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1.  Image Description Using Gaussian Derivatives 
1.1. 2D Gaussian functions 

2D Gaussian Function:     
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#
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Separability:      
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Scale property:  

! 

G(x,y, 2") =G(x,y," )#G(x,y,") 
 
Derivatives:   

! 

"G(x, y,# )
"x

= – x
# 2 G(x, y,# ) =Gx (x, y,# ) 
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# 2 G(x, y,# ) =Gy(x, y,# )  
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" 2G(x, y,# )
"x2
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# 4 G(x, y,# ) =Gxx (x, y,# ) 
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" 2G(x, y,# )
"x"y

=
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# 4 G(x, y,# ) =Gxy(x, y,# ) 

   

! 

" 3G(x, y,# )
"x3

=
x3 $ x# 2

# 6 G(x, y,# ) =Gxxx (x, y,# ) 

 

    
   Gx(x,y,σ)      Gy(x,y,σ)      Gxx(x,y,σ)      Gxy(x,y,σ) 

    
   Gyy(x,y,σ)      Gxxx(x,y,σ)      Gxxy(x,y,σ)      Gxyy(x,y,σ) 
These are sometimes referred to as Gaussian receptive fields. 
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1.2. The Laplacian of the Gaussian and the DoG 
    
The Laplacian of Gaussian is a scalar value:  
 
  

! 

"2G(x, y,# ) =Gxx (x, y,# )+Gyy(x, y,# ) =
$G(x, y,# )

$#
  

 
Because it is the derivative with respect to s, it can be approximated by a difference 
of Gaussians  (DoG) :  
 
  

! 

"2G(x, y,# ) $ G(x, y,#1) –G(x, y,# 2 ) 
 
This is called a Difference of Gaussian and typically requires   σ1≥ 1.4 σ2 
 
It is common to use:  

! 

"2G(x, y,# ) $ G(x, y, 2# )%G(x, y,# ) 
Because of the scale property :   

! 

G(x, y, 2" ) # G(x, y," )*G(x, y," )  
 
We can easily compute a DoG as  

! 

"2G(x, y,# ) $ G(x, y,# )*G(x, y,# )%G(x, y,# ) 
 
1.3.  A vector for describing local appearance.  
 
Derivatives of the Gaussian function have been found to be very useful as local 
image features.   Chief among these are invariance to affine transformations.  
 
To describe the local appearance in an image p(i, j), we “project” a local  
neighborhood (window) onto a set of feature functions, Gk(x,y,σ).  
These are referred to as "local image description functions" or "Local features".  
 
We can use these functions to create a basis set of receptive fields for appearance 
 
For example:  
 
   

! 

! 
G " = Gk

" = (Gx ,Gy,Gxx ,Gyy ,Gxy ) 
  
Note that you must specify σ. σ=1 is not necessarily best.  
 
Each function, Gk(x,y,σ) gives an image "feature", ak, describing appearance in the 
neighborhood of the image position p(i, j). (let x and y be integers ).  
 

 

! 

ak (i, j) =
y="R

R

#
x="R

R

# p(i " x, j " y)Gk
$ (x, y) 
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Projection of the image neighborhood p(i,j) onto this set of functions gives a  
 
 

"feature" vector for appearance, 

  

! 

! 
A (i, j) =

a1
a2
...
aK

" 

# 

$ 
$ 
$ 
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% 

& 

' 
' 
' 
' 

 at each pixel p(i,j).  

 
We can use this feature vector much as we used color features  - to detect objects 
based on their appearance.  
 

2. Gaussian digital filters 
 
Computers represent images as a 2D sampled digitized signals.  
Because images are sampled, processing requires convolution with a sampled filter.  
 
To obtain a digital Gaussian filter we must perform two operations: 
1) Sample the spatial axis x, y at a rate of ∆x, and ∆y 
2) Limit the spatial extent with a window WN(x ,y)  
 
 

! 

G(x, y;" )#WN (i, j)G(i$x, j$y;" ) 
 
Thus there are 2 parameters to Control:  
1) Sample Distance ∆x 
2) Window size, N = 2R+1 
 
These are both determined by “scale” parameter of the Gaussian: σ  
 
Sample Distance:  Easy answer – Let ∆x = 1 and control σ.  
This is valid, provided that  σ ≥ ∆x   or that σ/∆x ≤ 1 
 
Window Size:   R ≥ 3σ  Thus  N ≥  6σ+1 
 
Note that R =  3σ is a lower limit that can leave some windowing noise in the 
function. 
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2.1. Sampling  (Optional advanced subject) 
 
Let us consider the case of a 1-D Gaussian.  
 

