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Notation 
 
x   A variable 
X   A  random variable (unpredictable value)   
N   The number of possible values for x (Can be infinite).   
  

! 

! x  →     A vector of D variables.   
  

! 

! 
X    A vector of D random variables.   
D   The number of dimensions for the vector    

! 

! x 
 
 or   

! 

! 
X  

E   An observation. An event.  
Ck   The class  k 
k   Class index 
K   Total number of classes 
ωk   The statement (assertion) that an observation E  ∈ Ck 
Mk   Number of examples for the class k. (think M = Mass) 
M   Total number of examples for all classes 

   

! 

M = Mk
k=1

K

"  

{

! 

Xm
k }  A set of Mk examples for the class k.  

   
  

! 

{Xm} = !
k=1,K

{Xm
k } 
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Pattern Recognition 
 
Recognize  =   Re + Cognize.   To know again 
 
Recognition is a fundamental ability for intelligence, and indeed for all life.  
To survive, any creature must be able to recognize food, enemies and friends.   
 
Recognition = assigning an observation to a class.   This is also called 
"Classification".  
 
Categorize is sometimes used in place of classify, generally when the categories have 
been determined automatically by machine learning. 
  
An observation (or event) E  is provided by a sensor.   
Generally and observation is described by a vector of properties called features,   

! 

! 
X  

 
For example:  a medical scale that measures height and weight of a person.  Each 
observation E is a vector   

! 

! 
X  = (w,h).    We can use this feature vector to guess the 

identity of the person. Let us refer to measures of the person k as the statement that 
the observation E belongs to the class Ck of observations of person k. 
 
Features: observable properties that permit assignment of observations to classes.  
A set of D features, xd, are assembled into a feature vector   

! 

! 
X   

 

  

  

! 

! 
X =

x1
x2
...
xD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
 

 
A classifier is a process that maps the observed properties   

! 

! 
X  of an observation, E,  to 

a class label, Ck.  The result is a proposition:  

! 

ˆ " k  =  (E ∈ Class Ck) 
 

Class(x1,x2, ..., x d)} !̂

x1
x2
...
xd  
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Bayesian Reasoning and Classification 
 
"Bayesian" refers to the 18th century mathematician and theologian Thomas Bayes 
(1702–1761), who provided the first mathematical treatment of a non-trivial problem 
of Bayesian inference.  Bayesian inference was made popular by Simon Laplace in 
the early 19th century.  
 
Bayesian inference can be used for reasoning and for recognition.   
The rules of Bayesian inference can be interpreted as an extension of logic. Many 
modern machine learning methods are based on Bayesian principles.   
 
With a Bayesian approach, the tests are designed to minimize the number of errors.  
 
Let ωk be the proposition that the event belongs to class k: ωk = E ∈ Tk 

 
 ωk   Proposition that event E  ∈ the class k 
 p(ωk) = p(E ∈Ck) Probability that E is a member of class k 
   
Given an observation E with properties X 

→
, the decision criteria is  

 

 
  

! 

ˆ " k = arg#max
k

p("k |
! 
X ){ } 

 where 

! 

"k # E $ Ck  
 
To do this we need to define "probability" and "conditional probability" (given).  
 
Once we are clear on the definition of probability, the meaning of conditional 
probability will be provided by Bayes Rule:  
 

 
  

! 

p(" k |
! 
X ) =

P(
! 
X |" k )p(" k )

P(
! 
X )  
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Probability 
 
There are two possible definitions of probability that we can use for reasoning and 
recognition:   Frequentialist and Axiomatic.  
 

Probability as Frequency of Occurrence 
 
A frequency based definition of probability is sufficient for many practical problems.   
 
Suppose we have M observations of random events (or observations) {Em}, for which 
Mk of these events belong to the class k.  The probability that one of these observed 
events belongs to the class k is: 
 

 Pr(E ∈ Ck ) = 
Mk
M     

 
If we make new observations under the same conditions (ergodicity), then it is 
reasonable to expect the fraction to be the same. However, because the observations 
are random, there may be differences.  These differences will grow smaller as the size 
of the set of observations,  M,  grows larger.  This is called the sampling error.  
 
The sampling error is formally defined as the difference between calculated statistic 
and a parametric model.  The parametric model is assumed to be true.  Most often a 
Normal Density model is used.   
 
