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Notation 
x   a variable 
X   a  random variable (unpredictable value)   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class (tribe) k 
k   Class index 
K   Total number of classes 

! 

"k    The fact that E  ∈ Ck 

! 

ˆ " k    The decision (estimation) that E  ∈ Ck 
p(ωk) =p(E ∈Ck) Probability that the observation E is a member of the class k. 
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples.  

   

! 

M = Mk
k=1

K

"  

! 

{Xm}  

! 

{ym} M Training samples labeled with an indicator variable.  
 
Two class indicator:  ym =+1 for target class and ym =-1 for other 
 
Indicators for K classes   

! 

! y m
T = ym

1 … ym
K( )   

 where 

! 

ym
k =

1 if sample m is class k
0                    otherwise
" 
# 
$ 

  

 
K class indicator, soft margin:   

! 

! y m
T = ym

1 … ym
K( )   

 where 

! 

ym
k  is the likelihood that sample m is class k  (as with EM).  
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Linear Classifiers as Pattern Detectors 
 
Linear classifiers are widely used to define pattern “detectors”.  This is used in 
computer vision, for example to detect faces, road signs, publicity logos, or other 
patterns of interest.  
 
In the case of pattern detectors,  K=2.  
 
Class k=1:  The target pattern.  
Class k=2:   Everything else.  
 
The detector is learned form a set of training data training composed of M sample 
observations  

! 

{
! 
X m}  where each sample observation is labeled with an indicator  

variable  
 ym = +1 for examples of the target pattern (class 1) 
 ym = –1 for all other examples.  
 
Our goal is to build a linear classifier (a hyper-plane) that provides a best separation 
of class 1 from class 2.  
 
A hyperplane is a set of points such that  
 
 

! 

w1x1 +w2x2 + ...+wDxD + B = 0  
 
This can be written:    

! 

! 
W T
! 
X + B = 0 

 
The decision rule is  IF   

! 

! 
W T
! 
X + B > 0 THEN E ∈ C1 else E ∉ C1 

 
We can use B as an adjustable gain  (a bias) that sets the sensitivity of the detector.  

Ax1  + Bx2  + C  = 0

Ax1  + Bx2  + C  > 0

Ax1  + Bx2  + C  < 0

Class 1

Class 2
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Note that  

  

! 

! 
W =

w1

w2

"
wD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

  is the normal to the hyperplane.   

 
When   

! 

! 
W  is normalized to unit length, ||  

! 

! 
W || = 1, then 

 
    

! 

B = "
! 

W T
! 
X  is the perpendicular distance to the origin for a hyperplane that 

includes the point   

! 

! 
X   

 

 if  || W 
→

 || ≠ 1  then we can normalize with 
  

! 

! 
" W =

! 
W 
||
! 

W ||
 and 

  

! 

" B =
B

||
! 

W ||
 

  
 
A variety of techniques exist to calculate the plane. The best choice can depend on 
the nature of the pattern class as well as the nature of the non-class data.  
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ROC Curves 
 
Two-class linear classifiers are practical for many problems.  Among other uses, they 
provide the optimal solution to many signal detection problems in communications 
theories.  In the case of radio communications, the noise is typically additive, 
Gaussian and independent of the signal, and the Bayesian Classifier reduces to a 
linear classifier.  
 
Historically two class linear classifiers have been used to demonstrate optimality for 
some signal detection methods. The quality metric that is used is the Receiver 
Operating Characteristic curve. This curve should be used to describe or compare any 
method for signal or pattern detection.  
 
   

! 

g(
! 
X ) =

" 
W T "

! 
X + B  

  
B is a Bias term that can be swept through a range of values.  
We can bias the classifier to one or the other class by adjusting B.  
Changing B changes the ratio of true positive detection to false detections.  
This is illustrated by the Receiver Operating Characteristics (ROC) curve.  
 
The ROC plots True Positive Rate (TPR) against False Positive Rate (FNR) as a 
function of B for the training data   

! 

{
! 
X m} , 

! 

{ym}. 
 
Les us define a detection as either Positive (P) or Negative (N) 
 
 IF   

! 

! 
W T
! 
X m + B > 0  THEN P else N 

 
The detection can be TRUE (T) or FALSE (F) depending on the indicator ym 

 
 IF   

! 

ym " (
! 

W T
! 
X m + B) > 0  THEN T else F 

 
Combining these two values, any detection can be a True Positive (TP), False 
Positive (FP), True Negative (TN) or False Negative (FN).  
 
