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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
V   The number of possible values for X (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
k   index for cluster, data source or GMM Mode 
K   Total number of clusters, or sources, of events 
N   Total number of sample events.  

   

! 

N = Nk
k=1

K

"  

  

! 

{
! 
X n}    A set of N Sample Observations (a training set) 

  

! 

{! y n}    A set of indicator vectors for the training samples in   

! 

{
! 
X n}  

     

! 

! y n  indicates the probability that sample    

! 

! 
X n  came from source Sk 

h(n, k) = yn(k) Indicator variables in matrix form.   
 

Expected Value:   

! 

E{X} =
1
N

Xn
n=1

N

"  

Gaussian or Normal Density:   

    

! 

N (
! 
X ; ! µ ,  ") =

1

(2#)
D
2 det(")

1
2

e– 1
2

(
! 
X – ! µ )T "–1 (

! 
X – ! µ )
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Multivariate Normal Density Function 
 
The "Central Limit Theorem" tells us that whenever the features an observation are 
the result of a sequence of N independent random events, the probability density of 
the features will tend toward a Normal or Gaussian density.  
  

 

    

! 

p(
! 
X ) = N (

! 
X ; ! µ ,") =

1

(2#)
D
2 det(")

1
2

e
–1
2
(
! 
X – ! µ )T "$1(

! 
X – ! µ )

 

 
Where the parameters   

! 

! 
µ ,  " and the mean and co-variance of the density. These are 

the first and second moments of the density. 
 
Note that we use upper case for probabilities and lower case for functions. 
Thus  P(ω) is a value, p(X) is a function. 
 

The mean is 

  

! 

! 
µ = E{

! 
X } =

E{X1}
E{X2}
...

E{XD}

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

µ1
µ2

...
µD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

and the Covariance is    

  

! 

" = E{(
! 
X – E{

! 
X })(

! 
X – E{

! 
X })T} =

#11
2 #12

2 ... #1D
2

# 21
2 # 22

2 ... # 2D
2

... ... ... ...
# D1
2 # D2

2 ... # DD
2

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

 

The Normal density can be seen as a set of co-encentric ellipses. Each ellipse 
represents a contour of equal value (or equal probability) for a density function.  

 - 
 
Ellipses for 99%, 95%, 90%, 75%, 50%, and 20%  
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Gaussian Mixture Models 
Gaussian Mixtures as  a Sum of Independent Sources 
 
We can consider a sequence of random trials as a "source" of event 
 

 
 
The central limit theorem tells us that in this case, the resulting probability can be 
described by  Normal density function:  
 
     

! 

p(
! 
X ) = N (

! 
X ; ! µ ,") 

 
Sometimes a population will result from a set of K different  sources, Sk. 
 

 
 
In this case, the probability density is better represented as a weighted sum of normal 
densities.   
 

 
    

! 

p(
! 
X ) = "k

k=1

K

# N (
! 
X ; ! µ k ,$k ) 

 
Such a sum is referred to as a Gaussian Mixture Model.  It can be used to represent 
density functions where the Central Limit theorem does not apply.  
 
It can also be used to discover a set of subclasses within a global class.  
 
Each normal density is considered to be produced from a different source. We can 
see the coefficients {αn} as the relative frequencies (probabilities) for a set of 
independent "sources" , Sk, for events. The αk coefficients represent the relative 
probability that an event came from a source Sk.  
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For this to be a probability, we must assure that  

! 

"k
k=1

K

# =1  

 
Our problem is to discover the source for each sample, and to estimate the mean and 
covariance   

! 

( ! µ k ,"k ) for each source.   
 
We will look at two possible algorithms for this: K-Means Clustering, and 
Expectation Maximization.   
 
In both cases, the algorithm will iteratively construct a table, h(n,k) that assigns each 
sample to one of K clusters or sources.   
 
For K-Means, this will be a hard assignment,  
with h(n, k) = 1 if observation   

! 

! 
X n  is assigned to cluster  Sk. and 0 otherwise.   

 
This can be seen as equivalent to the indicator variable yn(k) seen in the last course.  
 

 
  

! 

h(n, k) =
! y n(k) =

1 if sample 
! 
X n " Sk

0 Otherwise

# 
$ 
% 

 

 
 yn(k) = h(n, k) = 1 if E is assigned to cluster k, 0 otherwise.  
 
In the case of EM, this will be a soft assignment, in which h(n,k) represents the 
probability that sample   

! 

! 
X n  comes from source (or cluster), Sk.  

