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Kernel Functions 
 
A Kernel function transforms the training data so that a non-linear decision surface is 
transformed to a linear equation in a higher number of dimensions.  
 
Linear discriminant functions can provide very efficient 2-class classifiers, provided 
that the class features can be separated by a linear decision surface.  
 
For many domains, it is easier to separate the classes with a linear function if you can 
transform your feature data into a space with a higher number of dimensions. 
 
One way to do this is to transform the features with a “kernel” function.  
 
Instead of a decision surface:   

! 

g(
! 
X ) =

! 
W T
! 
X + b  

 
We use a decision surface   

! 

g(
! 
X ) =

! 
W "
! 
f (
! 
X )+ b  

 
The function   

! 

! 
f (
! 
X ) provides an implicit non-linear decision surfaces for the original 

data.  
 

 
 
Formally, a "kernel function" is any function that satisfies the Mercer condition.   
A function, k(x, y), satisfies Mercer's condition if  for all square, integrable functions 
f(x),  
 
 

! 

k(x, y) f (x) f (y)dxdy " 0##  
 

This condition is satisfied by inner products (dot products)  
  

! 

! 
W T
! 
X = wd xd

d=1

D

"  
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Thus   

! 

k(
! 

W ,
! 
X ) =

! 
W T
! 
X  is a valid kernel function. (Known as the linear kernel).  

 
as is   

! 

k(
! 
Z ,
! 
X ) = f (

! 
Z )T f (

! 
X ) 

 
We can learn the discriminant in an inner product space   

! 

k(
! 
Z ,
! 
X ) = f (

! 
Z )T f (

! 
X ) 

where   

! 

! 
W  will be learned from the  training data.  

 
This will give us      

! 

g(
! 
X ) =

! 
W T f (

! 
X )+ b   

 
The Mercer function can be satisfied by many other functions.  
 Popular kernel functions include:  

• Polynomial Kernels 
• Radial Basis Functions 
• Fisher Kernels 
• Text intersection 
• Bayesian Kernels 

 
Kernel functions provide an implicit feature space.  We will see that we can learn in 
the kernel space, and then recognize without explicitly computing the position in this 
implicit space! 
 
This will allow us to use Kernels for infinite dimensional spaces as well as non-
numerical and symbolic data! 
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Polynomial Kernel Functions 
 
The Polynomial kernel is defined as   
 

  

! 

k(! x , ! z ) = (! z T ! x + c)n  
 
where n is the “order” of the kernel, and  c is a constant that allows to trade off the 
influence of the higher order and lower order terms.  
 
Second order or quadratic kernels are a popular form of Polynomial kernel, widely 
used in Speech Recognition. Higher order kernels tend to “overfit” the training data 
and thus do not generalize well.   
 

For example for a feature vector with two components d=2 : 
  

! 

! x =
x1
x2

" 

# 
$ 

% 

& 
'   

without the c term,  the quadratic kernel can be expressed as:  
 
   

! 

k(! x , ! z ) = (! z T ! x )2 = f (! z )T f (! x ) 
   

! 

k(! x , ! z ) = (x1z1 + x2z2 )
2 = (x1

2z1
2 + 2x1z1x2z2 + x2

2z2
2 )  

   

! 

k(! x , ! z ) = (z1
2 + 2z1z2 + z2

2 )(x1
2 + 2x1x2 + x2

2 )T = f (! z )T f (! x )  
thus 

 

  

! 

f (
! 
X ) =

x1
2

2x1x2
x2
2

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
  

 
When the c is included the  quadratic kernel is expressed as:  
 
   

! 

k(! x , ! z ) = (! z T ! x + c)2 = f (! z )T f (! x )  
 

and  D=2 :  and 
  

! 

! x =
x1
x2

" 

# 
$ 

% 

& 
'   the implicit feature space has 5 dimensions.  