For the M samples of the training data   

! 

{
! 
X m} , 

! 

{ym} let us define:  
#P as the number of Positives, 
#N as the number of Negatives, 
#T as the number of True and  
#F as the number of False,  
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From this we can define 
 
#TP as the number of True Positives,  
#FP as the number of False Positives,  
#TN as the number of True Negative,  
#FN as the number of False Negatives.  
 
Note that #P = #TP + #FN 
And #N = #FP+ #TN 
 
The True Positive Rate (TPR) is 

! 

TPR =
#TP
#P

=
#TP

#TP+#FN
 

 
The False Positive Rate (FPR) is 

! 

FPR =
#FP
#N

=
#FP

#FP+#TN
 

 
The ROC plots the TPR against the FPR as B is swept through a range of values.  
 

  
 
When B is large, all the samples are detected as N, and both the TPR and FPR are 0.  
As B decreases both the TPR and FPR increase. Normally TPR is larger than FPR for 
any B.  If TPR and FPR are equal, then the detector is no better than chance.  
 
The more the curve approaches the upper left corner the better the detector.  
The ROC is a powerful descriptor for the “goodness” of a linear classifier.  
For a target class C1 a Positive (P) detection is the decision that E ∈ C1 

    a Negative (N) detection is the decision that  E ∈ C2 

 
    

! 

ym " (
! 

W T
! 
X m + B) > 0  

 T  F 
P True Positive (TP) False Positive (FP)   

! 

! 
W T
! 
X m + B > 0  

N False Negative (FN) True Negative (TN) 
 



Linear Discriminate Functions Lesson 18 

 18-7 

Linear Discriminant Functions 
 
In lesson 17 we saw that the classification function in a Bayesian Classifier can be 
decomposed into two parts:  a decision function – d() and a discrimination function – 
gk():  
  
    

! 

ˆ " k = d(! g (
! 
X ))  

 
Quadratic discrimination functions can be derived directly from maximizing the 
probability of p(ωk | X) 
 

 

  

! 

! g (
" 
X ) =

g1(
" 
X )

g2(
" 
X )
...

gK (
" 
X )

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

    A set of discriminate functions : RD → RK 

 d() :    a decision function    RK → {ωK} 
  
We derived the canonical form for the discriminate function.  
 

  

! 

gk (
! 
X ) =

! 
X T Dk

! 
X +
! 

W k
T ! X + bk  

 
where:     

! 

Dk =

! 

"
1
2
#k
"1 

       

! 

! 
W k = "2#k

"1 ! µ k  
and    bk = 

  

! 

"
1
2
! 
µ k

T#k
"1 ! µ k " Log{det(#k )}+ Log{p($k )} 

 
A set of K discrimination functions gk(  

! 

! 
X ) partitions the space   

! 

! 
X  into a disjoint set of 

regions with quadratic boundaries.  At the boundaries between classes: 
 
     

! 

gi(
! 
X )" gj (

! 
X ) = 0  

 
In many cases the quadratic term can be ignored and the partitions take on the form 
of hyper-surfaces. In this case, the discrimination function can be reduced to a linear 
equation.  
 
   

! 

gk (
! 
X ) =

! 
W k

T ! X + bk  
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This is very useful because there are simple powerful techniques to calculate the 
coefficients for linear functions from training data.  
 
Vector between center of gravities 
 
Suppose that we have two classes with mean and covariance (  

! 

! 
µ 1, 

! 

"1), and (  

! 

! 
µ 2 , 

! 

"2 ). 
These can be used to define two linear discriminant functions:  
 
Let      

! 

g1(
! 
X ) =

! 
W 1

T ! X + b1 and   

! 

g2 (
! 
X ) =

! 
W 2

T ! X + b2  
 
where :     

! 

! 
W k = "k

#1 ! µ k  
 

and    

! 

bk = "
1
2
(µk

T#k
"1µk )"

1
2
Log{det(#k )}+ Log{p($ k)} 

 
The decision boundary is   
 
   

! 

g1(
! 
X )" g2 (

! 
X ) = 0  

   

! 

(
! 

W 1
T "
! 

W 2
T )
! 
X + b1 "b2 = 0  

   

! 

("1
#1 ! µ 1 # "2

#1 ! µ 2 )
T X +b1 #b2 = 0  

 

 
The direction is determined by the vector between the center of gravities of the two 
classes, weighted by the inverse of the covariance matrices.  
 