 
 

! 

h(n,k) = P(En " Sk )  
 
In either case we must initialize the estimated clusters:  
 

This can be initialized with,   

! 

! 
µ k
1 = k ! µ 0

1
, 

! 

"k
1 = I   or any other convenient value.  

 
K-means is sensitive to the starting point and can converge to a local minimum that is 
not the best estimate. EM is not sensititve and will converge to the global best 
estimate 
 
Because K-Means and EM operate on an unlabeled training set, they can be used to 
discover classes in an unlabeled set of data. This is called Unsupervised Learning.    
They can also be used to estimate a multimodal density for a single class.  
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K-Means Clustering 
 
Assume a set of N sample observations   

! 

{
! 
X n} , with each observation drawn from one 

of K clusters Sk.  Our problem is to discover an assignment table h(n, k) that assigns 
each observation,   

! 

! 
X n  in the sample set to the “best” cluster, Sk.  

 
The assignment table is equivalent to the indicator variable   

! 

! y n(k) seen in the last 
course.  
 

 
  

! 

h(n, k) =
! y n(k) =

1 if sample 
! 
X n " Sk

0 Otherwise

# 
$ 
% 

 

 
Given an estimate of the mean,   

! 

! 
µ k , and covariance 

! 

"k  for each cluster, Sk. we can 
use the Mahalanobis Distance to determine the best cluster.  
 
For each cluster we can then refine the estimate of the mean,   

! 

! 
µ k , and covariance 

! 

"k .  
 
This suggests an iterative process composed of two steps:  
 
1) Expectation:    For each sample,   

! 

! 
X n , determine the most likely cluster Sk. using the 

distance to the current estimate of the mean,   

! 

! 
µ k , and covariance 

! 

"k .  
 
2) Maximization:  For each cluster re-calcuate the mean,   

! 

! 
µ k , and covariance 

! 

"k  using 
sample assignments in h(n,k).  
 

We can initialize the process to any value. For example,   

! 

! 
µ k
(0) = k ! µ 0 ,   

! 

"k
(0) = I    

 
However,  it IS possible for K-means to be stuck in a local minimum, and the closer 
we start to the best values, the faster the process converges. 
 
We will seek to minimize a  quality metric:  
For K-Means this is the sum of the mahalanobis distances.  
 

  
  

! 

Q(i) =
n=1

N

" h(i) (n,k)
k=1

K

" (
! 
X n #

! 
µ k
(i) )T $k

(i)#1(
! 
X n #

! 
µ k
(i) ) 

 
Initially h(o)(n,k) = 0, i=0.    
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We can stop the process after a fixed number of iterations, or when the assignment 
table does not change or when Q(i) does not change.  
  
Expectation:   
 
 i←i+1 

 
  

! 

"n =1, N :  h(i) (n,k)#
1 if k = arg$min

k
(
! 
X n $

! 
µ k )T %k

$1(
! 
X n $

! 
µ k ){ }

0 Otherwise

& 
' 
( 

) ( 
 

 
Maximization 

Mean:    

  

! 

µk
(i) =

h(i) (n,k) "
! 
X n

n=1

N

#

h(i) (n,k)
n=1

N

#
 

 

Covariance:   

  

! 

"k
(i) =

h(i) (n,k) # (
! 
X n $

! 
µ k )

2

n=1

N

%

h(i) (n,k)
n=1

N

%
 

 
The process stops after a fixed number of cycles, or when the sample assignment 
does not change or the quality metric does not change.  
 
Each source can be interpreted as a separate class or as a mode in a Gaussian Mixture 
model, depending on the application. 
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The Expectation Maximization Algorithm (EM) 
 
As before, assume a set of N sample observations   

! 

{
! 
X n} , with each observation drawn 

from one of K sources Sk.  Our problem is to discover an assignment table h(n, k) that 
assigns each observation,   

! 

! 
X n  in the sample set to the “best” cluster, Sk.  For EM this 

will be a probability.   
 
EM iteratively estimates the probability for the assignment of each observation to 
each source.    
 
Expectation Maximization has many uses, including estimating the density functions 
for a Hidden Markov Model (HMM) as well as for estimating the parameters for a 
Gaussian Mixture model.  
 
For a Gaussian Mixture model, a probability density is represented as a weighted sum 
of normal densities.   
 

 
    

! 

p(
! 
X ) = "k

k=1

K

# N (
! 
X ; ! µ k ,$k ) 

 
It is sometimes convenient to group the parameters for each source into a single 
vector:  
 
   

! 