 

  

! 

f (
! 
X ) =

x1
2

2x1c
2x1x2
2x2c
x2
2

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
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This Kernel  can be used to map a  hyperbolic surface to a plane 
 

 
 
 
In general when for a d dimensional feature vector  
 

   

! 

k(! x , ! z ) = (! z T ! x + c)n    yields 

  

! 

f (
! 
X ) =

x1
2

"
xd
2

2x1x2
"

2xd xd"1

2x1c
"
2xdc
c

# 

$ 
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% 
% 
% 
% 
% 
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% 
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Radial Basis Function (RBF)  
 
Also known as a Gaussian Kernel, Radial Basis Function (RBF) kernels are often 
used in Computer Vision.  The RBF Kernel function has the form: 
 

 
  

! 

g(
! 
X ) =

! 
W n

T

n=1

N

" f
! 
X #
! 
X n( ) 

 
Where the points N samples    

! 

! 
X n  can be derived from the training data.  

 
The term   

! 

! 
X "
! 
X n  is the Euclidean distance from the set of points   

! 

! 
X n{ }.  

 
The distance can be normalized by  dividing by σ  
 

  
  

! 

g(
! 
X ) =

! 
W n

T

n=1

N

" f
! 
X #
! 
X n
$( )  

 
The sigma parameter acts as a smoothing parameter that determines the influence of 
each of the points,   

! 

! 
X n .  
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The zero-crossings in the distances define the decision surface.   
 
Depending on σ, this can provide a good fit or an over fit to the data.   If σ is large 
compared to the distance between the classes, this can give an overly flat 
discriminant surface.  If σ is small compared to the distance between classes, this will 
over-fit the samples.   
 
A good choice for σ will be comparable to the distance between the closest members 
of the two classes.  
 

 
(images from "A Computational Biology Example using Support Vector Machines", 
Suzy Fei, 2009) 
 
Each Radial Basis Function is a dimension in a high dimensional basis space.  
 

Kernel Functions for Symbolic Data 
 
Kernel functions can be defined over graphs, sets, strings and text! 
 
Consider for example, a non-vector space composed of a set of words {W}.  
We can select a subset of discriminant words {S} ⊂ {W} 
 
Now given a set of words (a probe), {A} ⊂ {W} 
 
We can define a kernel function of A and S using the intersection operation.  
 
 

! 

k(A,S) = 2 A"S    
 
where | . | denotes the cardinality (the number of elements)  of a set.  
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Support Vector Machines 
 
Support Vector Machines (SVM), also known as maximum margin classifiers are 
popular for problems of classification, regression and novelty detection.  The solution 
of the model parameters corresponds to a convex optimization problem.   SVM's use 
a minimal subset of the training data (the “support vectors) to define the “best” 
decision surface between two classes. We will use the two class problem, K=2, to 
illustrate the principle. Multi-class solutions are possible. 
 
The simplest case, the hard margin SVM, require that the training data be completely 
separated by at least one hyper-plane.  This is generally achieved by using a Kernel to 
map the features into a high dimensional space were the two classes are separable.  
 
To illustrate the principle, we will first examine a simple linear SVM where the data 
are separable. We will then generalize with Kernels and with soft margins.  
 
We will assume that the training data is a set of M training samples   

! 

! 
X m{ }and their 

indicator variable,  

! 

ym{ }, where , ym is -1 or +1. 
 

Hard-Margin SVMs - a simple linear classifier. 
 
The simplest case is a linear classifier trained from separable data. 
 
   

! 

g(
! 
X ) =

! 
W T
! 
X + b  

 
Where the decision rule is:  IF   

! 

! 
W T
! 
X + b > 0 THEN C1 else C2 

 
For a hard margin SVM we assume that the two classes are separable for all of the 
training data:  
 
   

! 

"m :   ym (
! 

W T
! 
X m + b) > 0  

 
We will use a subset S of the training samples,   

! 

! 
X s{ }"

! 
X m{ } composed of Ms training 

samples to define the “best” decision surface   

! 

g(
! 
X ) =

! 
W T
! 
X + b . The minimum 

number of support vectors depends on the number of features (Ms = D+1). The Ms 
selected training samples   

! 