This approach is based on the assumption that the two classes are well modeled by 
Normal density functions. This assumption is not reasonable in many cases.  
If one of the classes is not well modeled as a normal, the results can be unreliable.  
 
In some other cases, the data are so well separated that a large variety of hyperplanes 
can be used. In this case it can be interesting to use a simpler learning method.  
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Perceptrons 
 
A perceptron is an incremental learning algorithm for linear classifiers invented by 
Frank Rosenblatt in 1956.  The perceptron is an on-line learning method in which a 
linear classifier is improved by its own errors.   
 
A perceptron learns a set of possible hyper-planes to separate training samples.  
When the training data are perfectly separated the data is said to be "separable".  
Otherwise, the data is said to be non-separable.  
 
The "margin", γ,  is the smallest separation between the two classes.  
   
When are the training samples are separable, the algorithm uses the errors to update a 
plane until there are no more errors.  When the training data is non-separable, the 
method may not converge, and must be stopped after a certain number of iterations.  
 
The perceptron learns from training samples   

! 

{
! 
X m}  with indicator variables 

! 

{ym}. 
 
Note that for all positive examples. 
 
 
    

! 

ym " (
! 

W T
" 
X m + B) > 0  if the classification is correct.  

 
The algorithm will apply a learning gain,  α,  to accelerate learning.  
  
Algorithm:  
   

! 

! 
W o  ← 0; bo ← 0; i = 0;  

 R ← max { ||  

! 

! 
X m || } 

  REPEAT 
  FOR m = 1 TO  M  DO  
   IF    

! 

ym " (
! 

W i
T " X m + bi ) # 0  THEN  

      

! 

! 
W i+1"

! 
W i +# $ ym $

! 
X m  

    

! 

bi+1" bi +# $ ym $ R
2  

    i ← i + 1  
   END IF 
  END FOR 
 UNTIL no mistakes in FOR loop.  
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After each stage the margin, γm,  for each sample, m, is  
 
   

! 

"m = ym # (
! 

W i
T " X m + bi )  

 
The coefficients must be normalized to compute the margin.  
 
 

! 

" W i =
Wi

||Wi ||
  

! 

" b i =
bi

||Wi ||
 

 
The decision rule is as before:  
 
   if    

! 

sgn(
! 

W i
T ! X + bi )) > 0  then 

! 

ˆ " 1 else 

! 

ˆ " 2   
 
The quality of a perceptron is given by the histogram of its margins, h(γm) 
If the data is not linearly separable, then the Perceptron will not converge.  
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Fisher Linear Discriminant.  
 
The discrimination problem can be viewed as a problem of projecting the D 
dimensional feature space onto a lower dimensional K dimensional space.  
 
The tool for such projection is the Fisher discriminate.  
 

Two Class solution 
The principle of the Fisher linear discriminate is to project the vector X with Dx onto 
a variable z (D=1) by a linear projection F such that the classes are most separated.  
 
   

! 

z =
! 
F T "
! 
X  

 
A Fisher metric, J(F) is used to choose F such that the two classes are most separated.   
 

x1

x2

 

x1

x2

 
 
The error rates of the classification (FP, FN) depends on the direction of   F.   
  
Note that F is commonly normalized  so that    

! 

! 
F =1  

 
Assume a set of Mk training samples for each class,   

! 

{
! 
X m

k }  
 
The average for each class is:  
 

 
  

! 

! 
µ k = E{

! 
X k} =

1
M k

! 
X m

k

m=1

M k

"  
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Moments are invariant under projections. Thus the projection of the average is the 
average of the projection.   
 
   

! 

µz
k = E{FT "

! 
X m

k } = FT "E{
! 
X m

k } = FT "
! 
µ k   

 
The inter-class distance between between classes 1 and 2  is  
 
   

! 

d12 = µz
1 "µz

2 =
! 
F ( ! µ 1 "

! 
µ 2 ) 

 
The Fisher metric is designed to make the inter-class distance, d12, as large as 
possible.  The key concept is the "scatter" of the samples.  Scatter can be seen as 
unormalised covariance.  
  
The “scatter” for the Mk samples   

! 

{
! 
X m

k }  of the  set k is a matrix : Sk.  
This is the same as an "unnormalised" covariance. 
  

 
  

! 