! v k = ("k ,
! 
µ k ,#k )  

 
The complete set of parameters is a vector with K·P coefficients. 
For a feature vector of D dimensions,   

! 

! 
" k   has P = 1 + D + D(D+1)/2  coefficients.  

 
To estimate   

! 

{"k ,
! 
µ k ,#k} we need the assignment of samples to source, h(n,k). 

To estimate h(n,k) we need the parameters   

! 

{"k ,
! 
µ k ,#k} 

 
This leads to an iterative two-step process in which we alternately estimate  h(n,k).  
and then   

! 

{"k ,
! 
µ k ,#k}.  

 
The EM algorithms constructs a table, h(m, n)  
Unlike  K-Means, h(n,k) will contain probabilities. 
 
 

! 

h(n,k) = P(En " Sk )  
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Initialisation:  
 Choose K (the number of sources). Use domain knowledge if possible.  
 set i=0.  
 Form an initial estimate for    

! 

! v (0) = ("n
(0), ! µ n

(0) ,#n
(0) ) for k = 1 to K.  

This can be initialiZed with 

! 

"k
(0) =

1
K ,    

! 

! 
µ k
(0) = k ! µ 0 ,  

! 

"k
(0) = I    

or with any reasonable first estimation. The closer the initial estimate, the faster the 
algorithm converges. Domain knowledge is useful here.  
 
Expectation step (E) 
 
let  i ← i+1 
 
Calculate the table  h(i)(n,k) using the training data and estimated parameters. 
 
   

! 

h(n,k)(i) = p((hn = k) | {Xn},
! 
" (i#1) )  

 
which gives :  
 

 

    

! 

h(i) (n,k)" #k
(i$1)N (

! 
X n,
! 
µ k
(i$1) ,%k

(i$1) )

# j
(i$1)N (

! 
X n,
! 
µ j
(i$1) ,% j

(i$1) )
j=1

K

&
 

 
Maximization Step (M) 
 Estimate the parameters   

! 

! 
" (i)  using 

! 

h(i) (n,k) 
 
M: (Maximisation)  
 

 

! 

"k
(i) #

1
N

h(i) (n,k)
n=1

N

$  

 

 

  

! 

! 
µ k
(i) "

1

h(i) (n,k)
n=1

N

#
h(i) (n,k)

n=1

N

#
! 
X n 

 

 

  

! 

"k
(i) #

1

h(i) (n,k)
n=1

N

$
h(i) (n,k)

n=1

N

$ (
! 
X n %

! 
µ k
(i) )(
! 
X n %

! 
µ k
(i) )T  
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Convergence Criteria 
 
The quality metric is the Log-likelihood of the probability of obtaining the data given 
the parameters.  
 

 
    

! 

Q(i) = ln{p({
! 
X n} |

! 
" (i) )} = ln

n=1

N

# $ j
(i)N (

! 
X n |µ j

(i),% j
(i) )

j=1

K

#
& 
' 
( 

) ( 

* 
+ 
( 

, ( 
 

 
It can be shown that, for EM, the log likelihood will converge to a stable maximum.  
The change in Q will monotonically decrease.  This can be used to define a halting 
condition:   
 
 If   ∆Q = Q(i) – Q(i-1) is less than a threshold, halt.  
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Log Likelihood for a Parameter Vector 
 
The Likelihood of a parameter vector,   

! 

! v , given a training set, {Xn} is defined as 
 

 
  

! 

L( ! " | {Xn}) = P({Xn} |
! 
" ) = P(Xn |

! 
" )

n=1

N

#  

 
For normal density functions,   

! 

! v = ! µ ,"  
and 

    

! 

P(
! 
X | ! v ) = N (

! 
X ; ! µ ,  ") =

1

(2#)
D
2 det(")

1
2

e– 1
2

(
! 
X – ! µ )T "–1 (

! 
X – ! µ )

 

 
it is more convenient to work with the Log-Likelihood 
 

 
    

! 

L(! v ) = Log{L(! v | {Xn}) = Log{P({Xn} |
! v )} = Log{P(Xn |

! v )}
m=1

M

"  
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Maximum Likelihood Estimators  
 
A Maximum Likelihood Estimator (MLE) can be used to derive the most likely 
values for the parameters a Gaussian Density.  
 
To illustrate, consider that case of Univariate Gaussian Density function (D=1).  
 
For D=1, the parameter vector for N(X; µ,σ)  is   

! 

! v  =  (µ, σ)  
 
To estimate µ, σ  using a MLE, define the log likelihood.   
 

 
    

! 