The sampling error is generally inversely proportionally to M, the total number of 
observations  
 
 Es  ~  

! 

O( 1
M
)  
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Axiomatic Definition of probability 
 
An axiomatic definition makes it possible to apply analytical techniques to the design 
of classification systems.  Only three postulates (or axioms) are necessary:   
 
In the following, let E be an event (or observation), let S be the set of all events, and 
let Ck be set of events that belong to class k with K total classes.   

  

! 

S = Ck
k=1,K
!   

 
Postulate 1 :  ∀ Ck ∈ S  :  p(E∈Ck ) ≥ 0 
Postulate 2 :  p(E∈S) = 1 
Postulate 3 :  
∀ Ci, Cj ∈ S  such that   Ci ∩ Cj = ∅ :  p( E∈ Ci ∪ Cj) = p(E∈Ci) + p(E∈Cj)  
 
A probability function is any function that respect these three axioms.  
A probability is the truth value produced by a probability function.  
 
This can be very useful if we have some way to estimate the relative "likelihood" of 
different propositions, say 

! 

L("k ). 
 
We can convert a likelihood to probability by normalizing so that the sum of all 
likelihoods is 1. To do this we simply divide by the sum of all likelihoods:  
 
 

! 

P("k ) =
L("k )

L("k )
k=1

K

#
 

 
Thus with axiomatic probability, any estimation of likelihood for the statement ωk 
can be converted to probability and used with Bayes rule.  
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Histogram Representation of Probability 
 
We can use histograms both as a practical solution to many problems and to illustrate 
fundamental laws of axiomatic probability.   
 
A histogram is a table of "frequency of occurrence"  h().  When we have K classes of 
events, we can build a table of frequency of occurrence for observations from each 
class  h(E  ∈ Ck). 
Similarly if we have M observations of a feature, x, and the feature can take on one 
of N possible values, {1, ..., N}  we can construct a table of frequency of occurrence 
for the feature.  h(x).  
 
For symbolic values, such as class labels or symbolic features, the table h() can be 
implemented as a hash table, using the labels for each class as a key.  Alternatively, 
we can map each class onto K natural numbers k <- Ck.  
 
We then count the frequency of example of the class.  
 
  ∀m=1, M  : if Em ∈ Ck  then h(k) := h(k) + 1;  
 
After M events, given a new event,  E,      

! 

P(E " Ck ) = P(k) =
1
M
h(k)  

Similarly, for feature X with N possible values, we count the fequency of each value 
Xm within M observations.  
 
  ∀m=1, M  :   h(xm) := h(xm) + 1;  
 
After M observations,  

! 

P(X = x) = P(X) =
1
M
h(x) 

 
Problem:  Given a feature X, with N possible values, how many observations, M, do 
we need for a reliable estimate of probability? 
Answer:   If the feature X has N possible values, then  h(x) has Q = N cells.  
 
For M observations, in the worst case the RMS error between an estimated h(X) and 
the true h(x) is  proportional to  

! 

O( Q
M
)   

 
The RMS (root-mean-square) sampling error between a histogram and the underlying 
parametric density model is     ERMS (h(X)-P(X)) =  O(Q/M).  
The worst case occurs when the true underlying density is uniform.     
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For most applications,   M ≥  10 Q  (10 samples per "cell") is reasonable  
(less than 10% RMS error).  
 
when reasoning in powers of 2 one can use : M ≥  8 Q 
(less than 12% RMS error).  
 

Illustrating Baye's Rule with Histograms 
 
For simplicity, consider the case where D=1 with  x is a natural number,  x ∈ [1, N], 
The same techniques can be made to work for real values and for symbolic values. 
 
We need to represent   

! 

p(
! 
X ),   

! 

p(
! 
X |"k ) , and 

! 

P("k ) . We will estimate these from a 
"training" set.  
 
Assume that we have K classes.  
For each class we have a set of Mk sample events, described by a feature  x ∈ [1, N] 
 
    

! 

Sk =
! x m

k{ }.  
 
Overall we have M events, representing observations of K classes, with Mk examples 
in each class.  
 

Traiing Set:  
  

! 

{! x m} = "
k=1,K

{! x m
k }  and   

! 