Sk = M k"k = (
! 
X m

k #
! 
µ k )(
! 
X m

k #
! 
µ k )T

m=1

M k

$  

 
The transformation F projects the vector   

! 

! 
X  onto  a scalar z.  

 
   

! 

z =
! 
F T "
! 
X  

 
The scatter of the class after projection is  
 

  

! 

Sz
k = (zm

k "µz
k )2

m=1

Mk

#  

 
The fisher criteria tries to maximize the ratio of the separation of the classes 
compared to their scatter by maximizing the ratio of within and between class scatter. 
 

 

! 

J(F) =
µz
1 "µz

2( )2

sz
1 + sz

2  

 
Let us define the between class scatter as     

! 

SB = ( ! µ 1 "
! 
µ 2 )(
! 
µ 1 "
! 
µ 2 )

T  
 

then     

! 

µz
1 "µz

2( )2 = FT ( ! µ 1 "
! 
µ 2 )(
! 
µ 1 "
! 
µ 2 )

T( )F = FTSBF  
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And let us define within class scatter as  
 

 
  

! 

SW = S1 + S2 = (
! 
X m
1 "
! 
µ 1)

m=1

M1

# (
! 
X m
1 "
! 
µ 1)

T + (
! 
X m
2 "
! 
µ 2 )

m=1

M 2

# (
! 
X m
2 "
! 
µ 2 )

T
 

 
Then 
  

 

! 

sz
1 + sz

2 = FT (S1 + S2 )F = FTSWF  
 
Then  
 

 

! 

J(F) =
µz
1 "µz

2( )2

sz
1 + sz

2 =
FTSBF
FTSWF  

 
Taking the derivative with respect to F, we find that J(F) is maximized when  
 
 

! 

FTSBF( )SWF = FTSWF( )SBF  
 
Because 

! 

SBF  is always in the direction   

! 

! 
µ 1 "
! 
µ 2 

 
Dropping the scale factors  

! 

FTSBF( ) and

! 

FTSWF( )  we obtain 
 
   

! 

SWF =
! 
µ 1 "
! 
µ 2  

 
and thus   

! 

F = SW
"1 ! µ 1 "

! 
µ 2( )  
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Fisher's Discriminant for Multiple Classes.  
 
Fisher's method can be extended to the derivation of K > 2 linar discriminates.  
Let us assume that the number of features is greater than the number of classes,  
D > K.  
 
We will look for functions that project the D features on D' < D features to form a 
new feature vector,   

! 

! 
Y = ! w T

! 
X   (note that there is no constant term).  

 
as before, we define the class Mean,   

! 

! 
µ k , class Scatter 

! 

Sk  and within-class scatter SW   
 

Class Mean:  
  

! 

! 
µ k =

1
M k

! 
X m

k

m=1

M k

"  

Class Scatter: 
  

! 

Sk = (
! 
X m

k

m=1

M k

" #
! 
µ k )(
! 
X m

k #
! 
µ k )

T   

Within Class Scattter 
  

! 

! 
µ k =

1
M k

! 
X m

k

m=1

M k

"  

 
We need to generalization of the between class covariant.  
The total mean is:   
 

 
  

! 

! 
µ =

1
M

! 
X m

k

m=1

M k

"
k=1

K

" =
1
M

M k
k=1

K

" ! 
µ k  

 
The between class scatter is:  
 

 
  

! 

SB = Mk (
! 
µ k

k=1

K

" #
! 
µ )( ! µ k #

! 
µ )T  

 
Which gives the total scatter as 
 
 

! 

ST = SW + SB  
 
We can define similar scatters in the target space:  
 

 
  

! 

! 
µ k =

1
M k

! 
Y m

k

m=1

M k

"   
  

! 

! 
µ =

1
M

! 
Y m

k

m=1

M k

"
k=1

K

" =
1
M

M k
k=1

K

" ! 
µ k  

 

 
  

! 

" S W =
k=1

K

# (
! 
Y m

k

m=1

M k

# $
! 
µ k )(
! 
Y m

k $
! 
µ k )

T  
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! 

" S B = M k (
! 
µ k

k=1

K

# $
! 
µ )( ! µ k $

! 
µ )T  

 
We want to construct a set of projections that maximizes the between class scatter 
 
 J(W)=Tr{W·SW·WT)-1(WSBWT) 
 
The W values are detemined by the D eigenvectors of  

! 

SW
"1SB  that correspond to the D 

largest Eigen-values.  