  

! 

G(x," ) = e
#
x2

2" 2  
 
To sample we replace x with n∆x.  
 

 

! 

G(n"x,# ) = e
$
(n"x)2

2# 2  
 
This is modeled as multiplication by an infinite pulse chain.  
 

 
where:  

 

! 

"#x (x) = "#x (n#x)
n=$%

%

&  

So that  
 

 

! 

G(n) =G(x) " #x$#x (x) = G(x) "$#x (x % n#x)
n=%&

&

'  

 
Multiplication in Space is a Convolution in Frequency.  The Fourier transform of the 
sampling function is: 
 

 

! 

F("#x (x)) = #x " (nf#x )
n=$%

%

&   

 
The ideal sample function is a  

X(f)

f
–fe 0 fe 2fe–2fe  

 
Where f∆x is the "Nyquist" frequency  

! 

f"x =
1
2"x
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In the Frequency domain, sampling converts the Fourier Transform of the Gaussian 
into an  infinite sequence of Gaussians.   
 
Transform of the Gaussian is  

 

! 

F{e
"
x2

2# 2 } =G($,# ) = 2% # e
"

1
2
# 2$ 2

 
 
Sampling creates multiple copies intervals of G(ω) at intervals of f∆x = ½∆x 
 
The tail of the Gaussian beyond f∆x = ½∆x   will be converted to noise.  
We need to insure that the integral from fn to infinite is small.  
 
Rule of thumb: assure that  σ ≥ ∆x 
 
We can define the sample size to be ∆x=1.   This gives a sampled function 
 

 

! 

G(n," ) = e
#
n2

2" 2  
 
 
2.2. Setting the Window Size (Optional advanced subject) 
 
To represent this in a computer we must also specify the spatial extent (number of 
samples), N of the filter.   We set N = 2R + 1 where R is the "radius" of the function.  
 
This gives us 2 parameters to control:  
 
 1) The scale of the Gaussian σ/∆x 
 2) the size of the support N = 2R+1 
 
Truncating a function to a finite support is equivalent to multiply by a window WN(n) 
 
When we limit G(x,σ) to a finite support, we multiply by a window 
  

 G(n, σ) = G(n, σ) · wN(n) where 

! 

wN (n) =
1     for - R " n " R
0    otherwise        
# 
$ 
% 

 

 
(note N = 2R+1). Multiplying by a finite window is equivalent to convolving with the 
Fourier transform of the finite window:  
 
 

! 

F{G(n," ) # wN (n)} =G($," ) *WN ($) 
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where    

! 

WN (") =
sin("N 2)
sin(" 2)

     and     

! 

G(",# ) = 2$  # e
%

1
2
# 2" 2

 

 

    
 
For N <  7, the ripples in WN(w) dominate the spectrum and corrupt the resulting 
Gaussian. 
 
At N=7 the effect is tolerable but significant.  
 
At N≥ 9 the effect becomes minimal 
  
In addition for  σ/∆x < 1, the phenomenon of aliasing folds a significant amount of 
energy at the Nyquist frequency, corrupting the quality (and the invariance) of the 
Gaussian function.  
 
Finally, it is necessary to assure that the "gain" of the Gaussian filter is 1. This can be 
assured by normalizing so that the sum of the coefficients is 1. If the Gaussian were 
infinite in extent, then 
 

 

! 

e
"
x2

2# 2

x="$

$

% = 2&#    

 
However, because we truncate the Gaussian to an size n ±R, we must calculate the 
sum of the coefficients, A:  
 

  

! 

A = e
"
n2

2# 2

n=–R

R

$  

 
The Gaussian filter is thus normalized by dividing by A to give a unit gain Receptive 
Field.  

 

! 

G(n," ) =
1
A
e
#
n2

2" 2
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2.3. 1-D Sampled Gaussian Derivative Filters 
 
The sampled Gaussian and its derivatives are:  

 

! 

G(n," ) = e
#
n 2

2" 2  
 

 

! 

Gx (n," ) = – n
" 2 G(n," ) = – n

" 2 e
#
n2

2" 2
  

 

 

! 

