! 
X m )     for other training samples.  

 
For a sample inside the margin, but on the correct side of the decision surface:  
 
 0 < zm ≤ 1 
 
For a sample on the decision surface:  
 
  zm= 1 
 
For a sample on the wrong side of the decision surface:  
 
  zm  >  1 

 
Soft margin SVM: Bishop p 332 (note use of ξn in place zn) 
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This is called a soft margin SVM.  
   
To softly penalize points on the wrong side, we minimize :  
 

 
  

! 

C zm +
1
2m=1

M

" ! w 2  

 
where C > 0 controls the tradeoff between slack variables and the margin.  
 
because any misclassified point zm > 1, the upper bound on the number of 

misclassified points is 

! 

zm
m=1

M

" .  

 
C is an inverse factor. (note C=∞  is the SVM with hard margins)  
 
To solve for the SVM we write the Lagrangian:  
 

 
  

! 

L(
! 

W ,b, z, ! a ,µ) =
1
2
! 

W 
2

+ C zm
m=1

M

" # am ymg(
! 
X m )#1+ zm{ }

m=1

M

" # µmzm
m=1

M

"  

 
where {am ≥ 0} and { µm ≥  0} are the Lagrange multipliers.  
 
The KKT conditions are 
 
 am ≥ 0 
   

! 

ymg(
! 
X m )"1+ zm #  0  

   

! 

am ymg(
! 
X m )"1+ zm{ } #  0 

 

! 

µm " 0  
 zm  ≥  1 
 µnzm  = 0 
 
We optimize for   

! 

! 
W , b, and {zm}, using   

! 

g(
! 
X ) =

! 
W T f (

! 
X )+ b  

 
Solving the derivatives of   

! 

L(
! 

W ,b, ! a ) for zero gives 
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! 

"L
"w

= 0#
! 

W = am ym f (
! 
X m )

m=1

M

$  

  

! 

"L
"b

= 0# amym
m=1

M

$ = 0  

  

! 

"L
"zn

= 0# am =C $µn  

 
using these to eliminate w, b and {Sm} from L(w, b, a) we obtain 
 

 
  

! 

L(! a ) = am
n=1

N

" #
1
2

amanym yn
n=1

M

" k(
! 
X m ,
! 
X n )

m=1

M

"   

 
This appears to be the same as before, except that the constraints are different.  

 0 ≤ am ≤ C    and   

! 

am
m=1

M

" ym = 0  

 
(referred to as a "box" constraint). The solution is a quadratic programming problem, 
with complexity O(M3). However, as before, a large subset of training samples have 
am = 0, and thus do not contribute to the optimization.  
 
For the remaining points    

! 

ymg(
! 
X m ) =1" Sm  

 
For samples ON the margin   am < C hence µm > 0 requiring that Sm = 0 
 
For samples INSIDE the margin:  am = C  and Sm ≤ 1 if correctly classified and Sm >1 
if misclassified.  
 
as before to solve for b  we note that :  
 

 
  

! 

ym anyn
n"S
# k(

! 
X n ,
! 
X m )+ b

$ 

% 
& 

' 

( 
) =1 

 
Averaging over all support vectors in S gives:  

 
  

! 

b =
1

M N

yn " anynk(
! 
X m ,
! 
X n )

n#S
$

% 

& 
' 

( 

) 
* 

m#N
$  

 
where N denotes the set of support vectors such that 0 <  an < C.  