M = Mk
k=1

K

"  

 
We can build a table of frequency for the values of X. We allocate a table of N cells, 
and use the table to count the number of times each value occurs:  
 
 ∀m=1, M  :  h(xm) := h(xm) + 1; 
 
Then the probability that a random sample X ∈ {xm} from this set has the value x is 
then   
 

! 

p(X = x) =
1
M
h(x) 

 
Similarly for each of the K classes, each with a set of Mk training samples 

! 

xm
k{ }.  

then we can build a histograms, each with N cells.  
 
 ∀k: ∀m=1, M:  hk(xm) := hk (xm) + 1 
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Then  
 

! 

p(X = x |"k ) =
1
Mk

hk (x) 

 
The combined probability for all classes is just the sum of the histograms.  
 

  

! 

h(x) = hk (x)
k=1

K

"  and then as before, 

! 

p(X = x) =
1
M
h(x) 

  
 

! 

P("k )  can be estimated from the relative size of the training set.  
 
 

! 

p(E " Ck ) = p(#k ) =
Mk

M
 

 

Baye's Rule as a Ratio of Histograms 
 
Note that this shows that the probability of a class is just the ratio of histograms:  
 

Thus   

! 

p("k | x) =
p(x |"k )p("k )

p(x)
=

1
Mk

hk (x)
Mk

M
1
M
h(x)

=
hk (x)
h(x)

=
hk (x)

hk (x)
k=1

K

#
 

for example, when K=2 

  
For example,  observe that p(ω1| x=2 ) = ¼ 
  
Reminder.  Using Histograms requires two assumptions:  
 
1) that the training set is large enough (M > 8 Q, where Q=ND),  and  
2) That the observing conditions do not change with time (stationary),  
 
We also assumed that the feature values were natural numbers in the range [1, N].  
this can be easily obtained from any features.  
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When X is a vector of D features.  
 
When X is a vector of D features each of the components must be normalized to a 
bounded integer between 1 and N. This can be done by individually bounding each 
component, xd.  
 
Assume a feature vector of D values   

! 

! x  
 

  

  

! 

! 
X =

x1
x2
...
xD

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
 

 
Given that each feature xd ∈ [1, N], allocate a D dimensional table  
 h(x1, x2, …, xD) = h(  

! 

! x ).  
 
The number of cells in h(  

! 

! 
X ) is  Q=ND. 

As before,  
 
 ∀m=1, M  :    

! 

h(
! 
X m ) = h(

! 
X m )+1 

 

Then:     

! 

p(
! 
X = ! x ) =

1
M

h(! x )  
 
The average error depends on the ratio   

Q=ND 
 and M:    Ems ~  O( 

Q
M ) 

 
Where Q is the number fo cells in h(X) 
N is the number of values for each feature.  
D is the number of features.  
 
As before, for K classes, where hk(  

! 

! x ) is a histogram of feature vectors for class k:  
 

  

! 

p("k |
! x ) =

p(x |"k )p("k )
p(x)

=

1
M k

hk (
! x )M k

M
1
M

h(! x )
=

hk (
! x )

h(! x )
=

hk (
! x )

hk (
! x )

k=1

K

#
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Unbounded and real-valued features 
 
If X is real-valued of unbounded, we must bound it to a finite interval and quantize it.  
We can quantize with a function such as “trunc()” or “round()”.  The function trunc() 
removes the fractional part of a number.  Round() adds ½ then removes the factional 
part.   
 
To quantize a real X to N discrete values : [1, N] 
xmin 

/* first bound x  to a finite range */ 
 
 If (x < xmin) then x := xmin; 
 If (x > xmax) then x := xmax; 
 

 

! 

n = round (N "1) #
x " xmin
xmax " xmin

$ 

% 
& 

' 

( 
) +1 

 

Symbolic Features 
 
If the features are symbolic,  h(x) is addressed using a hash table, and the feature and 
feature values act as a hash key. As before h(x) counts the number of examples of 
each symbol. When symbolic x has N possible symbols then  
 
 

! 

p(X = x) =
1
M
h(x)  as before 

 
"Bag of Features" methods are increasingly used for learning and recognition. 
The only difference is that there is no "order" relation between the feature values.  
 