Gxx (n," ) =
n2 #" 2

" 4 G(n," ) =
n2 #" 2

" 4 e
#
n2

2" 2  

  

 

! 

Gxxx (n," ) = – n
3 # n" 2

" 6 G(n," ) = – n
3 # n" 2

" 6 e
#
n2

2" 2  

 
Note that there is only one parameter: σ. This determines the limit of the resolution 
for the position of a contrast point.  
 
Note the scale parameter σ determines the "resolution" of the derivatives.  
You MUST specify σ. The smallest σ is not always the best.  
Many computer vision algorithms give unpredictable results because the researchers 
forget to specify the scale σ at which the algorithm was validated. 
 
2.4. The 2D Sampled Gaussian Function  
 

The 2D Gaussian Receptive Field is : 

! 

G(i, j," ) =
1
B
WN (i, j) # e

$
(i2+ j 2 )
2" 2  

 
where 

 

! 

wN (i, j) =
1     for - R " i " R and – R " j" R
0    otherwise                                 
# 
$ 
% 

 

 
 Finite window, wN(i, j)  has  N2 = (2R+1)2 coefficients 
 
 Typically:   for R should be ≥ 3σ . Recommend R=4σ  
 

 The normalization factor  

! 

B =
x="R

R

# e
"
(i2+ j 2 )
2$ 2

y="R

R

# % 2&$  
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2.5. Using the Gaussian to compute image derivatives 
 
For an image p(i, j), the derivative can be approximated by convolution with the 
derivatives of  a Gaussian.   
 
 

! 

G(" )*#p(i, j)
#x

=G(" )* #
#x
* p(i, j) =

#
#x
*G(" )* p(i, j) =Gx (i, j;" )* p(i, j)  

 
Where  

! 

G(" ) =G(i, j," ). 
Thus we can approximate an image derivative as 

! 

Px (i, j) " Gx *P(i, j) 
However to compute Gx, it is NECESSARY to specify σ.   
Small σ is not necessarily best.   Information exists at ALL values of σ. 
  
 

! 

px (i, j," ) # Gx (" )* p(i, j)  
 
Similarly:  
 

! 

py(i, j," ) # Gy(" )* p(i, j) 
 

! 

pxx (i, j," ) # Gxx (" )* p(i, j) 
 

! 

pxy(i, j," ) # Gxy(" )* p(i, j) 
 

! 

pyy(i, j," ) # Gyy(" )* p(i, j) 
 
The Gradient of the image   

! 

! 
" p(i, j) is calculated by   

! 

! 
" G(# )* p(i, j)    

 

where  
  

! 

! 
" G(# ) =

Gx (# )
Gy(# )
$ 

% 
& 

' 

( 
)     This gives:  

 

Gradient: 
  

! 

! 
" p(i, j,# ) =

px (i, j,# )
py(i, j,# )
$ 

% 
& 

' 

( 
) *
! 
" G(# )* p(i, j) =

Gx (# )* p(i, j)
Gy(# )* p(i, j)
$ 

% 
& 

' 

( 
)  

  
Laplacien:  
 

! 

"2p(i, j,# ) ="2G(# )* p(i, j) = pxx (i, j,# )+pyy(i, j,# ) $ Gxx (# )* p(i, j)+Gyy(# )* p(i, j) 
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2.6. Steerability of Gaussian Derivatives.  
 
It is possible to synthesize an oriented derivative at any point as a weighted sum of 
derivatives in perpendicular directions. The weights are given by sine and cosine 
functions. The weights are given by sine and cosine functions.  
 
 

! 

Gx
" (x, y,# ) = cos(" ) $Gx (x, y,# )+  sin(") $Gy(x, y,# ) 

 
Higher order derivatives can also be steered.  
 
Thus:  
 
1st order 

! 

px
" (i, j,# ) =Cos(" )px (i, j,# )+ Sin(" )py(i, j,# ) 

2nd order 

! 

pxx
" (i, j,# ) =Cos(" )2 pxx (i, j,# )+ 2Cos(" )Sin(")pxy(i, j,# )+ Sin(")

2 pyy(i, j,# ) 
3rd order 
 

! 

pxxx
" (i, j,# ) =Cos(")3 pxxx (i, j,# )+ 3 $Cos(" )

2Sin(")pxxy(i, j,# )+ 3 $Cos(")Sin(" )
2 pxyy(i, j,# )+ Sin(" )

3 pyyy(i, j,# )
 
By steering the derivatives to the local orientation, we obtain an "invariant" measure 
of local contrast. We can also "steer" in scale to obtain invariance to size.  
 