! 
X s{ } are called the support vectors. For example, in a 2D 

feature space we need only 3 training samples to serve as support vectors.  
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Thus to define the classifier we will look for the subset if S training samples that 
maximizes the separation between the two classes.   
 
The separation is defined using the margin: , γ.  
 

 
 

Finding for the support vectors.  
 
Assume that we have M training samples   

! 

! 
X m{ }and their indicator variable 

! 

ym{ }, 
where,  ym is -1 or +1. 
 
Assume that we have normalized the coefficients of the hyperplane such at  
 
   

! 

! 
W =1 

 
Then the distance of any sample point   

! 

! 
X m  from the hyper-plane,   

! 

! 
W . 

 
   

! 

d =  ym (
! 

W T
! 
X m + b) 

 
The margin is the minimum distance  
 
   

! 

" =min{yn (
! 

W T
! 
X m + b)}  

 
A D dimensional decision surface is defined by at least D points.  At least one 
additional point is required to define the margin. Thus we seek a subset  of Ms=D+1  
training samples,    

! 

! 
X s{ }"

! 
X m{ } to define a decision surface and is margin. 

 
Our algorithm must choose  D+1 training samples   

! 

! 
X s{ } from the  M Training samples 

in   

! 

! 
X m{ }  such that the margin is a large as possible.  This is equivalent to a search for 

a pair of parallel surfaces a distance γ from the decision surface.  
 
We will use these samples as support vectors. 
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For the D+1 support vectors  

! 

! 
X s{ }  

 
 ds = γ 
 
 For all other training samples:  
 
 dm ≥ γ 
 
To find the support vectors, we can arbitrarily define the margin as γ = 1 and then 
renormalize   

! 

! 
W  once the support vectors have been discovered. We will look for two 

separate hyper-planes that “bound” the decision surface, such that for points on these 
surfaces:  
 
   

! 

! 
W T
! 
X + b =1  and   

! 

! 
W T
! 
X + b = "1 

 
The distance between these two planes is 

  

! 

2
! 

W 
 

 
We will add the constraint that for all training samples that are support vectors  
 
   

! 

! 
W T
! 
X m + b "1  

 
while for all other samples:  
 
   

! 

! 
W T
! 
X m + b "  #1 

 
This can be written as:    

! 

ym (
! 

W T
! 
X m + b) "1 

 
This gives we have an optimization algorithm that minimizes    

! 

! 
W   subject to 

 
   

! 

ym (
! 

W T
! 
X m + b) "  1.  

 
If we note that minimizing   

! 

! 
W  is equivalent minimizing 

! 

1
2
W 2 , we can set this up as 

a quadratic optimization problem, and use Lagrange Multipliers.  
 
Our problem is then to find 

  

! 

arg"min
W ,b

{
! 

W 
2
} such that     

! 

ym (
! 

W T
! 
X m + b) "1 

 
We look  for a surface, (  

! 

! 
W , b) such that  
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! 

arg"min! 
W ,b

1
2
! 

W 
2# 

$ 
% 

& 
' 
( 
 subject to    

! 

ym (
! 

W T
! 
X m + b) "1 

 
by searching for :  
 

 
  

! 

arg"min{! 
W ,b

max{
#m

1
2

W 2
" am[ym (

! 
W T
! 
X m + b)

n=1

N

$ "1]}}  

 
for a subset of Ms ≥ D+1 samples,  am ≥ 0. Thes e are the samples on the margins.  
 
For all other samples where  (am <  0) we set am = 0.  
 
The normal of the decision surface is then:  
 

 
  

! 

! 
W = am ym

! 
X m

m=1

M

"  

 
and the offset can be found by solving for:  
 

 
  

! 

b =
1

M S

! 
W T
! 
X m " ym

m#S
$  

 
The solution can be generalized for use with non-linear decision surfaces using 
kernels. 
 
 

 


