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1 Describing Images with Edges 
 
Objects composed of planar surfaces (polyhedric objects) have straight line edges. 
Such edges are visual invariants to view angle.  For this reason, edges (straight edge 
contours) became popular as an invariant image description during the 1960s and 
1970s.  
 

 
 
Edge detection is typically organized in two steps 
1) contrast filtering 
2) edge point detection, segmentation and description.  
  

 
 
A classic contrast detection operator is the Sobel edge detector.  
Modern approaches use Gaussian Derivatives. 
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1.1 The Sobel Edge Detector 
 
Invented by Irwin Sobel in his 1964 Doctoral thesis, this edge detector was made 
famous by the classic text book of R. Duda and P. Hart published in 1972.  
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mc(i,j): detects contrast in column direction.   mr(i,j) : detects contrast in row direction  
 
Convolution (or filtering) gives an edge vector:    for n = r, c (row or column) 
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The contrast is the edge energy:    
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E(i, j) =
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The direction of maximum contrast is the phase angle   
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Sobel's edge filters can be seen as a composition of an image derivative and a 
binomial smoothing filter.  
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Attn:  The “*” is NOT vector multiplication!! This is convolution.  
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The filter 

! 

dc(i, j) = 1 0 –1[ ] is a form of image derivative in the column direction 
(along each row).  
 

The filter 
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  is a binomial smoothing filter in the row direction (along each 

column).  
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1.2 Difference Operators: Derivatives for Sampled Signals  
 
For continuous x, the derivative of the function s(x) can be defined as  a one sided 
derivative or a two sided derivative:  
 
 
One sided derivative:  
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For a sampled signal, s(n), an the equivalent is 
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A two sided (symmetric) derivative is   
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For a sampled signal,  the two sided derivative is : 
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"s(n)
"n

=
s(n+1) – s(n –1)

2
= s(n)* #1/2 0 1/2[ ]  

 
The ½ term is a scalar multiple that can be neglected or normalize away.  
The result is the edge operator used by Sobel. 
 
∆n = 1 :    
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"s(n)
"n

= s(n)* –1 0 1[ ]   
 
 
1.3 Fourier Analysis of Derivative Operators 
 
Note that a derivative is equivalent to a convolution! 
 
We can define derivation in the Fourier domain as follows:  
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and thus 
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"s(x)
"x

=F#1 # j${ }*s(x)  
 
If we can determine d(x) = F-1{–jω} then we have our derivative operator.  
If we "sample" d(x) to produce d(n) we have a sampled derivative operator.  
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Unfortunately, F-1{–jω} has an infinite duration in x, and thus d(n) is an infinite 
series.  However, the first term of d(n) is [-1 0 1]. 
 
The Fourier Transform of a discrete signal is periodic in frequency with period π.  
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The first difference filter d1(n) = [1, 0, -1] has a Fourier transform:  
 
 

! 
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D(")=1e# j"(#1) + 0e# j" 0 + (#1)e# j"(1)  
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D(")= e j" # e# j"  
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D(")= #2 j sin(")  
 
Calculation of a derivative is the same as convolution with the filter [1, 0, -1], which 
is the same as multiplication of the spectrums.  
 
 d(n) * s(n)    D(ω) · S(ω)  
 
 

  
 
The derivative used by Sobel attenuates aliasing noise in high frequencies.  
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1.4 Smoothing: The Binomial Low pass filter.  
 
Sobel uses a filter  b(m) = [1, 2, 1] to smooth.   
It is part of a family of filters generated by the binomial series.  
 
The binomial series is the series of coefficients of the polynomial:  
 

  

! 

(x + y)n = bm,n
m= 0

n

" xn#mym  

 
The coefficients can be computed as bm,n =bn(m) = [1, 1]n 

 
These are the coefficients of Pascal's Triangle.  
 