Note, we can NOT steer the mixed derivatives, i.e   pxy(i, j, σ) 
 
2.7. Intrinsic Orientation:  
For each pixel, one can calculate the orientation of maximal gradient. This orientation 
is equivariant with rotation. One can use this as an "intrinsic" orientation to normalize 
the receptive fields at any point in the image. 
 

Local orientation: 

! 

"i(x,y,# ) = Tan$1(
Gy % P(x,y,#)
Gx % P(x,y,#)

)  

 
Note that local orientation depends on σ! 
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3. Image Scale Space  
  

y

x
x

Sca le
(Resolution)

 
 
Scale space represents a 2D image in a 3D space, where the 3rd dimension is 
"resolution" or scale.   This can be used to make image descriptions invariant to 
changes in size.  
 
3.1. Continuous Scale Case.  
 
 Let p(x, y) be the image.  
 Let  G(x, y, σ) by a Gaussian function of scale σ=2s/2 
 
The image Scale Space is a 3D continuous space p(x, y, s) 
 
 p(x, y, s)  =  p(x,y)* G(x, y, 2s)  
 
Note that the scale (s) axis is logarithmic. s = Log2(σ)  
 
3.2. Image Pyramids - Discrete Scale Space   
 
Let p(i,j) be image of size N x N pixels.  
We can create a discrete scale space by convolving  p(i,j) with a set of Gaussians 
filters of increasing σ.   
 
 p(i, j, k)  =  p(i, j)* G(i, y, σk) 
 
Scale invariance demands that the scale values, σk, should be from an exponential 
sequence.  For example, we can sample the scale axis with a step size of ∆σ = 2  
In this case:  
 
  σk = 2k 
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Because the Gaussian, G(x, y, σk), is a low pass filter, as σk  grows it becomes 
possible to resample the image with a larger step size without loss of information. 
Such resampling has the benefit of assuring an invariance of the impulse response of 
each image. The sample size  ∆xk,  ∆yk can grow exactly as σk. 
 
 p(i, j, k) = p(x ∆xk, y ∆xk, k) 
 
What sample size is possible?  It is possible to show that the sample step must be 
smaller than σ.     For example, let   ∆x = 2σ    
 
If we choose k such that ∆xk = 2k,  then  σk = 2k for k = 0 to Log2(M) 
 
This defines a resampled scale space (a pyramid), with a scale step of one "octave".  
 
 p(i, j, k) = p(x ∆xk, y ∆xk, k)     such that ∆xk = 2k  and σk = 2k 
 
 This can be drawn as a set of images:   
 
             k= 2 - k=3, σ=8 
         k = 1  σ= 4   
         σ = 2  N/8    
  k = 0             
  σ = 1     N/4         
                 
                 
                 
  N               
 
 
Let the image have M=NxN pixels.  The total number of pixels is  
 
 P = M+M/4+M/8+M/16+M/64+...= 1.333... Pixels.  
 
When σ/∆x is held constant, every “level” k of p(i, j, k) has the same impulse 
response. 
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In fact, a step size of σk = 2k is too large. We need at least ∆σk = 21/2 
A more reasonable pyramid is given by  
 
 σk = 2(k+1)/2 and ∆x =2k/2

  

 
Example:  
 

 
 
This involves some tricky resampling, but gives a pyarmid of size  
 
 P = M+M/2+M/4+M/8+..... = 2M samples,  
 
 
3.3. Laplacian Profile 
 
At every image point, the Laplacian profile is the Laplacian of the image computed 
over a continuous (exponential) range of scales.  
 
 L(x, y, s) = P(x, y)* ∇2G(x, y, 2s) 
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The  Laplacian profile is invariant to rotation and translation and equivariant to 
changes in scale. Since scale is proportional to distance, the profile is invariant to 
viewing distance. 
 

 
 
A change in viewing distance at x, y shifts the function L(x,y,s) in s.  
The function remains the same. Thus the maximum is a local invariant.  
 
The "intrinsic" scale at a point (x, y) is  

! 

" i = 2si  
 
such that   

! 

si = arg"max
s

{L(x, y, s)}  

  
  
Examples:  

 
 

 

 

 

 
 
The scale of the maximal Laplacian is an invariant at ALL image points.  
 