L(! v ) = Log{P(Xn |
! v )} = – 1

2
Log{2"# 2} – 1

2# 2 (Xn $µ)2  

 
The maximum of the Log-Likelihood occurs when the derivative is zero.  
 

 
  

! 

"l(! v )
"µ

=
1
# 2 (Xn – µ) = 0

n=1

N

$  

 

 
  

! 

"l(! v )
"# 2 = – 1

2# 2 +
(Xn $µ)2

2# 4

% 

& 
' 

( 

) 
* 

n=1

N

+ = 0 

 
We can formulate this as a gradient 
 

 

    

! 

"µ ,# L(! v ) =

$l(! v )
$µ
$l(! v )
$# 2

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 

=

1
# 2 (Xn – µ)

n=1

N

+

– 1
2# 2 +

(Xn ,µ)2

2# 4

% 

& 
' 

( 

) 
* 

n=1

N

+

% 

& 

' 
' 
' 
' 

( 

) 

* 
* 
* 
* 

= 0  

 
and with a little algebra discover that 
 

 

! 

ˆ µ =
1
N

Xn
n=1

N

"  

 

  

! 

ˆ " 2 =
1
N

(Xn # ˆ µ )2

n=1

N

$  
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 (here is the algebra).  
 

 
  

! 

"l(! v )
"µ

=
1
# 2 (Xn – ˆ µ ) = 0

n=1

N

$  

 

! 

1
" 2 Xn

n=1

N

# =
1
" 2 ˆ µ 

n=1

N

#  

 

! 

Xn
n=1

N

" = ˆ µ = N ˆ µ 
n=1

N

"  

 

 

! 

ˆ µ =
1
N

Xn
n=1

N

"  

 
In the same way 
 

 
  

! 

"l(! v )
"# 2 = – 1

2 ˆ # 2
+

(Xn $ ˆ µ )2

2 ˆ # 4
% 

& 
' 

( 

) 
* 

n=1

N

+ = 0 

 

 

! 

– 1
2 ˆ " 2

+
(Xn # ˆ µ )2

2 ˆ " 4
$ 

% 
& 

' 

( 
) 

n=1

N

* = 0  

 

 

! 

1
2 ˆ " 2n=1

N

# =
(Xn $ ˆ µ )2

2 ˆ " 4n=1

N

#  

 

  

! 

1
2 ˆ " 2

1=
n=1

N

# 1
2 ˆ " 2

(Xn $ ˆ µ )2

ˆ " 2n=1

N

#  

 

  

! 

1=
n=1

N

" (Xn # ˆ µ )2

ˆ $ 2n=1

N

"  

 

 

! 

N =
1
ˆ " 2

(Xn # ˆ µ )2

n=1

N

$   
 

  

! 

ˆ " 2 =
1
N

(Xn # ˆ µ )2

n=1

N

$  

 
The same can be done for D > 1, however the algebra is a bit more complex 
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Maximum Likelihood for a Multivariate Density Function 
 
The principle is the same for D >1, however the equations are more complicated.  
 
   

! 

! v = (", ! µ ,#)  
 

 
    

! 

L(! v ) = Log{P(
" 
X n |
! v )} = – 1

2
Log{(2")D det(#)}$ 1

2
(
! 
X n $µ)T #$1(

! 
X n $µ) 

   

 
  

! 

ˆ v = max
v

{ P(
! 
X n |

n=1

N

" ! v )} = max
v

{ Log(P(
! 
X n | ! v ))

n=1

N

# }  

 
The most likely 

! 

ˆ v  may be found when the gradient of 

! 

ˆ v  is null.  
  

 ∇ν L(  

! 

! v )  = ∇ν 
  

! 

Log(P(
! 
X n |
! v ))

n=1

N

"  = 0 

 ∇ν  is the gradient operator: 

! 

"v =

#
#v1
#
#v2
...
#
#vD

$ 

% 

& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 

 

 

 

    

! 

"vL(! v ) =

#
#v1
#
#v2
...
#
#vD

$ 

% 

& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 

L(! v ) =

#L(! v )
#v1
#L(! v )
#v2
...

#L(! v )
#vD

$ 

% 

& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 

 

 
Setting   

! 

"vl(
! v )=0 gives the classic formulae :  

 

 
  

! 

ˆ µ =
1
M

! 
X m

m=1

M

"  
  

! 

ˆ " =
1
M

(
! 
X m – ˆ µ )

m=1

M

# (
! 
X m – ˆ µ )T  

 
Notice that the MLE for the covariance is biased. Why? 