Les coefficients du suite binomial sont générés par le triangle de Pascal : 
 

n sum = 2n µ= n/2 σ2 = n/4 σ = n/2  Coefficients 
0 1 0 0 0 1 
1 2 0.5 0.25  1 1 
2 4 1 0/5  1 2 1 
3 8 1.5 0.75  1 3 3 1 
4 16 2 1 1 1 4 6 4 1 
5 32 2.5 1.25  1 5 10 10 5 1 
6 64 3 1.5  1 6 15  20 15 1 
7 128 3.5 1.75  1 7 21 35 35 21 7 1 
8 256 4 2 2  1 8 29 56 70 56 29 8 1 

 
These coefficients provide a family of low pass filters with remarkable properties.  
Notably, these are the best approximation for a Gaussian filter of finite extent.  
They also happen to have integer coefficients.  
  
  
 bn (m) =    b1(m)*n  =  [ 1,   1]*n  = n convolutions of [1,  1] 

 

Gain :  
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The Fourier transform for b2(m) = [1, 2, 1] is  
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If we normalize the gain: b2(m) = (1/4)[1, 2, 1] 
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The binomial coefficients provide a series of low pass filters with no ripples.  
In 2D, the filters provide separable filters that are nearly circularly symmetric 
 

  2-D   b2(i, j) =   
 1  2  1
 2  4  2
 1  2  1
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 1
 2
 1

    ∗  1 2 1      
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2 Describing Contrast with Edges 
Contrast is "change in image intensity".  
Classically, contrast was described by detecting "edges".  
 
2.1 Edge Detection using integer coefficient filters 
  

 
 

  

Gradient of the image is a vector:   
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Gradient Magnitude indicates edge strength   
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Gradient direction is the direction of maximum contrast  
 

As an angle:  
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As a vector:   
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We can get the direction of direction of maximum gradient, 

! 

" (i, j),  by normalizing 
the derivatives.   
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2.2 Non-maximum suppression.  
 
Contrast points C(i, j) are local maxima in   
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For each edge pixel :   
 
1) Determine the direction of maximum gradient:  
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"i = cos(# (i, j)) =
Pi (i, j)! 
$ P(i, j)
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"j = sin(# (i, j)) =
Pj (i, j)
$P(i, j)  

 
2) Compare the gradient to its neighbors in this direction.  
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Alternatively, we can consider   

! 

E(i, j) =
! 
" P(i, j)  as "evidence" for contrast at all points 
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3 The Hough Transform 
 
The Hough transform is an "optimal" statistical detector for estimating parametric 
functions from discrete samples. This method was invented for interpreting bubble 
chamber images in particle physics.  It is based on "voting" for possible parameters.  
 
This transform was invented by  
P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 
Energy Accelerators and Instrumentation, 1959 
 
It was patented in a crude form by IBM in 1962 using  y = mx+c. 
 
It was made popular by Duda and Hart :  
Duda, R. O. and P. E. Hart, "Use of the Hough Transformation to Detect Lines and 
Curves in Pictures," Comm. ACM, Vol. 15, pp. 11–15 (January, 1972) 
 
3.1 The Algorithm 
 
Consider the line equation   
  
 x cos(θ) + y sin(θ) + c = 0 
 
In the image, for each x,y (free parameters) we need to determine (c, θ) 
 
In the Hough transform, we will create a dual space in which (c, θ) are free 
parameters.  
We will estimate lines as peaks in this dual space.  To find peaks we build an 
accumulator array : h(c, θ).  
 
Let  the c be an integer c ∈  [0, D] where D is the "diagonal distance of the image.  
Let θ be an integer   θ ∈  [0, 179] 
 
Algorithm:  
 allocate a table  h(c, θ) initially set to 0.  
 For each x, y of the image 
  for  θ from 0 to 179 
   c = –x cos(θ) – ysin(θ) 
   h(c, θ) = h(c, θ) + E(x, y) 
  End 
 End 
 
The resulting table accumulates contrast.   
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Peaks in h(c, θ) correspond to line segments in the image.  
 

  =>    
 
Because we know θ(x, y), we can limit the evaluation to θ(x, y)+/- ∆θ 
 
3.2 Generalisation of the Hough Transform 
  
We can represent a circle with the equation:  
 
  (x - a)2  + (y - b)2  = r2 
 
We can use this to create a Hough space h(a, b, r) for limited ranges of r.  
  
The ranges of a and b are the possible positions of circles.  
  
Algorithm  
 
Algorithm:  
 allocate a table  h((a, b, r) initially set to 0.  
 For each x, y of the image 
  for r from rmin to rmax 
   for a from 0 to amax 
    b = –y–sqrt( r2 – (x - a)2) 
    h(a,b,r) = h(a,b,r) + E(x,y).  
   End 
  End 
 End 
  
 


